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Abstract—Cognitive Radio Network (CRN) is a promising
technique for solving the wireless spectrum scarcity problem.
Rendezvous is the fundamental process of CRNs. We aim at
designing faster rendezvous algorithms for CRNs. We find that
local information such as user’s ID and the label of an available
channel is very useful for designing faster rendezvous algorithms.
First, we propose the Sequence-Rotating Rendezvous (SRR)
algorithm. The SRR algorithm can guarantee rendezvous for any
two users i and j in (2P 2 + 2P ) timeslots, where P is the least
prime not less than the total number of channels in the network.
Second, we utilize the user’s identifier (ID) to design an ID-based
Rendezvous (IDR) algorithm. The IDR algorithm can guarantee
rendezvous for any two users i and j in (l+ 1)(Pi + 2)(Pj + 2)
timeslots, where Pi and Pj are the smallest primes which are
not less than the numbers of available channels of users i
and j respectively. Third, we propose a Channel-Label-based
Rendezvous (CLR) algorithm which can guarantee rendezvous
for any two users in ((Pi+2)(Pj+2)+PN )(⌈log2N⌉+1) timeslots,
where N is the total number of channels in the network and
PN is the least prime which is not less than N . The theoretical
Maximum Time To Rendezvous (MTTRs) of the three algorithms
we propose are less than those of the state-of-the-art algorithms
in the corresponding categories respectively in certain scenarios.
All of our algorithms can be used in multi-user scenarios. We
conduct a number of experiments to compare our algorithms with
state-of-the-art rendezvous algorithms in different scenarios, the
results of which confirm our theoretical analysis.

Index Terms—Cognitive Radio Network, Local Information,
Rendezvous Algorithms, Channel Label, identifier

I. INTRODUCTION

The wireless spectrum is an invaluable resource for trans-
mission between wireless devices. Generally, it is divided into
the licensed portion for paying users (also called primary users
or PUs) and the unlicensed portion for the unlicensed users
(also called secondary users or SUs). With the development of
wireless communication technology, the unlicensed spectrum
is becoming more and more crowded due to rapid growth
of wireless devices [12] and wireless services. On the other
hand, however, the licensed spectrum remains to be under-
utilized most of the time [16], [9]. Cognitive radio networks
(CRNs) were thus proposed in order to alleviate the spectrum
scarcity problem of the unlicensed spectrum, whose idea is
to allow SUs to sense (via cognitive radios which have been

equipped) and utilize vacant parts of the licensed spectrum
opportunistically.1

In CRNs, many important processes are constantly being
executed, such as broadcasting, routing, data gathering, etc.
Rendezvous is the fundamental process of CRNs, which aims
at finding an available licensed channel for neighboring users
to communicate. If rendezvous is not first accomplished, the
other tasks of CRNs simply cannot commence. Since PUs
have priority over SUs, when a PU is occupying a channel,
no SU can access the channel. To construct a communication
link on a common channel, some works assume there exists
a central controller which has full knowledge of all the users’
available channel sets, then the users can be assigned with
a common available channel for communication [10], [11],
[15], [18]. Alternatively, a central control channel (CCC) can
be used, which can emulate the function of a central controller.
However, establishing a central controller is costly, which
could also turn into a bottleneck and be vulnerable to attacks.
Therefore, many distributed rendezvous algorithms have been
proposed which do not require any central controller or CCC
and the users can run their algorithms independently and
locally [13], [7], [19], [20], [21]. Algorithms of this kind are
called “blind” rendezvous algorithms and are more practical
than centralized ones. Channel Hopping (CH) [1], [2] is a
widely adopted technique in blind rendezvous algorithms,
by which a user tries to select a channel for rendezvous
according to a pre-generated channel hopping sequence. Most
blind rendezvous algorithms utilize the labels of channels to
construct CH sequences. Some blind rendezvous algorithms
utilize users’ IDs in their construction of CH sequences.

Existing blind rendezvous algorithms can be categorized
into different categories, as follows.

(i) Synchronous/asynchronous algorithms. Synchronous
algorithms [24], [22], [17] assume there exists a global clock
and every user in the network starts the rendezvous process at
the same time. Asynchronous algorithms [6], [7], [3] do not
require a global clock and every user can start the rendezvous
process at any time.

1Unless specifically stated, “users” in the rest of the paper refers to SUs.



TABLE I
Comparisons between rendezvous algorithms

Algorithm MTTR Time
Anonymous or Oblivious or

Sequence
Non-anonymous Non-oblivious

JS [14] 3NP (P −G) + 3P Asynchronous Anonymous Non-oblivious Global

EJS [13] 4P (P + 1−G) Asynchronous Anonymous Non-oblivious Global

DRDS [7] 3P 2 + 2P Asynchronous Anonymous Non-oblivious Global

CRSEQ [19] P (3P − 1) Asynchronous Anonymous Non-oblivious Global

DSCR [23] (2P + ⌊P/2⌋)(P −G+ 1) Asynchronous Anonymous Non-oblivious Global

SRR(this paper) 2P 2 + 2P Asynchronous Anonymous Non-oblivious Global

CBH [6] 2lpmax{Pi, Pj}2 Asynchronous Non-anonymous Oblivious Local

A-HCH-Optimal [4]* ≈ (l + log2l)PiPj Asynchronous Non-anonymous Oblivious Local

A-HCH-η1 [4] (2l + 3)PiPj Asynchronous Non-anonymous Oblivious Local

A-HCH-η2 [4] (l +
⌈√

l
⌉
(2 + ⌈log2l⌉) + 3)PiPj Asynchronous Non-anonymous Oblivious Local

IDR(this paper) (l + 1)(Pi + 2)(Pj + 2) Asynchronous Non-anonymous Oblivious Local

MTP [8] 64max{|Vi|, |Vj |}(⌈loglog N⌉+ 1) Asynchronous Anonymous Non-oblivious Local

CLR(this paper) ((Pi + 2)(Pj + 2) + PN )(⌈log2N⌉+ 1) Asynchronous Anonymous Non-oblivious Local

Remark: N is the total number of channels in the network; P is the smallest prime which is not less than N ; G is the number of common available
channels; l is the length of user ID; * denotes that this algorithm is a centralized algorithm; lp is determined by the two users’ IDs and the detailed
information can be find in [6]; |Vi| and |Vj | are the sizes of the available channel sets of user i and j respectively; Pi and Pj are the smallest primes
which are not less than |Vi| and |Vj | respectively; PN is the smallest prime which is not less than N .

(ii) Anonoymous/non-anonymous algorithms. Anony-
mous algorithms [7], [13] do not require every user to have a
unique ID. Non-anonymous algorithms [6], [4] assume there
exists a unique identifer (ID) for every user and make use of
a user’s ID to generate the channel hopping sequence.

(iii) Oblivious/non-oblivious algorithms. Oblivious algo-
rithms [6], [4] do not require any global labeling of all
the channels. Non-oblivious algorithms [6], [7], [13] require
global labeling of channels and make use of the labels to
guarantee rendezvous.

(iv) Global-sequence-based/semilocal-sequence-based
algorithms/local-sequence-based algorithms. Global-
sequence-based algorithms [7], [23] construct channel
hopping sequences containing all the channels. If a channel is
not available to a user, it is replaced by an available channel.
Local-sequence-based algorithms [21], [20], [6] generate
channel hopping sequences based on only local available
channels as if a user is not aware of the existence of other
channels. There exist other algorithms like HH [21] and ICH
[20], whose hopping sequences are based on the channel
labels between the smallest and the largest channel label. We
call these semilocal-sequence-based algorithms.

Rendezvous algorithms can be judged according to some
common metrics, such as Maximum Time To Rendezvous
(MTTR) and Expected Time To Rendezvous (ETTR). Time
To Rendezvous (TTR) is the number of timeslots consumed
from the last user starting rendezvous until the completion
of rendezvous. ETTR is the expected TTR of an algorithm.
MTTR is the maximum TTR needed to achieve rendezvous.
In other words, MTTR is the TTR in the worst case.

Although the state-of-the-art rendezvous algorithms are
quite well designed and some of their MTTRs can even match

or approach the theoretical lower bounds, there still exists
room for further improvements. We compare our algorithms
with the state-of-the-art rendezvous algorithms in Table I.

In this paper, we introduce some simple but time-efficient
rendezvous algorithms which make use of local information.
The following are the main contributions of our paper:

1) We make use of the label of an arbitrary available channel
of a user and propose the Sequence-Rotating Rendezvous
(SRR) algorithm whose MTTR is (P 2 + 2P ) timeslots.

2) Based on the user IDs, we propose the ID-based Ren-
dezvous (IDR) algorithm whose MTTR is (l + 1)(Pi +
2)(Pj + 2) timeslots.

3) Based on the label of an arbitrary available channel of
a user, we propose the Channel-Label-based Rendezvous
(CLR) algorithm whose MTTR is ((Pi + 2)(Pj + 2) +
PN )(⌈log2N⌉+ 1) timeslots.

4) The theoretical MTTRs of the proposed algorithms SRR,
IDR, CLR are less than those of the state-of-the-art
algorithms of the corresponding categories respectively
in certain scenarios.

5) We conduct a number of experiments to compare our
algorithms with state-of-the-art algorithms. The results
are consistent with our theoretical analysis.

The rest of this paper is organized as follows. Section II
introduces the background and some related works. Section III
introduces the fundamental model and provides the problem
formulation. Section IV presents the details of the SRR
algorithm and analyzes its performance. Section V presents
the details of the IDR algorithm and analyzes its performance.
Section VI presents the details of the CLR algorithm and
analyzes its performance. Simulation results are discussed in
Section VII. We conclude this paper in Section VIII.



II. BACKGROUND AND RELATED WORKS

A. Prime number and Co-prime Numbers

Prime number is a very important concept in number theory,
which provides an important foundation for our algorithms.
We first introduce the definition of prime number:

Definition 2.1: A prime number is a natural number which
is larger than 1 and can be divided with no remainder only by
1 and itself.

The smallest prime number is 2. There is an important
theorem about prime number:

Theorem 1: If n is a positive integer and n ≥ 2, there must
exists at least one prime number between n and 2n.

This theorem is called Bertrand-Chebyshev Theorem and
the proof of it can be found in [5].

Then we introduce the definition of composite number:
Definition 2.2: A composite number is a natural number

which is larger than 1 and has factors besides 1 and itself.
The smallest composite number is 4. There is a property

about prime and composite numbers:
Lemma 2.1: Any positive integer larger than 1 is either a

prime number or a composite number.
Then we introduce the definition of co-prime numbers:
Definition 2.3: Two nonzero natural integers a and b are

said to be co-prime if the only common factor which could
divide them with no remainder is 1.

Co-prime numbers have many important properties:
Lemma 2.2: If a and b are co-prime, the least common

multiple of them is their product: a× b.
Lemma 2.3: If a and b are two consecutive positive integers,

a and b are co-prime.
Lemma 2.4: If a and b are two consecutive positive odd

numbers, a and b are co-prime.
Lemma 2.5: Suppose a is a prime number and b is a

composite number. If a is larger than b, they are co-prime.
If b is larger than a, but b is not a multiple of a, they are
co-prime.

We then introduce an important theorem for rendezvous:
Theorem 2: If m and n are co-prime numbers, then for any

integer a, the integers a, a+ n, a+2n, · · · , a+ (m− 1)n are
m distinct numbers under modulo-m arithmetic.

This theorem is an extension of a lemma in [21].
Proof: Choose any two integers from a, a + n, a +

2n, · · · , a+(m−1)n, the absolute value of their difference is
kn, where 0 < k < m. If kn mod m equal 0, then kn = lm,
where l is a positive integer. Then kn or lm is a common
multiple of m and n. From Lemma 2.2 we know mn is the
least common multiple of m and n, and because 0 < k < m,
kn is a common multiple of m and n that is less than mn,
which is a contradiction. Hence, Theorem 2 holds.

Fig. 1 illustrates an example of Theorem 2. In Fig. 1, the
first row is a string of numbers starting from 1. The second
row is the results of these numbers under modulo-4 arithmetic.
The third row is the results of these numbers under modulo-
5 arithmetic. We can clearly see that 1, 5, 9, 13, 17 all
correspond to 1 under modulo-4 arithmetic, but correspond to

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Number

mod  4

mod  5

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0

1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

Fig. 1. An example of Theorem 2.

1, 0, 4, 3, 2 respectively under modulo-5 arithmetic, which are
all the possible results under modulo-5 arithmetic. Theorem 2
plays an important role in rendezvous algorithms and is the
main tool we use to design the following algorithms.

B. Related Works

As mentioned in Section I, rendezvous algorithms can
be classified into global-sequence-based, semilocal-sequence-
based and local-sequence-based algorithms.

(i) Global-sequence-based rendezvous algorithms.
Global-sequence-based rendezvous algorithms design chan-

nel hopping sequences based on all the channels in the
network. When a channel is not available to a user, the user re-
places it with an arbitrary available channel. The JS algorithm
[14] uses a CH sequence which consists of two patterns: jump-
pattern and stay-pattern. In jump-pattern, the user hops to
channels using a pre-selected step length parameter r. In stay-
pattern, the user stays on a single channel. The EJS algorithm
[13] is an enhanced version of JS and decreases the MTTR
from O(N3) level to O(N2) level. The DRDS algorithm [7]
generalizes CH sequences by constructing a disjoint relaxed
difference set. It consists of two stages: listening stage and
accessing stage. The CRSEQ [19] algorithm utilizes the prop-
erty of the triangular numbers generalize the CH sequences
for users. It uses the mind of Chinese Remainder Theorem
to guarantee rendezvous between users. The DSCR algorithm
[23] generalize a CH sequence by constructing a disjoint set
cover (DSC). DSC is a famous NP-hard problem and the
construction it used is an approximation algorithm.

(ii) Semilocal-sequence-based algorithms. Semilocal-
sequence-based algorithms don’t use all the channels in the
network to generalize CH sequence, but their CH sequences
could still include unavailable channels. The HH algorithm
[21] supposes that every user can observe a set of succes-
sive channels, and builds CH sequences including only these
channels. Its CH sequence is composed of three subsequences,
which are called fixed, rotating and parity sequences. The ICH
algorithm [20] is an improved version of HH, which takes the
congestion problem into consideration.

(iii) Local-sequence-based algorithms. Local-sequence-
based algorithms generate channel hopping sequences based
only on the set of available channels of a user. The CBH algo-
rithm [6] utilizes the difference between the IDs of different
users to design CH sequences. The A-HCH-Optimal algorithm
[4], A-HCH-η1 algorithm [4] and A-HCH-η2 algorithm [4]
employ fast/slow sequences to design CH sequences and they
also utilize user ID to construct symmetrization classes in the
construction of CH sequences. The A-HCH-Optimal algorithm
is a centralized algorithm and the A-HCH-η1 and A-HCH-η2



(a) case 1 (b) case 2

Fig. 2. An example of different cases of timeslot overlapping.

algorithms can be applied distributively. The MTP algorithm
[8] constructs two pointers and let them move at different
speeds to guarantee rendezvous.

III. MODEL AND PROBLEM FORMULATIONS

In this section, we will introduce the foundation model and
some other models which are based on the foundation model.
Models are of great importance in the design of rendezvous
algorithms, because models constrain the resources that we
can use. We design different algorithms under different models
to achieve high performance for rendezvous process. We also
give the formulation of the rendezvous problem in this section.

A. Foundation Model

Suppose the licensed spectrum is divided into n channels
which are non-overlapping. Denote the set of channels as U =
{1, 2, · · · , N}, where N is the total number of channels in U .
We assume that every user in the network is equipped with
a cognitive radio. User i has a set of available channels as
Vi = {vi1, vi2, · · · , vimi

}, where mi is the number of channels
in set Vi. For simplicity, we suppose that Vi will not change
during the rendezvous process. Let the length of every timeslot
be 2t, where t = 10ms according to IEEE 802.22.

Because the lengths of all users’ timeslots are equal, a single
timeslot of user j can overlap with at most two consecutive
timeslots of user i. Fig. 2 illustrates this situation in two cases.
Suppose timeslot 3 is a single timeslot of user j. The left
timeslot of user i which overlaps with timeslot 3 is timeslot
1. The right timeslot of user i which overlaps with timeslot
3 is timeslot 4. The yellow part stands for the overlapping
part of timeslot 1 and 3, while the green part stands for the
overlapping part of timeslot 2 and 3. In Fig. 2(a), the length of
the yellow part is greater than or equal to t. In Fig. 2(b), the
length of the green part is greater than t. There is a special
case that the length of the yellow part or the green part is
zero, which means that the timeslots of user i and user j are
aligned. Hence, no matter when the users start their rendezvous
process, the maximum overlap of their timeslots is at least t,
which is enough for two users to find each other and exchange
information. The foundation model is the basis for all the three
algorithms which we will propose.

B. Problem Formulations

In this paper, we focus on designing rendezvous algorithms
for two-user scenario, which is the base for multiple-user
rendezvous. Two-user rendezvous algorithms can be expanded
into multiple-user rendezvous algorithms easily or with moder-
ate effort. Here we give the formulations of the three problems
we will solve:

Problem 1: Utilize an arbitrary available channel of a user
to design an asynchronous anonymous non-oblivious global-
sequence-based rendezvous algorithm with a low MTTR.

Problem 2: Utilize the ID of a user to design an asyn-
chronous non-anonymous oblivious local-sequence-based ren-
dezvous algorithm with a low MTTR.

Problem 3: Utilize an arbitrary available channel of a user
to design an asynchronous anonymous non-oblivious local-
sequence-based rendezvous algorithm with a low MTTR.

IV. SEQUENCE-ROTATING RENDEZVOUS ALGORITHM

In this section, we propose a global-sequence-based ren-
dezvous algorithm which is based on the channel label.

We first propose an algorithm to generate the subsequences
to be used.

Algorithm 1 Subsequence Generating Algorithm
1: Input: the set of available channels V = {v1, v2, · · · , vm},

and length L;
2: Initialize array S with length L;
3: Initialize i := 0;
4: while i < L do
5: if i ≤ m then
6: S[i] := vi;
7: else
8: Randomly choose a channel from V , denote it as

channel (c);
9: S[i] := c;

10: end if
11: i := i+ 1;
12: end while
13: Output: Sequence S.

The main idea of Alg.1 is to generate a subsequence S with
length L according to V . The process is rather simple. We fill
the first m elements in S with the channels in V . For the rest
(L−m) elements, we randomly pick channels from V to fill
them.

In Alg. 2, we first find the least prime which is not less than
the total number of all channels. Then we randomly choose
a channel from V , denote it as channel (c), and access this
channel for the first 2P timeslots. We call this the first stage
, the following is the second stage .

Then, we generate a subsequence S with length P . If
channel (a) is in the available channel set V , the a-th channel
in S is channel (a). For the channels that are not exist in V ,
their places will be replaced by channels which are randomly
picked from V . And the last (P − N) channels in S are
randomly picked from V . The period is 2P timeslots. Then we
will rotate the sequence by c steps to the right every period.
In every period, we will hop to channels according to rotated
sequence.

Fig.3 shows an example of the original generated subse-
quence and the first rotated subsequence. In this example,
V = {1, 3, 5, 6} and n = 6, so P = 7. We generate a sequence
as Fig.3(a), where the blue rectangles correspond to randomly



Algorithm 2 Sequence-Rotating Rendezvous Algorithm
1: Input: the set of available channels V = {v1, v2, · · · , vm}

and the total number N of channels;
2: Find the least prime P that ensures P ≥ N ;
3: Randomly choose a channel from V , denote it as channel

(c);
4: Initialize t := 0;
5: while 0 ≤ t < 2P do
6: Access channel (c);
7: t := t+ 1;
8: end while
9: Invoke Alg.1 to generate a subsequence S with channel

set V and length P ;
10: while Not rendezvous do
11: if t ̸= 2P and t mod (2P ) = 0 then
12: Rotate S to the right by c steps;
13: end if
14: Access channel S[t mod P ];
15: t := t+ 1
16: end while

1 3 5 6

(a) Original subsequence

1 3 5 6

(b) The first rotated subsequence

Fig. 3. An example of generated subsequence when V = {1, 3, 5, 6}, N = 6
and the first rotated subsequence.

S1[0]S1[1]S1[2]S1[2]S1[0]S1[1]S1[1]S1[2]S1[0]

S2[0]S2[1]S2[2]S2[1]S2[2]S2[0]S2[2]S2[0]S2[1]

Fig. 4. An example of Theorem 3.

picked channels. A rectangle with number in it, denote it as
i, represents the Channel (i). Because the least label in V is
1, the sequence is rotated by 1 step to the right every period.
The first rotated sequence is shown in Fig.3(b).

We then introduce a theorem which will be used in the later
discuss.

Theorem 3: Suppose there are two aligned subsequences
S1 and S2 with identical length P and P is a prime. Suppose
0 ≤ k1 ≤ P, 0 ≤ k2 ≤ P and k1 ̸= k2. If in every period we
rotate S1 and S2 to the right by k1 and k2 steps respectively
and concatenate them to S1 and S2 respectively. Then after P
periods, every element of S1 will meet every element of S2

and vice versa.
Proof: Because S1 and S2 are aligned, S1[i] will meet

S2[i] in the first period, where 0 ≤ i < P . Without lose of
generality, suppose k1 > k2. Let k1−k2 = m, then in the later
(P − 1) periods, S1[i] will meet S2[(i+m) mod P ], S2[(i+
2m) mod P ], · · · , S2[(i + (P − 1)m) mod P ] respectively.
According to Theorem 2, i, i+m, i+ 2m, · · · , i+ (P − 1)m
are P distinct numbers under modulo-P arithmetic. Hence,

 User i:

 User j:

(a) Situation 1

 User i:

 User j:

(b) Situation 2

Fig. 5. Two situations of periods overlapping of user i and j

S1[i] meets all the elements of S2 in P periods and Theorem
3 holds.

Fig.4 shows an example of Theorem 3, where the length of
S1 and S2 is 3. S1 is rotated to the right by 1 steps every
period, and S2 is rotated to the right by 2 steps every period.
We can clearly see that S2[1] meets S1[1], S1[2], S1[0] in the
three consecutive periods.

Theorem 4: Alg.2 can guarantee rendezvous for two asyn-
chronous users in (2P 2+2P ) timeslots as long as Vi∩Vj ̸= ∅.

Proof: We discuss this problem in two cases.
Case 1 : Suppose two users choose the same channel, denote

it as channel (c). Without loss of generality, suppose user i
starts rendezvous process earlier than user j. For clarity, we
divide this case into two subcases.

Subcase 1.1 : Suppose user j starts rendezvous process
when user i is still in the first stage, they will both access
channel (c) at the same time. Hence, rendezvous is achieved.

Subcase 1.2 : Suppose user j starts rendezvous process
when user i is already in the second stage. Then in the
following 2P timeslots, user i will access each available
channel including channel (c) at least once, while user j will
stay on channel c in the 2P timeslots. Hence, rendezvous can
be achieved in the 2P timeslots.

Case 2 : Suppose user i and j choose different channels,
denote them as channel (ci) and channel (cj). When user i
and j both get into the second stage, they will both rotate their
sequences accordingly. There are two situations of periods
overlapping of user i and j, which we will discuss separately.

Subcase 2.1 : Suppose the periods of user i and j are
aligned, then the scenario is the same as the setting in Theorem
2 except that we duplicate the current subsequences before
rotation and attach them to the corresponding sequences. The
difference results in double time delay. According to Theorem
3, rendezvous will be achieved in (2P 2 + 2P ) timeslots.

Subcase 2.2 : Suppose the periods of user i and j are not
aligned. There are two situations of periods overlapping for
user i and j, as illustrated in Fig.5. The yellow rectangle
in Fig.5(a) represents the first half of user j’s period, while
the red rectangle represents the corresponding part in user
i’s period. The red rectangle includes all the elements of
subsequence Si, because the two halves of user i’s period are
the same rotated subsequence of Si. This situation is similar to
Subcase 2.1, and according to Theorem 3, rendezvous will be
achieved in (2P 2+2P ) timeslots. Situation 2 can be analysed
in the same way, so we omit it here.

Combine these together, we conclude that Theorem 4 holds.



V. ID-BASED RENDEZVOUS ALGORITHM

In this section, we will propose an ID-based asynchronous
non-anonymous oblivious rendezvous algorithm. The main
idea is to create a channel hopping sequence composed of
(l + 1) subsequences, where l is the length of ID.

Algorithm 3 ID-based Rendezvous Algorithm
1: Input: the set of available channels V = {v1, v2, · · · , vm},

and its binary ID whose length is l bits;
2: Find the smallest prime P that ensures P ≥ m;
3: if P = 3 then
4: P := 5;
5: end if
6: Initialize t := 0, i := 0, j := 0;
7: Invoke Alg.1 to generate three sequences S1, S2, S3 with

channel set V and length P, P + 1, P + 2 respectively;
8: Find the channel with the least label in V , denote it as

channel (c);
9: while Not rendezvous do

10: i := ⌊t/(l + 1)⌋;
11: j := t mod (l + 1);
12: if j < l then
13: if ID[j] = 0 then
14: Access channel S2[i mod (P + 1)];
15: else
16: Access channel S3[i mod (P + 2)];
17: end if
18: else
19: Access channel S1[i mod P ];
20: end if
21: t := t+ 1;
22: end while

In Alg.3, we create a channel hopping sequence consisting
of (l+1) subsequences. The (l+1) subsequences are generated
by Alg.1. There are three kinds of subsequences, which are
S1, S2 and S3. The lengths of S1, S2 and S3 are P , P + 1,
P + 2 respectively.

Fig.6 shows an example of Alg.3. In this example, the
length of ID is 5 and user i’s ID is 01101. In period 1, the
first l elements of period 1 are either S2[0] or S3[0]. If the
corresponding digit of the i-th element in ID is 0, then the
i-th element will be S2[0]. If the corresponding digit of the
i-th element in ID is 1, then the i-th element will be S3[0].
The last element of period 1 is S1[0].

Theorem 5: Alg.3 can guarantee rendezvous for two asyn-
chronous users in (l+1)(Pi+2)(Pj +2) timeslots as long as
Vi ∩ Vj ̸= ∅.

Proof: We discuss the two possible cases:
Case 1 : Suppose Pi = Pj . Let P = Pi = Pj . We divide

this case into two subcases:
Subcase 1.1 : Suppose user i and j’s periods are aligned,

as illustrated in Fig.7(a). Because user i and user j are two
different users, their IDs must be different in at least one digit.
Without lose of generality, suppose the k-th digit in IDi is 0
while the k-th digit in IDj is 1. Then the k-th element in

T:

S:

0 1 01 1

0 1 2 3 4 5

S2[0]S3[0] S3[0] S3[0] S1[0]

period 1

  ID:

S2[0]

...

...

Fig. 6. An example of Alg. 3.

User i :

User j :

...

-- start element

-- end element

... ...

...

(a) subcase 1

User i :

User j :

...

-- start element

-- end element

... ...

...

(b) subcase 2

Fig. 7. Two subcases of case 1 and case 2.

user i’s period corresponds to subsequence S2i, whose length
is P + 1. The k-th element in user j’s period corresponds to
subsequence S3j , whose length is P+2. Then in every period,
one element of S2i will meet one element of S2j . According
to Lemma 2.3, P+1 and P+2 are co-prime. Then rendezvous
can be achieved in (l+1)(P+1)(P+2) timeslots according to
Theorem 2, as long as user i and j have at least one common
channel.

Subcase 1.2 : Suppose user i and j’s periods are not aligned,
as illustrated in Fig.7(b). In this case, the last element in user
i’s period will meet one of the first (l + 1) elements of user
j’s period. The last element in user i’s period corresponds
to subsequence S1i. The corresponding element of user j
corresponds to subsequence S2j or S3j . From Lemma 2.3 and
2.4, we know that P and P + 1 are co-prime, P and P + 2
are also co-prime. Hence, according to Theorem 2, rendezvous
can be achieved in (l+1)P (P+1) or (l+1)P (P+2) timeslots
respectively.

Case 2 : Suppose Pi ̸= Pj . We divide this case into two
subcases:

Subcase 2.1 : Suppose user i and j’s periods are aligned, as
illustrated in Fig.7(a). In this case, the last element in user i’s
period will meet the last element in user j’s period. The last
element in user i’s period corresponds to subsequence Si1. The
last element in user j’s period corresponds to subsequence Sj1.
Because Pi ̸= Pj , rendezvous can be achieved in (l+1)PiPj

timeslots according to Theorem 2, as long as user i and j have
at least one common channel.

Subcase 2.2 : Suppose user i and j’s periods are not aligned,
as illustrated in Fig.7(b). Without lose of generality, suppose
Pi > Pj . In this case, the last element in user i’s period will
meet one of the first (l + 1) elements of user j’s period. The
last element in user j’s period will meet one of the first (l+1)
elements of user i’s period. The last element in user j’s period
corresponds to subsequence S1j , whose length is Pj . The



corresponding element of user j corresponds to subsequence
S2i or S3i, whose lengths are Pi + 1 and Pi + 2 respectively.
Because Pi and Pj are two different primes, Pi > Pj + 2 or
Pi = Pj+2. If Pi > Pj+2, from Lemma 2.5, we know Pi and
Pj+1 are co-prime, Pi and Pj+2 are co-prime. According to
Theorem 2, rendezvous can be achieved in (l+ 1)Pi(Pj + 1)
or (l+1)Pi(Pj+2) timeslots respectively. If Pi = Pj+2, then
Pi +1 = P2 +3, Pi +2 = Pj +4. If Pj = 2, Pi = 2+2 = 4
is not a prime. In Alg.3, we set P to be 5 if P = 3. Because
P2 ̸= 2 and P2 ̸= 3, P2 + 3 and P2 + 4 can not be divided
by P2 without remainder. From Lemma 2.5, we know that
both Pi + 1 and Pi + 2 are co-prime with Pj . According to
Theorem 2, rendezvous can be achieved in (l+ 1)(Pi + 1)Pj

or (l + 1)(Pi + 2)Pj timeslots respectively.
Combine the above together, we conclude that Theorem 5

holds.

VI. CHANNEL-LABEL-BASED RENDEZVOUS ALGORITHM

In this section, we will propose a Channel-Label-based
Rendezvous (CLR) algorithm which utilizes the label of an
arbitrary channel in the available channel set.

Algorithm 4 Channel-Label-based Rendezvous Algorithm
1: Input: the set of available channels V = {v1, v2, · · · , vm}

and the number of all channels: N ;
2: Find the smallest prime PN that ensures PN ≥ N and

PN ≥ 5;
3: Find the smallest prime P that ensures P ≥ m and P ≥ 5;
4: Initialize l := ⌈log2N⌉;
5: Initialize t := 0;
6: Randomly choose a channel (c) from V ;
7: Convert c into a binary string CH whose length is l;
8: while Not rendezvous and t < (l + 1)PN do
9: Access channel (c);

10: end while
11: Invoke Alg.3 to achieve rendezvous with channel set V ,

binary string CH and length l;

The main idea of Alg.4 is to randomly choose an available
channel c from V and use the binary representation of c as
the user’s ID. It is obvious that the available channel chosen
by two users can be identical, but our algorithm can solve
this problem, because the label of an available channel is very
useful. Alg.4 is composed of two phases, the first phase is the
first (l+2)PN timeslots, the following is the second phase. In
the first phase , the user stays on the chosen channel (c). In the
second phase , the user invokes Alg.3 to achieve rendezvous
with the binary representation of c as its ID.

Theorem 6: Alg. 4 can guarantee rendezvous for two asyn-
chronous users i and j in ((Pi+2)(Pj+2)+PN )(⌈log2N⌉+1)
timeslots as long as Vi ∩ Vj ̸= ∅.

Proof:
We discuss the two possible cases.
Case 1: Suppose the channels (ci) and (cj) chosen by user i

and j respectively are different, then the corresponding binary

representations of ci and cj are different in at least one digit.
Therefore, they can replace the roles of IDs for user i and
j respectively. Hence, by invoking Alg.3, rendezvous can be
achieved in ((Pi +2)(Pj +2)+PN )(⌈log2N⌉+1) timeslots.

Case 2: Suppose the channels (ci) and (cj) chosen by user i
and j respectively are the same, let c = ci = cj . Then channel
(c) must be a common channel of user i and j. Without lose
of generality, suppose user i starts rendezvous process earlier
than user j. We then divide this case into two subcases.

Subcase 2.1 Suppose when user j starts rendezvous process,
user i is still in the first phase . Then user j will hop to channel
(c) in its first timeslot and user i is also in channel (c), hence
rendezvous is achieve is achieved in 1 timeslot.

Subcase 2.2 Suppose when user j starts rendezvous process,
user i is already in the second phase . Because user j stays
on channel (c) for PN (⌈log2N⌉+1) timeslots and PN ≥ Pi,
channel (c) will meets every elements of user i’s subsequence
S1 (defined in Alg.3). Therefore, rendezvous will be achieved
in the first phase of user j.

Combine these together, we conclude that Theorem 6 holds.

VII. SIMULATION

In this section, we show the simulation results of comparing
our algorithms with state-of-the-art algorithms. We imple-
mented the algorithms in C++ language. Every result in the
experiments was obtained through running the corresponding
algorithm under the corresponding setting 10000 times inde-
pendently.

We first compare our SRR algorithm with two representative
asynchronous non-anonymous non-oblivious global-sequence-
based rendezvous algorithm – EJS and DRDS. From Table I,
we can see that SRR can have lowest MTTR when the ratio
of common available channels to the total number of channels
is small. Denote Ri and Rj as the ratios of |Vi| and |Vj | to
N respectively. First, we set Vi = {1, 2, · · · , 0.5N}, Vj =
{0.5N, 0.5N + 1, · · · , N − 1} where N is the total number
of channels in the network. In this case, Ri = Rj = 0.5
and G = 1 where G is the number of common channels. We
increase N from 10 to 100 by 10 each time. The result is
illustrated in Fig.9, from which we can clearly see that the
MTTR of SRR grows slower than that of EJS and DRDS.
Then we set Vi = {0.1N, 0.1N +2, · · · , 0.6N − 1} and Vj =
{0.5N, 0.5N + 1, · · · , N − 1}. In this case, Ri = Rj = 0.5
and G = 0.1N . The result is shown in Fig. 8. We can clearly
see that the MTTR of SRR grows slower than that of EJS and
DRDS.

Second, we conduct experiments to compare the MTTRs
of the IDR algorithm and the state-of-the-art asynchronous
non-anonymous oblivious local-sequence-based algorithms –
A-HCH-η1 and A-HCH-η2. For this kind of rendezvous al-
gorithms, the crux is in the relationship between the in-
crease of MTTR with the increase of the length of user’
ID. Hence, we conduct experiments which fixes Ri, Rj and
N but increases the length of ID l step by step. We first
fix Ri = Rj = 0.5 by setting Vi = {1, 2, · · · , 0.5N} and
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Fig. 8. Comparison between the EJS algorithm, the DRDS algorithm and
the SRR algorithm when N increases from 10 to 100, Ri = Rj = 0.5 and
G = 1.
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Fig. 9. Comparison between the EJS algorithm, the DRDS algorithm and
the SRR algorithm when N increases from 10 to 100, Ri = Rj = 0.5 and
G = 0.1N .

Vj = {0.5N, 0.5N + 1, · · · , N − 1}. We fix N = 50 and
increase l from 10 to 100 by 10 each time. The result is
illustrated in Fig.10. We can clearly see that the MTTR of
IDR is less than that of A-HCH-η1 or A-HCH-η2 in general.
Then we repeats this experiment except that we increase N to
100. The result is shown in Fig.11. We can clearly see that the
MTTR of IDR is less than that of A-HCH-η1 or A-HCH-η2
in general.
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Fig. 10. Comparison between the A-HCH-η1/η2 algorithms and the IDR
algorithm when l increases from 10 to 100, Ri = Rj = 0.5 and N = 50.
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Fig. 11. Comparison between the A-HCH-η1/η2 algorithms and the IDR
algorithm when l increases from 10 to 100, Ri = Rj = 0.5 and N = 100.

10 20 30 40 50 60 70 80 90 100

Number of channels: N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
T
T
R

×104

MTP

CLR

Fig. 12. Comparison between the MTP algorithm and the CLR algorithm
when N increases from 10 to 100, Ri = Rj = 0.2 and G = 1.

Third, we implement experiments to compare our CLR
algorithm with the state-of-the-art asynchronous anonymous
non-oblivious local-sequence-based algorithm – MTP. For
this kind of rendezvous algorithms, the proportion of the
available channels to the total number of channels has a
dominating influence. We first set Ri = Rj = 0.2 by setting
Vi = {0.3N, 0.3N + 1, · · · , 0.5N}, Vj = {0.5N, 0.5N +
1, · · · , 0.7N − 1}. We increase N from 10 to 100 by 10
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Fig. 13. Comparison between the MTP algorithm and the CLR algorithm
when N increases from 10 to 100, Ri = Rj = 0.5 and G = 1.



each time. The result is illustrated in Fig.12. We can clearly
see that the MTTR of CLR is less than that of MTP in
general and the MTTR of MTP on some experiment points
is very large. This is because the MTP algorithm is designed
to be relatively complicated in order to achieve an MTTR
of O(|Vi||Vj |loglog N) order. However, it results in a large
constant coefficient. Hence, the MTTR of the MTP algorithm
can be very high, which results in losing superiority. We
implement another experiment by increasing Ri and Rj to
0.5 by setting Vi = {1, 2, · · · , 0.5N}, Vj = {0.5N, 0.5N +
1, · · · , N − 1}. The result is illustrated in Fig.13. We can see
that the situation is similar to that in Fig.12.

VIII. CONCLUSION

In this paper, we first propose a Sequence-Rotating Ren-
dezvous (SRR) algorithm, which utilizes the label of an
arbitrary available channel of a user as local information in
generating channel hopping sequence. The SRR algorithm
uses some results in number theory and has an MTTR of
(2P 2+2P ) timeslots, where P is the smallest prime which is
not less than the total number of channels. Second, we utilize
the user’s identifier (ID) to design an ID-based Rendezvous
(IDR) algorithm. IDR algorithm also uses the thought of
number theory and has an MTTR of (l + 1)(Pi + 2)(Pj + 2)
timeslots, where l is the length of ID and Pi and Pj are the
smallest primes which are not less than the size of available
channel sets of user i and j respectively. Third, we propose
a Channel-Label-based Rendezvous (CLR) algorithm, which
utilizes the binary representation of an arbitrary available
channel of a user as the user’s ID. CLR algorithm has an
MTTR of ((Pi + 2)(Pj + 2) + PN )(⌈log2N⌉ + 1) timeslots,
where N is the overall amount of channels in the network and
PN is the least prime which is not less than N . We conducted
a number of experiments comparing our algorithms with state-
of-the-art rendezvous algorithms and the results show that our
algorithms can achieve better performance.
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