
vPIPE: A Virtualized Acceleration System for
Achieving Efficient and Scalable Pipeline

Parallel DNN Training
Shixiong Zhao , Fanxin Li, Xusheng Chen , Xiuxian Guan, Jianyu Jiang , Dong Huang, Yuhao Qing,

Sen Wang, Peng Wang, Gong Zhang, Cheng Li , Ping Luo, and Heming Cui ,Member, IEEE

Abstract—The increasing computational complexity of DNNs achieved unprecedented successes in various areas such as machine

vision and natural language processing (NLP), e.g., the recent advanced Transformer has billions of parameters. However, as large-

scale DNNs significantly exceed GPU’s physical memory limit, they cannot be trained by conventional methods such as data

parallelism. Pipeline parallelism that partitions a large DNN into small subnets and trains them on different GPUs is a plausible solution.

Unfortunately, the layer partitioning and memory management in existing pipeline parallel systems are fixed during training, making

them easily impeded by out-of-memory errors and the GPU under-utilization. These drawbacks amplify when performing neural

architecture search (NAS) such as the evolved Transformer, where different network architectures of Transformer needed to be trained

repeatedly. VPIPE is the first system that transparently provides dynamic layer partitioning and memory management for pipeline

parallelism. VPIPE has two unique contributions, including (1) an online algorithm for searching a near-optimal layer partitioning and

memory management plan, and (2) a live layer migration protocol for re-balancing the layer distribution across a training pipeline. VPIPE

improved the training throughput of two notable baselines (Pipedream and GPipe) by 61.4-463.4 percent and 24.8-291.3 percent on

various large DNNs and training settings.

Index Terms—Machine learning, distributed systems, distributed artificial intelligence, pipeline, parallel systems, memory management

Ç

1 INTRODUCTION

IN recent years, large deep neural networks (DNNs), includ-
ing Transformer [52], BERT [10], AmoebaNet [39], and

GNMT [58], are getting explosively deeper (i.e., more layers)
and wider (i.e,. more parameters per layer) for higher model-
ing capacities. For instance, Transformer [52] has more than
600 layers (i.e., execution operators) and 6 billion parameters.
This rising complexity of DNNmodels has also expedited the
emergence of neural architecture search (NAS) (e.g., evolved
Transformer [45]), where the layers of a model are dynami-
cally activated/deactivated during training [39], [45] to search
for a DNN architecture with high accuracy. This increasing
complexity and dynamicity make it even more difficult for
training a large DNN, considering that each GPU has only up
to tens of gigabytesmemory [18].

Pipeline parallelism is a promising approach to train large
DNNs with lots of layers on multiple GPUs, where the DNN
is partitioned into multiple stages, each containing a number
of layers and running on a GPU. Existing pipeline parallel
systems [14], [19], [33], [59] adopt a static partition policy,
where the stage partition is fixed throughout the entire train-
ing process. A typical DNN training iteration contains a for-
ward pass and a backward pass through all stages. Themajor
memory consumption on each GPU (or stage) is for storing
activations produced in a forward pass and reused in a back-
ward pass [18], [37].

For high hardware efficiency (i.e., high GPU ALU utiliza-
tion), a pipeline parallel system injects multiple batches of
inputs and overlaps their forward and backward pass exe-
cutions, forming a pipeline. Compared with a data parallel
system [28], which needs to transfer enormous parameter
updates among GPUs, a pipeline parallel system only needs
to transfer intermediate data between layers across stages,
significantly reducing the network consumption [33]. There-
fore, more complex DNNs [19], [39], [45] are trained with
pipeline parallel systems [14], [19], [33], [59].

An efficient pipeline parallel system should achieve two
crucial design goals. First, as the system injects multiple
input batches, it should carefully manage all stages’ training
memory to avoid exceeding the physical memory capacity
on any GPU (G1). Otherwise, it will either cause out-of-
memory errors or trigger synchronous paging events that
significantly block the training execution of a DNN (dis-
cussed in Section 7). Second, to maximize the efficiency (i.e.,
high GPU ALU utilization and no stage stalls), the system

� Shixiong Zhao, Fanxin Li, Xusheng Chen, Xiuxian Guan, Jianyu Jiang,
Dong Huang, Yuhao Qing, Ping Luo, and Heming Cui are with the
Department of Computer Computer Science, The University of Hong
Kong, Hong Kong 999077, China. E-mail: {sxzhao, fxli, xschen, xxguan,
jyjiang, dhuang, yhqing, pluo, heming}@cs.hk.hk.

� Sen Wang, Peng Wang, and Gong Zhang are with Theory Lab, 2012 Labs,
Huawei Technoloies, Co. Ltd, Shenzhen 518129, China.
E-mail: {wangsen31, wang.peng6, nicholas.zhang}@huawei.com.

� Cheng Li is with the School of Computer Science and Technology, Univer-
sity of Science and Technology of China, Hefei, Anhui 230052, China.
E-mail: chengli7@ustc.edu.cn.

Manuscript received 12 Nov. 2020; revised 21Mar. 2021; accepted 24Mar. 2021.
Date of publication 2 July 2021; date of current version 5 Aug. 2021.
(Corresponding author: Heming Cui.)
Recommended for acceptance by J. Zola.
Digital Object Identifier no. 10.1109/TPDS.2021.3094364

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022 489

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-1643-2583
https://orcid.org/0000-0002-1643-2583
https://orcid.org/0000-0002-1643-2583
https://orcid.org/0000-0002-1643-2583
https://orcid.org/0000-0002-1643-2583
https://orcid.org/0000-0002-2807-9780
https://orcid.org/0000-0002-2807-9780
https://orcid.org/0000-0002-2807-9780
https://orcid.org/0000-0002-2807-9780
https://orcid.org/0000-0002-2807-9780
https://orcid.org/0000-0002-8684-8509
https://orcid.org/0000-0002-8684-8509
https://orcid.org/0000-0002-8684-8509
https://orcid.org/0000-0002-8684-8509
https://orcid.org/0000-0002-8684-8509
https://orcid.org/0000-0001-7064-6120
https://orcid.org/0000-0001-7064-6120
https://orcid.org/0000-0001-7064-6120
https://orcid.org/0000-0001-7064-6120
https://orcid.org/0000-0001-7064-6120
https://orcid.org/0000-0001-7746-440X
https://orcid.org/0000-0001-7746-440X
https://orcid.org/0000-0001-7746-440X
https://orcid.org/0000-0001-7746-440X
https://orcid.org/0000-0001-7746-440X
mailto:sxzhao@cs.hk.hk
mailto:fxli@cs.hk.hk
mailto:xschen@cs.hk.hk
mailto:xxguan@cs.hk.hk
mailto:jyjiang@cs.hk.hk
mailto:dhuang@cs.hk.hk
mailto:yhqing@cs.hk.hk
mailto:pluo@cs.hk.hk
mailto:heming@cs.hk.hk
mailto:wangsen31@huawei.com
mailto:wang.peng6@huawei.com
mailto:nicholas.zhang@huawei.com
mailto:chengli7@ustc.edu.cn

should enforce a “balanced” partition (G2) such that all
stages achieve roughly the same high throughput [19], [33]:
data items processed per second by the pipeline. Unfortu-
nately, despite much effort [14], [19], [33], [59] on building
pipeline parallel systems, simultaneously realizing these
two design goals for complex and dynamic DNNs is still an
open problem.

Existing pipeline parallel systems fall into two categories.
The first category (Pipedream [33] and XPipe [14]) keeps
activation tensors produced during forward passes directly
in GPU memory. However, due to the forward-then-back-
ward nature of DNN training, activation tensors in the front
stages reside longer in GPU memory than those in the rear
stages (Fig. 1). Thus, when more input batches are injected,
the front stages have to keep many more copies of activa-
tions than the rear stages.

To meet G1 on the front stages, systems in the first cate-
gory have to keep a moderate batch size [10], [39], [52], [58].
Still, a larger training batch size can lead to higher GPU
ALU utilization and higher throughput [60]. In our evalua-
tion (Section 6.1), when training Transformer with 8 GPUs,
Pipedream [33] supported a batch size of only 32. Each
GPU’s ALU utilization rate was 42.3 percent on average,
making the training throughput only 46.1 percent of the
ideal throughput: the theoretical throughput supposing a sys-
tem runs on GPUs with unlimited physical memory and uti-
lizing all GPU ALUs (also defined in other systems [18]),
and the stage partition is always balanced (G2).

The second category (GPipe [19] and PipeMare [59]) dis-
cards all activation tensors in the forward passes and
recomputes them in the backward passes. This significantly
alleviates the imbalanced GPU memory utilization between
the front stages and rear stages, but at the cost of an extra
forward pass. In our evaluation (Section 6.1), GPipe [19]
supported a batch size of 128 when training the Transformer
with 8 GPUs, and the each GPU’s ALU utilization rate can
be up to 95.6 percent. However, this all-recompute strategy
inevitably leads to wasted ALU utilization of 29.4 percent,
and GPipe incurred merely 66.2 percent effective ALU utiliza-
tion: the useful GPU ALU utilization that contributes to the
DNN training, but not the recompute utilization.

Moreover, both categories of pipeline parallel systems
encounter even more severe throughput degradation when
a DNN model enables NAS, where both the number and
layout of the model’s layers can be modified by a runtime
algorithm (e.g., evolution algorithm [39], [45]). An evalua-
tion (Section 6.3) is conducted by running a NAS-enabled
Transformer [45] on one notable system in each category
(i.e., Pipedream and GPipe). Compared with the defined
ideal throughput, Pipedream’s throughput dropped to 17.7
percent, and GPipe’s throughput dropped to 25.3 percent.

Overall, despite great advances, existing pipeline parallel
systems still incur suboptimal training efficiency on either
static or dynamic (e.g., NAS enabled) DNN training. We
believe the key reason is that these systems use static strate-
gies for both memory management and layer partitioning.
When stages become intense, caused by either GPU mem-
ory explosion or newly activated layers, these static strate-
gies prevent themselves from using the available GPU
resources in adjacent stages to alleviate these intense stages.

This paper presents VPIPE, the first dynamic DNN layer
partitioning and memory management system acting as a

virtualized layer between a typical pipeline parallel system
(e.g., Pipedream [33] or GPipe [19]) and its underlying exe-

cution engine (e.g., PyTorch [36] or Tensorflow [1]). VPIPE

automatically and transparently realizes both design goals

(G1 and G2) by automatically finding a globally near-opti-

mal plan, which migrates layers among stages and relocates

each layer’s activations and parameters to its current stage’s

GPU or CPU memory. VPIPE can significantly alleviate the

intense stages of a pipeline and improve the pipeline’s
throughput in a balanced way (e.g., Fig. 2).

To achieveG1, instead of GPipe’s all-recompute strategy,
VPIPE computes a hybrid plan of both swap and recompute
for all layers on each stage. Specifically, swap asynchro-
nously evicts activation tensors to CPU memory and pre-
fetches them back to GPU memory before its corresponding
backward usage starts. In pipeline parallelism, there usually
exists an opportunity window, filled by other input batches’
executions, between the forward pass and backward pass of
each input batch. Leveraging this window, VPIPE masks the
swap time by precisely predicting the arrival time of the
backward pass and overlapping the cost with other input
batches’ executions.

To achieveG2, instead of using a static partition strategy,
VPIPE online generates new partition plans and transpar-
ently live migrates layers from intense stages to their adja-
cent stages, both alleviating the memory burdens on intense

Fig. 1. A four-stage pipeline (Pipedream [33]). Stage 0 keeps four copies
of activations, while stage 3 keeps only one copy.

Fig. 2. (a)(b) With VPIPE integrated, Pipedream-VPIPE (P-V) and GPipe-
VPIPE (G-V) achieved faster convergence than Pipedream (P) and GPipe
(G) when training Transformer [52] with 8 GPUs. (b)(d) When NAS was
enabled in the Evolved Transformer [45], the training throughout (TPT)
of Pipedream and GPipe further dropped, while Pipedream-VPIPE and
GPipe-VPIPE could cope with this dynamicity.

490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

stage (G1) and achieving more balanced partitions with
higher throughput (G2).

However, realizing these two goals in VPIPE must tackle
two technical challenges. The first challenge is searching for
a globally efficient swap, recompute, and repartition (SRP)
strategy among all stages. We took the first step in the litera-
ture to model this challenge into a combinatorial optimiza-
tion problem (Section 4.1). However, the problem is NP-
hard due to its exponential search space [2], [3], [50].

To address this challenge, we created a fast-converging,
near-optimal search algorithm using the powerful decom-
position methodology [32], [47] via two observations. First,
we can iteratively migrate layers from an intense stage to its
adjacent stages, enabling new optimization space for a bet-
ter hybrid plan of swap and recompute on each stage (Sec-
tion 4.2). Second, the architecture (layout) of a typical
complex DNN [39], [58] is usually constructed as a coars-
ened graph of repeated subgraphs, which are readily easy
to be partitioned into an optimal plan [19], [33] that meets
G2; VPIPE fast detects this coarsened graph by precisely dis-
tinguishing intra edges inside subgraphs and nested edges
among subgraphs, leveraging the time series distance
between each edge’s two vertices (layers) collected at run-
time execution.

The second challenge is how to live (i.e., no GPU stalls
nor pipeline cleaning) migrate a layer while keeping VPIPE

transparent [49] to general upper pipeline parallelism sys-
tems (i.e., VPIPE does not add nor reduce parameter stale-
ness [14], [33], [59] to the upper system). Existing pipeline
parallel systems [14], [33], [59] carefully designed various
strategies to orchestrate (add or reduce) the staleness on
parameter updates for higher training accuracy or through-
put on specific DNNs.

VPIPE guarantees that a layer is migrated as if reparti-
tioned by a non-live approach: stop injecting new input
batches for the upper system, clean up the pipeline, migrate
the layer, and reboot a new pipeline. To handle the
migrated layer’s unfinished backward passes, we present a
new live migration protocol. Our key observation is that the
time window between the activation generation (in a for-
ward pass) and its final usage (in the corresponding back-
ward pass) allows a subtle interleaving for VPIPE to live
migrate a layer transparently without altering the parame-
ter staleness of the upper system.

We implemented VPIPE in PyTorch [36] by adding 2782
LoC. We evaluated all six prevalent DNNmodels, including
four complex DNNs Transformer [52], BERT [10], Amoeba-
Net [39], GNMT [58], and two simple DNNs ResNet50 [15],
VGG16 [44], that are evaluated in all relevant systems Pipe-
dream [33], GPipe [19], XPipe [14], and PipeMare [59]. The
evaluation shows that:

� VPIPE was efficient in training complex DNNs. VPIPE

improved Pipedream’s and GPipe’s throughput by
109.7 and 30.7 percent on average for four complex
DNNs. VPIPE enlarged Pipedream’s supported batch
size by 3.75x. Within the same training time, VPIPE

made Pipedream achieve higher training quality
(e.g., BLEU [58]).

� VPIPE was scalable. When training the four complex
DNNs on 4-16 GPUs, VPIPE’s throughput increased

roughly linearly with the GPU numbers. When run-
ning on 16 GPUs, VPIPE improved Pipedream’s and
GPipe’s throughput by 323.3 and 20.7 percent.

� VPIPE was efficient in NAS workloads. When evalu-
ated on Transformer [45] and AmoebaNet [39], the
only two evaluated complex DNNs that support
NAS features, VPIPE improved Pipedream’s and
GPipe’s throughput by 421.3-463.4 percent and
245.4-291.3 percent.

Our main contribution is VPIPE, the first dynamic layer live
partition andmemorymanagement system, serving as a trans-
parent underlying acceleration layer for typical pipeline paral-
lel systems (e.g., Pipedream and GPipe). Our major novelty is
a fast and near-optimal stage-distributed search algorithm for
finding a globally efficient swap, recompute, and partition
strategy, greatly improving VPIPE’s efficiency and scalability.
Our secondary novelty is a transparent livemigration protocol
without stalling the executions or altering the upper system’s
parameter staleness. VPIPE’s source code and evaluation frame-
work are released at: github.com/hku-systems/vpipe.

In the rest of this paper, Section 2 presents the back-
ground; Section 3 gives an overview of VPIPE; Section 4
describes VPIPE’s runtime design; Sections 5 and 6 present
VPIPE’s implementation and evaluation results; Section 7 dis-
cusses the related work, and Section 8 concludes.

2 BACKGROUND

2.1 DNN Training

DNN [10], [15], [29], [44], [46] is known to be the fundamental
machine learning paradigm in deep learning. A DNN model
typically contains hundreds of layers, and the goal of DNN
training is to find an appropriate set of model parameters to
fit a training dataset. Each DNN training process typically
consists of millions of iterations, each containing a forward
pass, a backward pass, and an optimization step.

The memory consumption of DNN training contains four
parts: parameters of each layer; activations, i.e., feature maps
produced by each layer in the forward pass; gradients, i.e.,
gradient maps produced by each layer in the backward pass;
and scratch space for computation. Among these four parts,
activations take the most significant portion (up to 73.3 per-
cent) of the total memory consumption for DNN training.
Activations are created in the forward pass and reused in the
backward pass, so there exists a large time window between
the two memory accesses. Activation memory is the major
optimization target in previouswork [18], [37].

2.2 Pipeline Parallel DNN Training

With the DNN training getting increasingly computation
and memory intensive, distributed training systems across
multiple GPUs become a must. Distributed training systems
can be categorized as data parallel or model parallel. Data
parallel systems [28] let each GPU maintain a copy of the
complete model. In each iteration, each GPU trains on a
small batch and synchronizes the parameter updates with
other GPUs using all reduce [43] or parameter sever [28].
However, data parallelism is not designed to train large
DNNs that cannot fit into a single GPU’s memory.

Pipelined model parallelism (i.e., pipeline parallelism)
aims to scale the supported DNNs to the number of GPUs

ZHAO ET AL.: VPIPE: A VIRTUALIZED ACCELERATION SYSTEM FOR ACHIEVING EFFICIENT AND SCALABLE PIPELINE PARALLEL... 491

github.com/hku-systems/vpipe

by partitioning a DNNmodel into multiple stages (a consecu-
tive set of layers) and letting eachGPUhandle one stage. Pipe-
line parallelism is a pipeline version of model parallelism,
where vanillamodel parallelism leads to severe under-utiliza-
tion due to the bubble problem caused by the sequential depen-
dency between stages. Pipeline parallelism overlaps the
computation and waiting time of different input batches, fills
the bubbles, and improves the utilization. Based on how a
pipeline parallel system handles synchronization of DNN
parameters among input batches, the system falls into two cat-
egories: barrier synchronous parallel (BSP) systems and asyn-
chronous parallel (ASP) systems.

BSP systems (e.g., GPipe [19]) let a set of training input
batches work on the same version of model parameters,
aggregate gradients computed by these iterations, and enforce
a barrier that stops the pipeline to apply the gradients to the
model parameter. BSP systems achieve almost the same statis-
tical performance as vanilla model parallelism [19]. However,
as shown in Fig. 3a, a BSP pipeline logically still incurs bub-
bles during each barrier synchronization, and we verified this
in Fig. 3b by profiling the GPUs during a four-stage BSP pipe-
line training.

ASP systems (e.g., Pipedream [33] and PipeMare [59])
remove the sync barrier and let each input batch directly
update the model parameters. Although bubbles are elimi-
nated (as shown in Fig. 4), ASP systems suffer fromparameter
staleness in two aspects. First, the parameter version differs
between a pipeline’s forward pass and backward pass. Sec-
ond, the parameter version differs among stages within the
training of an input batch. Pipedream [33], XPipe [14], and
PipeMare [59] provide various algorithm-level mitigation to
the parameter staleness problem. VPIPE is designed to be a
transparent layer under either a BSP or anASP pipeline paral-
lelism algorithm; and VPIPE’s designs (Section 4.3) do alter the
weight staleness in the upper systems.

Scheduling. One forward one backward (1F1B) schedul-
ing is first introduced by Pipedream [33] and adopted by
successive systems (e.g., PipeMare [59] and XPipe [14]). In
1F1B scheduling (e.g., Fig. 1), each stage alternates between
performing forward pass for a current input batch and
backward pass for an earlier input batch. 1F1B is widely
adopted due to its high computational efficiency [33], [59]
and low memory usage. Therefore, in this paper, we
assume that the upper pipeline parallel systems adopt
1F1B scheduling.

2.3 Dynamic DNN Training

Recently, more and more developers have adopted dynamic
DNN training where the number of layers varies with the
training inputs (e.g., DyNet [34]) or the training is exploratory
(e.g., neural architecture search [45], [55], [57], [62]). In such a
case, a training workload (i.e., the GPU computation and
memory required for training) varies as the training proceeds.
Since the efficiency of pipeline parallelism highly depends on
theworkload partition among stages, this dynamicity exposes
special requirements for pipeline parallel systems.

The variance of training workload usually happens very
frequently. For example, a neural architecture search (NAS)
process [39], [45] adopts an evolutionary algorithm that
trains a set of models, fast eliminates those with low fitting
scores, and initiates new ones. Thus, “bad” models can be
eliminated within a few minutes [39], [45].

Existing pipeline parallel systems profile a static partition
before the training starts. This static partition inherently
cannot adapt to the dynamicity in the training process. VPIPE

copes with this dynamicity by a wait-free live layer migra-
tion protocol (Section 4.2) that transparently re-balances the
training load when changed.

3 VPIPE’S ARCHITECTURE

Fig. 5 shows VPIPE’s architecture, a virtualized layer between
a typical pipeline parallel system and its underlying execu-
tion engine. On each host, there is a virtualized tensor man-
ager, a training monitor, and a layer manager. On the host
of the last stage, there is a global planner.

Virtualized Tensor Manager (VTM) provides fine-grained
management to each parameter and activation tensor. VTM
holds each layer’s tensor (parameter or activation) informa-
tion, including layer ID, stage ID, property (parameter or acti-
vation), training iteration ID, version, management policy
(vStatus), storage status, and the pointer to the tensor’s real
storage constructs. An activation tensor’s information is initial-
ized in VPIPE’s tensormanagerwhen created and deletedwhen
released. For parameter tensors, VPIPE creates tensor informa-
tion as long as themodel is initialized. Themanagement policy
of a layer’s tensors ismanaged by the layermanager.

Training monitor monitors each stage’s runtime statistics,
including real-time memory usage of each GPU on these hosts,
PCIe bandwidth usage, networkusage, execution time, and rec-
ompute time. Alongwith forward passes of the normal training

Fig. 3. Logical BSP pipeline (a) that demonstrates the bubble problem
and a realtime nsys/nvprof GPU profiling (b) that verifies the bubble
problem in BSP pipeline with four-stage GPipe training; red blocks are
sync barriers.

Fig. 4. Logical ASP pipeline (a) and a realtime nsys/nvprof GPU profiling
(b) of ASP pipeline with four-stage Pipedream training; red blocks are
sync barriers.

492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

iterations, the trainingmonitor passes its own runtime statistics
and the upstream stages’ (if any) to its downstream stages.

Global planner collects the runtime statistics of all stages at the
end of every forward pass. It produces new partition strategies
(if needed) according to VPIPE’s SRP algorithm (Section 4.2). It
resides on the last host for two reasons. First, in pipeline paral-
lelism, rear stages usually have less computation and commu-
nication burdens. Second, as the runtime statistics are collected
every training iteration, VPIPE transfers the runtime statistics
along with the forward pass and distributes the new partition
(if any) along with the backward pass. By doing so, VPIPE’s
global planner does not need extra distributed coordination.

Layer manager receives a new partition strategy from the
global planner, diffs the new partition from its current parti-
tion to check whether a layer migration should be scheduled.
For example,when a layer needs to bemigrated, themigration
manager of the source stage will coordinate with the tensor
manager to asynchronously swap the layer’s parameter ten-
sors and activation tensors to the CPU memory; and then
transfer the parameter and activation tensors to the migration
manager of the target stage. Themigrationmanager of the tar-
get stage will initialize the layer in the target GPU, receive the
parameter and activation tensors from the source stage, and
append the new layer to the forward pass and backward pass
executions (Section 4.3). Layer manager also produces the
local swap and recompute policies (Section 4.2).

Overall, VPIPE’s design is transparent to the upper pipe-
line parallel systems. We integrated VPIPE into an ASP sys-
tem Pipedream [33] and a BSP system GPipe [19]. For
vanilla Pipedream, we set all layers’ vStatus to default; and
for vanilla GPipe, we set all layers’ vStatus to recompute.
VPIPE can also be integrated into other pipeline parallel sys-
tems (e.g., PipeMare [59] and XPipe [14]) as long as they
support an imperative programming model.

4 VPIPE’S RUNTIME

4.1 Problem Modeling

A major challenge for VPIPE’s design is to find an optimal
strategy of swap, recompute, and partition (SRP) so that the

steady-state throughput of the training pipeline can be max-
imized. Since there is no model to quantify the complexity
of this SRP challenge, we take the first step in the literature
to formalize the SRP challenge, transform it into a combina-
torial optimization problem, and solve it by a decomposi-
tion algorithm (Section 4.2).

A DNN is a graph GðN;EÞ with N layers (e.g., matrix
operation) and E edges connecting the layers. In pipeline
parallelism, a DNN model is partitioned to p stages, and
each stage is placed on one GPU (p GPUs in total). To maxi-
mize the pipeline utilization, in a typical pipeline parallel-
ism scheduling (Section 2), at least p input batches are
simultaneously injected into the same pipeline. For each
layer in the model, we denote it with ðfi; bi;mi; aiÞ, includ-
ing a forward pass time fi, a backward pass time bi, a
parameter memorymi, and an activation memory ai.

The major constraint for pipeline parallel training isG1: on
each GPU, the training GPUmemory usage should not exceed
anyGPU’s physical memory limit (M). In pipeline parallelism,
the memory consumption of all layers in each stage contains
two parts. The first part is a constant memory consumption
(mconstant

i) that does not vary with the number of injected input
batches; the second part is the dependent memory consump-
tion (mdependent

i), which depends on the number of injected
input batches and differs among stages: given a stage k, p� k
copies ofmdependent

i should be kept in memory. In BSP systems,
parameters are updated synchronously (Section 2), and all
input batches in a pipeline share the same version of parame-
ters, thus mdependent

i is ai and mconstant
i is mi. In ASP systems,

each training iteration in a pipeline may have an independent

version ofmi, thusm
dependent
i contains both ai andmi.

To reduce memory consumption, a pipeline parallel sys-
tem can apply swap or recompute strategy to each layer’s
dependent tensors, which are the main memory burden in
pipeline parallelism. Thus, for each tensor in a layer, we
denote its memory management policy with ðDi;Ri; SiÞ,
where Di;Ri; Si ¼ 0 or 1; Di þRi þ Si ¼ 1. D ¼ 1 means the
tensor by default resides in the GPU memory; S ¼ 1 means
the tensor will be proactively swapped to CPU memory and

Fig. 5. Architecture of VPIPE. VPIPE is a virtualized layer between a typical pipeline parallel system (e.g., Pipedream [33] or GPipe [19]) and its underly-
ing execution engine (e.g., PyTorch [36] or Tensorflow [1]). We use different colors to refer layers set by VPIPE’s operations including default (D),
swap (S), recompute (R), and migrate (M).

ZHAO ET AL.: VPIPE: A VIRTUALIZED ACCELERATION SYSTEM FOR ACHIEVING EFFICIENT AND SCALABLE PIPELINE PARALLEL... 493

swapped back to GPU before usage; and R ¼ 1 means the
tensor will be dropped and recomputed by the backward
pass. Thus, in pipeline parallelism, the memory constraint
of each stage can be denoted as:

S
lk�i�rk

mconstant
i þ ðp� kÞ � S

lk�i�rk

Di �mdependent
i � M: (1)

Nevertheless, the recompute of layers introduces extra
computation time to the backward pass. Thus, a stage’s
backward time is the sum of the original backward pass
time, the recompute time (i.e., extra forward pass of recom-
puted layers), and the swap time if the swap time cost is
larger between the normal execution time (i.e., maxð0; swap
time� execution timeÞ):

tbwd ¼ Sðbi þRi � fiÞ þmaxð0; ð2 � SðSi �md
i =P Þ � ðtfwd þ tbwdÞÞÞ:

(2)

Finally, we formalize the SRP challenge to a combinato-
rial optimization problem: given n layers and p GPUs, find
a swap or recompute policy for each layer (meet G1), as
well as a partition (meet G2), such that the pipeline
throughput can be maximized. The throughput of a pipeline
is the lowest throughput among all stages [22], [33]. All
stages in a pipeline have the same request rate. Thus, the
pipeline’s throughput bottleneck is the stage that has the
longest execution time (sum of the largest tfwd and largest
tbwd). Therefore, we convert this problem to finding a parti-
tion and a swap/recompute policy such that the longest
stage execution time can be minimized:

minimize max
1�k�p

ðtfwdk þ tbwdk Þ
subject to ð1Þð2Þ:

(3)

This optimization problem is hard to solve for two rea-
sons. First, the feasible set of this combinatorial optimiza-
tion problem spans an extremely large search space
(Oð3jN jpjNjÞ), as each of layers N can have three memory
management policies and fall into p partitions. A graph
partition problem itself is well-known to be NP-com-
plete [50]. Second, constraint (2) indicate that both the
memory management policy of all layers (ðDi;Ri; SiÞ;
for 1 � i � n, denoted as Varsr) and the stage partition
plan (denoted as Varp) can affect the optimization objec-
tive in (3), making this problem a multi-variable combina-
torial optimization.

4.2 Swap, Recompute, and Repartition

We solve this multi-variable and combinatorial optimiza-
tion problem by decomposition [32], [47] methodology. The
idea of the decomposition methodology is to break a prob-
lem into smaller sub-problems coordinated by the master
problem (i.e., the optimization problem). Inspired by the
conventional decomposition method [32], [47], the key intui-
tion is to iteratively migrate a layer from an intense stage
where the GPU resource is exhausted to a relief stage and

let the intense stage have more optimization space to search
for a better hybrid plan of swap and recompute.

We decompose the master problem into two sub-prob-
lems. First, we assume that Varp is constant, and each stage
locally finds a swap and recompute plan (Varsr) depending
on its GPU resource to minimize the objective function (3).
Second, we assume that Varsr is constant, and stages should
be repartitioned (i.e., find an optimal Varp) to minimize (3).
Algorithm 1 shows our decomposed algorithm by itera-
tively resolve these two sub-problems.

Algorithm 1. Decomposed SRP Algorithm

1: Stage 1,..., p:;
2: Function LayerManagerIterate():
3: newPlan ¼ receiveBwdPropðÞ ;
4: diff ¼ compareðthis:plan; newPlanÞ;
5: if diff! ¼ null then
6: migrating ¼ True;
7: for l in diff do setðl:vStatus;MigrateÞ;
8: stats ¼ retrieveStatsðÞ;
9: optimizeSRðstatsÞ ##Algorithm 2;
10: return;
11: Function TrainingMonitorIterate()
12: if ! migrating then
13: stats ¼ receiveFwdPropðÞ;
14: mem ¼ cudaMemStatsðÞ;
15: tfwd; tbwd ¼ getExecTimeðÞ;
16: stats:appendðthis:meta;mem; tfwd; tbwdÞ;
17: fwdPropagateðstatsÞ;
18: return;
19: Global Planner:;
20: Function: GlobalPlannerIterate()
21: stats;migrating ¼ receiveFwdPropðÞ;
22: if migrating then
23: return;
24: unbalanced ¼ checkBalancedðstatsÞ;
25: if unbalanced then
26: newPlan ¼ layerRepartitionðÞ ##Algorithm 3;
27: bwdPropagateðnewPlanÞ;
28: return;

Swap and Recompute. For both swap and recompute, the
goal is to reduce the memory footprint with the lowest over-
head. For the swap, our goal is to maximize the overlapping
between swap and the normal execution. For the recompute,
our goal is to select the cheapest layer with maximized
memory saving to recompute. It has been well studied in
recent work (e.g., Capuchin [37]) that using a hybrid combi-
nation of swap and recompute of activation tensors can
effectively reduce training memory on single GPU DNN
training. However, applying swap to a pipeline parallel
system has to address two subtle points.

First, an efficient swap plan should precisely predictwhen a
tensor that has been swapped to CPU RAMwill be reused in
the backward pass. In single GPU training, an activation ten-
sor is generated by the forward pass of an input batch train-
ing. The backward pass directly follows the forward pass.
Thus, existing swap techniques used in single GPU training
systems (e.g., SwapAdvisor [18], Capuchin [37], vDNN [40],
and SuperNeuron [56]) directly make predictions based on a
DNN’s graph (either profiled or runtime generated).

494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

However, there usually exists a window in pipeline par-
allelism, filled by other input batches’ executions, between
the forward pass and backward pass of each input batch. To
make a precise prediction, VPIPE oversees the runtime statis-
tics of each forward pass and its backward pass across all
stages of a pipeline (line 21-28 in Algorithm 1), and let each
VPIPE’s layer manager precisely predict the arrival time of
each backward pass execution.

Algorithm 2. optimizeSR()

1: Input: layers in a stage, tfwd, tbwd,M , P , rank;
2: Foreach l in layers do
3: if l:a=P > l:tfwd then
4: l:cost ¼ l:tfwd;
5: l:op ¼ Recompute;
6: else
7: l:cost ¼ l:mactivation=P ;
8: l:op ¼ Swap;
9: l:gain ¼ l:mactivation=l:cost;
10: window ¼ tfwd þ tbwd;
11: space ¼ P � window;
12: sorted ¼ sortByGainðlayersÞ;
13: while space � 0 do
14: l ¼ sorted:popðÞ;
15: setðl:vStatus; SÞ;
16: space ¼ space� rank �mactivation

17: whilememConsumeðlayersÞ > M do
18: l ¼ sorted:popðÞ;
19: setðl:vStatus; l:opÞ;
20: foreach l in layers do
21: l ¼ sorted:popðÞ;
22: setðl:vStatus;DefaultÞ;

Second, in pipeline parallel systems, swap and network
communication impose severe burdens on the PCIe lanes,
causing severe PCIe interference that is not addressed by
single GPU training systems. In VPIPE, both network com-
munication and swap that pass throughput PCIe are asyn-
chronous streams [4]. To handle the PCIe interference, VPIPE

sets priorities to different asynchronous streams that pass
through PCIe. VPIPE sets a higher priority to network com-
munication for not blocking the pipeline execution.

VPIPE’s swap and recompute algorithm (Algorithm 2)
works as follows. For each stage, the algorithm takes a set of
layers, a memory limit M, PCIe bandwidth P , stage rank
(p-k), tfwd and tbwd of this stage as input. VPIPE first sort all
layers by the potential memory saving gain of either swap
or recompute (line 2-9). Until the PCIe is full, VPIPE selects
tensors according to their memory saving gains to be asyn-
chronously swapped (line 13-16). After that, if the memory
limit is still reached, VPIPE chooses whether to swap or recom-
pute an activation based on their swap/recompute cost and
memory saving gain (line 17-19). For the rest of the layers, VPIPE

keeps them by default (line 20-22). Leveraging the first subtle
point, VPIPE can precisely overlap the async swap cost of these
tensors with normal execution. With the second subtle point,
the async swap will not block the network communication of
normal training execution. Consequently, Algorithm2 reduces
the recompute overhead with async swap in existing pipeline
parallel systems (e.g., GPipe [19]). VPIPE swaps activation ten-
sors first, as activation takes the most memory consumption;

VPIPE swap parameter tensors only if activation tensors are all
swapped,which rarely happens in our evaluation.

Layer Partition. The problem of partitioning a graph GðN;
EÞ into p equal partitions with the lowest cross-partition com-
munication cost is known to be NP-complete [3] and has
extensive applications in many areas, including VLSI
design [24], matrix factorization [7], and social network clus-
tering [35]. Kernighan-Lin (KL) algorithm [25] is known to
produce excellent partitions for a wide class of problems and
is used quite extensively [17], [27]. To achieve a multi-parti-
tion, it recursively produces bi-partition of graphG and itera-
tively improves it by exchanging nodes in both partitions. KL
algorithm is costly and takes OðrjNj2log jN jÞ [11] time (e.g.,
up to 16s to partition a complex DNN model into 16 stages),
where r is the repeated cycles. There are many approximate
algorithms [11], [12], [16], [48] that tend to be fast (near-linear)
but often yield partitions that are worse than those obtained
byKL algorithm [13], [23], [41] .

To make KL algorithm efficient, multi-level schemes
reduce the size of the graph (i.e., coarsen the graph) by col-
lapsing vertices and edges, partitioning the smaller graph,
and then uncoarsening it [17], [23]. Multi-level scheme has
been used in many areas, including matrix factorization [7]
and VLSI design [24]. However, these algorithms assume
domain-specific requirements for the graph (e.g., a sparse
matrix [7] or a planar graph [24]), which are not applicable
to a complex DNN graph (e.g., AmoebaNet [39]). Moreover,
existing multi-level schemes all take multiple coarsen steps.
In VPIPE, leveraging the time series implied by the DNN’s
sequential executions, we identify two domain-specific heu-
ristics to design a fast and online multi-level graph partition
algorithm with a one-step coarsen scheme.

First, Deep Learning experts have already constructed
the graphs of complex DNNs (e.g., Transformer, BERT,
AmoebaNet, and GNMT), prevalently deployed with pipe-
line parallelism, as sequentially connected and repeated
subgraphs of layers. Each subgraph is usually a basic block
(e.g., a Transformer block) for constructing a large DNN.
Inside each subgraph, there are intricate local edges (nested
edges) forming multiple execution branches. Partitioning
such a subgraph in two stages usually incurs huge network
communication costs between two GPUs.

There are also sparse nested edges that form branches
among blocks. However, network communication costs of
partitioning these sparse nested edges are often static and
do not vary with the partition plan. For example, in the
BERT model, each block should take input from the first
embedding layer, and it is necessary to pass the embedding
output to all stages. Thus, under any partition plan, the net-
work communication costs of transferring this input to all
stages are persistent.

Second, different from conventional graphs in partitioning
problems [2], [3], [50], in a DNN graph, vertices (i.e., layers)
are executed by the training engine in time series. If a nested
edge connects two vertices that have a gap that is larger than
a stage’s execution time in the time axis, the edge has a high
chance to be a sparse nested edge. If a nested edge connected
two vertices very close to each other in the time axis, the edge
is likely to be part of a subgraph.

Based on these heuristics, VPIPE’s layer repartition algo-
rithm (Algorithm 3) has three steps. First, VPIPE (line 7-21)

ZHAO ET AL.: VPIPE: A VIRTUALIZED ACCELERATION SYSTEM FOR ACHIEVING EFFICIENT AND SCALABLE PIPELINE PARALLEL... 495

coarsens the DNN graph. In this step, each edge in a DNN
graph is classified with OðjN j þ jEjÞ cost to three categories:
critical edges that construct the sequential backbone of the
DNN graph, sparse nested edges, and subgraph edges.
Then VPIPE merges the subgraph edges to the sequential
backbone edges by aggregating their execution time and
communication. Second, VPIPE partitions this merged graph
by iteratively applying bipartition with KL algorithm [50]
(line 22-26). Third, VPIPE uncoarsens the merged graph to
the original DNN graph and refines the partition to see if
any potential better partition exists by KL refinement [17]
(line 27-29).

Algorithm 3. layerRepartition()

1: Input: DNN Graph GðN;EÞ, runtime statics of each layer
(layers), e.g., invoke time (T) of each layer;

2: sorted ¼ sortByTimeðlayersÞ;
3: Gcoarsened ¼ coarsenðGðN;EÞÞ;
4: bound ¼ partitionðGcoarsenedÞ;
5: G ¼ uncoarsenðGcoarsenedÞ ;
6: bound ¼ refineðG; boundÞ;
7: Function: coarsen(G(V, E))
8: mean ¼ sumðtÞ=p;
9: E� ¼ ½�;
10: foreach l1; l2 in pairwiseðsortedÞ do
11: ##detect critical path edges;
12: if eðl1; l2Þ in E then
13: annotate eðl1; l2Þ as critical edge ;
14: E�:appendðeðl1; l2ÞÞ
15: foreach e in E � E� do
16: ##distingush sparse and subgraph edges;
17: if e:v2:T � e:v1:T > mean then
18: annotate eðl1; l2Þ as sparse edge
19: else
20: annotate eðl1; l2Þ as subgraph edge
21: mergeðE;E�Þ;
22: Function: parition(G(V, E), p)
23: if p==1 then
24: return
25: bound;G1; G2 ¼ KLParititionðG; costÞ;
26: return bound; partitionðG1; p2Þ; paritionðG2; p2Þ;
27: unction refine(G(V,E), bound)
28: foreach b in bound do
29: KLRefineðGðV;EÞ; bÞ

Analysis. VPIPE’s Algorithm 1 decomposes a master prob-
lem into two sub-problems [32], [47]. VPIPE’s Algorithm 2 is
optimal as the sub-problem is a linear optimization with
simple constraints (i.e., the memory limit and the PCIe
limit). VPIPE’s Algorithm 3 is a successive algorithm of the
Kernighan Lin (KL) algorithm. KL algorithm is a bipartition
algorithm that starts from an initial bipartition of a graph
and exchanges the vertices of the two partitions to see
whether a better partition can be found [2], [3], [50].

The time complexity of the original KL algorithm is
OðrjN j2log jNjÞ, where r is the repeated cycles, and N is the
total set of layers. The time cost of running KL algorithm on
complex DNNs (e.g., AmoebaNet) is huge (up to 16s for each
run). With our two heuristics on recent complex DNN
graphs, VPIPE’s partition algorithm uses a coarsen phase of
complexity OðjNj þ jEjÞ that coarsens a complex DNN

graph (e.g., AmoebaNet graphwith 4280 layers/vertices and
5080 edges) into a much smaller graph (e.g., coarsened
AmoebaNet with 132 vertices and 142 edges). By doing so,
the time cost of KL algorithm is greatly reduced. On parti-
tioning various DNN model, evaluation (Section 6.4) shows
that VPIPE’s partition algorithm speeds up the KL algorithm
by 4x-32x and achieves 0.15s-0.46s time cost (less than the
process time 1.21s-6.98s of one training input batch), fast
enough to be deployed online.

4.3 Live Layer Migration

Existing pipeline parallel systems (e.g., Pipedream and
GPipe) adopt a static layer partition before execution (Sec-
tion 2). To migrate a layer in these systems, developers need
to adopt a non-live approach: stop the runtime, modify the
layer partition configuration, and reboot the whole training
process. This process suffers from heavy bootstrap over-
head, including runtime initialization, model initialization,
and data loading (Section 2). Such a heavy overhead might
dramatically decrease the training efficiency when layer
migration is frequently triggered under a dynamic training
process (Section 6.4).

In VPIPE, we aim to design a live layer migration protocol
for pipeline parallelism with a key technical requirement
that the layer migration should remain transparent to the
upper systems so that VPIPE will not alter the upper systems’
parameter staleness.

Existing pipeline parallel systems fall into two categories:
BSP systems (GPipe [19]) and ASP systems (Pipedream [33],
PipeMare [59], and XPipe [14]). BSP systems have no
parameter staleness (Section 2.2). ASP systems adopt vari-
ous parameter staleness strategies on different design goals.
BSP and ASP systems have their own strengths on particu-
lar workloads. For instance, in Table 3, GPipe achieved bet-
ter accuracy than Pipedream on training Transformer while
achieved worse accuracy than Pipedream on training BERT.
Thus, VPIPE is designed to be transparent to the upper sys-
tems so that VPIPE does not alter their parameter staleness.
VPIPE lets the programmer explicitly annotate the type of
system.

However, it is challenging to transparently migrate a
layer without losing liveness for both BSP and ASP systems.
The reason is that at any time in a pipeline, a layer can
always have multiple unfinished backward executions, and
these backward passes will produce updates to the layer
parameters. To avoid altering the parameter staleness, dur-
ing the migration of a layer, no updates produced by these
backward passes should be lost.

Moreover, in the typical scheduling of ASP systems (Sec-
tion 2.2), layers on different stages have different pipeline
execution interleaving. For example, in the last stage, the
forward pass of an input batch directly works on the param-
eter updated by the last input batch, while in the first stage,
the forward pass works on the parameter updated by a
much earlier input bach. For BSP systems, forward passes
on all stages work on the same version of parameters until a
parameter synchronization occurs. To avoid altering the
parameter staleness, during the migration of a layer, VPIPE

ensures that when a layer is migrated among stages,
the execution interleaving of this layer should change

496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

accordingly. By doing so, VPIPE guarantees that a layer is
migrated as if repartitioned by a non-live approach.

We formalize the above transparency requirements.
Given a new input batch k, for q layers fl1; l2; :::; lqg in stage
n of a training pipeline (0 � n < p, where p is the number
of stages and the number of simultaneously injected input
batches), each layer must have p� n� 1 unfinished back-
ward passes. In ASP systems, in stage n, the forward pass of
input batch k should work on the version (Vk) of layer
parameters updated by k� pþ n. In BSP systems, for all
stages, if the parameter synchronization happens every u �
p input batches, the forward pass of input batch k should
work on the same parameter version kmodu � p.

V k
fwd ¼

k� pþ n if ASP
kmodu � p if BSP

�
: (4)

When a set of layers fli; :::; ljg are going to be migrated
from stage n to stage m, where m ¼ n� 1, for each layer,
VPIPE should migrate p� n� 1 copy of activation tensors for
unfinished backward passes. Meanwhile, for ASP systems,
the Vk should be changed from k� pþ n to k� pþm.

A strawman stop-and-copy migration approach is to stop
the execution, synchronously transfer parameter tensors
and activation tensors, and resume the execution. However,
on training complex DNNs, the tensors to be migrated can
be up to several gigabytes, leading to a long stall.

In VPIPE, we present a live runtime layer migration proto-
col. Without losing generality, to ease discussion, Figs. 6
and 7 shows an example of a forward layer migration in a
four-stage (i.e., p ¼ 4) pipeline, where n ¼ 0 and m ¼ 1. If
Stage n is going to migrate layer c to Stage m after the end-
ing of input batch k, the migration will work as follows. In
prepare stage, Stage n sends a prepare message to stage m to
inform the migration of layer c. Stage m initializes the layer
module of layer c and moves the module to GPU memory.
Then, stagem sends a ready to stage n.

Once stage n receives ready, the migration immediately
starts in its next forward pass (i.e., forward pass of input
batch kþ 4 in Fig. 6). (1) Stage n immediately asynchronously

transfers activation tensors for backward pass of input batch
kþ 1 (denoted as backward kþ 1). (2)After the next backward
pass (i.e., backward k) finishes, stage n transfers the parameter
tensors of layer c (updated by backward k) to stagem. Stagem
will wait for the arrival of the parameter tensors of layer c and
process layer c in its next backward pass (i.e., backward kþ 1
is processed in stagem). (3) The subsequent layer c’s activation
tensors created by input batch kþ 2, kþ 3, ..., kþ p� n� 1
(i.e., kþ 2, kþ 3 in Fig. 6) are continuously and asynchro-
nously copied. VPIPE ensures that the backward kþ 2, kþ 3, ...,
kþ p� n� 1will not start at stagem until their corresponding
activation tensors arrive. When VPIPE is integrated into an ASP
system, VPIPE will transfer the activation tensors and the corre-
sponding parameter tensors tomigrate a layer.

Overall, VPIPE’s live layer migration merely affects the
normal execution as in step (1) and (3), VPIPE asynchro-
nously transferred the activation tensors of migrated layers,
and we verified this by profiling in Fig. 7. To avoid altering
staleness, VPIPE ensures that the V k

fwd remains consistent
when a layer is migrated from stage n to stage m. In VPIPE,
layer migrations can be triggered multiple times during a
triggering of VPIPE’s Algorithm 1 (tens of seconds in Sec-
tion 6.4). In our evaluation, each migration with a non-live
migration approach stalls the pipeline execution by 1.1-6.8s,
while VPIPE’s migration protocol remains live.

5 SYSTEM IMPLEMENTATION

VPIPE’s design leverages the imperative features from
PyTorch. The current popular deep learning frameworks
are typically based on either imperative or declarative pro-
gramming. The imperative programs are similar to Python
or C++ programs, which perform computations during the
execution. PyTorch adopts it as the default and only execu-
tion mode. Overall, VPIPE is currently implemented by modi-
fying 2782 LoC to PyTorch [36]. VPIPE’s design and
implementation is common for all DNN training engines
that follow an imperative programming style. In this sec-
tion, we present three key points to implement VPIPE in
PyTorch: how to support distributed on-demand swap and
recompute; how to migrate layers between stages; how to
implement an NAS process [39], [45] in VPIPE, as there is no
existing literature that describes how to implement an NAS
process in pipeline parallelism.

For the first point, to capture access patterns of tensors,
VPIPE intercepted PyTorch’s activation creation in forward
passes and reuse in backward passes. In PyTorch, an activa-
tion tensor is created and saved to an edge of an automatic
gradient computation (autograd) graph in a data structure
SavedVariable. VPIPE intercepted the member functions of
SavedVariable and saved the tensor pointers to VPIPE’s VTM

Fig. 6. A forward layer migration triggered after the ending of input batch
k from stage n to stagem.

Fig. 7. Realtime nsys/nvprof GPU profiling of a forward layer migration.
Pink blocks are GPU-to-CPU memory copy; green blocks are CPU-to-
GPU memory copy. After migration, a higher utilization can be visually
observed on the target GPU. We disabled swap to highlight the migration
memory copies.

ZHAO ET AL.: VPIPE: A VIRTUALIZED ACCELERATION SYSTEM FOR ACHIEVING EFFICIENT AND SCALABLE PIPELINE PARALLEL... 497

module (Section 3). In PyTorch, SavedVariable can refer to
both a parameter tensor and an activation tensor. VPIPE dis-
tinguished a parameter tensor and an activation tensor by
assigning each a property upon their initialization (parame-
ter tensors are initialized during a model initialization, i.e.,
module initialization in PyTorch). To precisely predict when
to swap back a tensor, VPIPE’s VTM modules pass the cap-
tured access patterns of tensors to other stages (Section 4.2).

To support asynchronous and on-demand swap for acti-
vation tensors in PyTorch, VPIPE added a tensor level asyn-
chronous swap feature to PyTorch. PyTorch 1.5.0 currently
only supports a synchronized swap for tensor implementa-
tion (i.e., the main thread will be blocked during the swap).
Moreover, to accelerate the tensor swap from CPU memory
to GPU memory, in VPIPE, we stored the tensors that are
swapped to CPU memory in a pinned memory. The technical
reason is that in PyTorch, CPU memory to GPU memory
copies are much faster when they originate from pinned
(i.e., page-locked) memory. VPIPE used the pin memoryðÞ
method for PyTorch’s CPU tensor storage.

VPIPE’s recompute leverages PyTorch’s checkpoint library,
which is a builtin library for recomputing activations. A
major implementation obstacle for on-demand recompute is
to change the training statement at runtime. In VPIPE, we
used python’s builtin feature exec stmt, which takes a piece
of statement as input and executes the statement, to to mod-
ify a stage’s execution statement at runtime and on-demand
decide whether to recompute a layer’s activation.

To support layers migration between stages (thus, a stage
of DNN is dynamic), VPIPE maintains a DNN stage as a
structured graph data and has a simple parser that switches
between the graph description of DNNs and the PyTorch
imperative statement (using exec stmt). Thus, when a layer
migration happens, on the target stage, VPIPE modifies the
graph description, initializes the corresponding layer mod-
ule in PyTorch, overwrite the layer’s state by the migrated
layer’s state, and adds the new layer to the stage’s execution
statement. On the source stage, VPIPE removes the layer
from the stage’s execution statement and delete the layer
from the GPU memory. VPIPE both supports both branches
in among stages and branches among layers.

To support NAS in pipeline parallelism, we imple-
mented the NAS process on both Pipedream and GPipe
(Section 6.3) based on the official description of the evolved
Transformer [45] and AmoebaNet [39]. Overall, there are
two key components for a NAS process: an evolution algo-
rithm that iteratively explores new DNN architectures; and
a just-in-time runtime that switches the training workload
according to DNN generated by the evolution algorithm.

In an evolution algorithm, when a DNN switch occurs, our
NAS implementation deactivates the differed layers in the
existing DNN, activates the new layers, and reset parameters
when a DNN switch finishes. The above implementation lev-
erages PyTorch’s imperative feature (i.e., exec stmt) and fast
switches between two DNNs without extra stop and initiali-
zation time.

6 EVALUATION

Testbed. Our evaluation was conducted on a GPU farm with
8 hosts. Each host had 4 Nvidia 2080TI GPUs, 20 CPU cores,

and 64 GB RAM. Each GPU had 11 GB physical memory
and was connected to the host with PCIe 3.0 X16 that pro-
vided a total data transfer bandwidth of 15760 MB/s. Hosts
are connected with 100 Gbps Ethernet, and the average ping
latency is 0.17ms.

Workloads. We evaluated six well-studied DNN models
(Table 1) that are widely used in the deep learning commu-
nity. BERT [10], Transformer [52], AmoebaNet [39], and
GNMT [58] are four large DNNs often trained by pipeline
parallelism [19], [33]. Transformer [45] and AmoebaNet [39]
are two typical workloads that have been applied with Neu-
ral Architecture Search. We used the open-source release of
each model.

These models cover all prevalent DNNs evaluated in
existing pipeline parallel systems, including Pipedream [33],
GPipe [19], XPipe [14], and PipeMare [59]. For other models,
including S2VT [53] and AWD LM [31] evaluated in these
systems, they are surpassed by the DNNs we evaluated and
no longer prevalent. We evaluated two well-known data-
sets: WMT16 [42] for NLP and ImageNet [9] for vision.

Baselines. We integrated VPIPE to two baseline systems: the
most notable ASP pipeline parallel system Pipedream [33]
and the most notable BSP pipeline parallel system GPipe [19].
For Pipedream, we used its open-source release [33]; for
GPipe, we implemented GPipe by applying a strong synchro-
nization barrier (Section 2) on Pipedream’s codebase because
GPipe has no official release on PyTorch. Each integration of
VPIPE took only several LoC changes. For a baseline system
(e.g., Pipedream),we usedPipedream-VPIPE to represent Pipe-
dream integrated with VPIPE. We compared the throughput of
Pipedream-VPIPE with Pipedream alone to indicate VPIPE’s
improvement on Pipedream. Overall, we evaluated four sys-
tems: Pipedream-VPIPE, GPipe-VPIPE, Pipedream, andGPipe.

There are also successive systems (i.e., XPipe [14] and
PipeMare [59]) that mitigate Pipedream’s parameter stale-
ness. However, all these systems share the same perfor-
mance model as either Pipedream or GPipe.

Batch Size and Training Setup. For all systems, we set the
training batch sizes of each DNN to the largest batch size
that can be supported without exceeding all GPU’s physical
memory limit. As Pipedream directly keeps all activation
tensors in GPU memory, to avoid exceeding GPU memory
limit on the front stages, the training batch size supported
by Pipedream was 3.2x less than other evaluated systems
(e.g., GPipe). For all systems, without specification, we eval-
uated them on 8 GPUs and set their default partition
(shown in Table 2) by the static partition profiler provided
by Pipedream [33], which is the only system that explicitly

TABLE 1
Models and Datasets

Task Model Dataset

Image Classification VGG16 [44] ImageNet [9]
Resnet50 [15] ImageNet [9]
AmoebaNet [39] ImageNet [9]

Translation GNMT [58] WMT16 EN-DE [42]
Transformer [52] WMT16 EN-DE [42]

Language Modeling BERT [10] WMT16 EN-DE [42]

498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

describes a partition scheme. In Section 6.2, when training
with varied GPUs numbers, the default layer partition was
also produced by Pipedream’s static partition profiler. We
also show the learning rate (l.r.) used by Adam optimizer in
Table 2.

Metrics. We used the number of epochs processed per
hour to measure each system’s throughput. An epoch in
DNN training is a traverse of the whole dataset. In Sec-
tion 6.3, we used the number of data items processed per
hour to measure each system’s throughput because a model
may be early-stopped before finishing one complete epoch.

We defined the ideal throughput as the training through-
put supposing the system is running on GPUs with unlim-
ited physical memory (also defined in other systems [18]),
and the stage partition of the DNN model can seamlessly
remain balanced. Same as previous work [18], we imple-
mented the ideal throughput by directly reusing the GPU
memory when out-of-memory exceptions were triggered.

We used ALU utilization to indicate the usage of GPU
ALUs. We used GPU memory utilization and GPU PCIe utili-
zation to indicate the GPU memory usage and PCIe band-
width usage. Specifically, for GPU ALU utilization, we used
effective ALU utilization to distinguish the effective ALU uti-
lization that contributes to the training process and the
wasted ALU utilization that are used for recompute.

Our evaluation focuses on the following questions:

Section 6.1: How was VPIPE’s efficiency on static DNN train-
ing, compared with the baseline systems?

Section 6.2: How was VPIPE’s scalability, compared with the
baseline systems?

Section 6.3: How was VPIPE’s efficiency on dynamic DNN
training, compared with the baseline systems?

Section 6.4: How effective were VPIPE’s runtime algorithms
and protocol in Section 4?

Section 6.5: What are the limitations of VPIPE?

6.1 Static DNN Training (i.e., NAS disabled)

We first give an overview of how much VPIPE improved
Pipedream and GPipe on training all DNNs. Fig. 8 shows
the training curve that indicates how each model’s training
score improves as training time increases. Overall, in Fig. 8,
to finish the same number of training epochs, VPIPE short-
ened the training time of GPipe and Pipedream by 23.5 and
53.4 percent on average. Thus, within the same training
time, VPIPE allowed both GPipe and Pipedream to achieve
better model fitting quality.

Fig. 9 shows the throughput of each systemunder the same
setting as Fig. 8. These results were comparable to the

evaluation results in Pipedream [33] and GPipe [19]. When
training the four large DNNs, including BERT, Transformer,
AmoebaNet, and GNMT, VPIPE improved GPipe and
Pipedream’s throughput by 30.7 and 109.2 percent. To under-
stand VPIPE’s improvement on GPipe and Pipedream, we
looked into the runtime statistics of all GPUs, shown in
Table 3, and per-GPU memory usage and ALU utilization
when training Transformer in Figs. 10 and 11.

VPIPE improved Pipedream most between the two base-
line systems on training complex DNNs. In Pipedream, the
front stages easily reached the GPU memory limits, as these
stages needed to keep many more copies of activation ten-
sors than the rear stages. For example, in Fig. 10, with
Pipedream’s default partition on Transformer, stage 0 con-
sumed on average 10.3GB GPU memory, as itneeded to
hold 8 copies of activation tensors, almost hitting the mem-
ory limit (11GB) of GPU 0; and stage 7 consumed only
4.8GB GPU memory, less than half of a GPU’s capacity.
When training Transformer with 8 GPUs, Pipedream only
supported a batch size of 32, and this moderate batch size
failed to fully utilize the GPU ALU units, making all GPUs’
ALU utilization only 42.3 percent in Fig. 10.

Compared with Pipedream, on training four complex
DNNs, Pipedream-VPIPE supported 3.75x larger batch size
and incurred 2.09x effective ALU utilization (Table 3). To
accelerate Pipedream, VPIPE alleviated the memory burdens
of the front stages by swap and recompute and rebalanced the
stages by repartition. In Fig. 10, VPIPE made more swap and
recompute operations on the front stages to reduce the mem-
ory burden. However, as the front stages incurred more com-
putation overhead to reduce memory, the front stages took
longer execution time, and execution time among stages was
unbalanced.

In Fig. 10, when VPIPE only enabled the swap and
recompute optimization on each local stage (i.e., Pipedream-
VPIPE-SR, denoted as P-V-SR), we observed that although
stage 0-3 had high total ALU utilization (87.6 percent-95.3
percent), stage 4-7 incurred lowALU utilization of only (61.4-
81.7 percent). To make the pipeline more balanced, in VPIPE’s
Algorithm 1, VPIPE iteratively performed stage repartition
that migrated layers from the front stages to the rear stages.
This made the stage 4-7’ ALU utilization high (89.7-95.6 per-
cent) and further improved the pipeline’s throughput.

VPIPE’s optimization space on GPipe was GPipe’s over-
head of an extra forward pass; in our study, an extra for-
ward pass took 23.8-36.5 percent wasted computation on
various DNNs [6], [33], [39], [45], [52] and training settings.
When training complex DNNs on a large number of GPUs
(>8), GPipe achieved better training efficiency than Pipe-
dream because as shown in Table 3, although GPipe needed
to process an extra forward pass, compared with Pipe-
dream, GPipe supported 3.75x training batch size and
incurred 1.59x total effective ALU utilization on all GPUs.
Thus, VPIPE had more improvement space on Pipedream.

Compared with GPipe, GPipe-VPIPE used 73.2 percent
less wasted GPU ALU utilization. The reason is that GPipe-
VPIPE invoked swap and provided a dynamic and efficient
strategy to reduce GPipe’s recompute overhead at runtime
(Algorithm 2). In exchange, GPipe-VPIPE used 7.9x more
PCIe resource than GPipe for swapping. The PCIe resource
was usually spare in GPipe’s default setting except when

TABLE 2
Default Settings of Baseline Systems

Model layer # l.r. Default Partition

BERT 488 5	 10�3 [60, 62, 62, 62, 62, 61, 61, 58]
Trans. 332 5	 10�4 [41, 41, 42, 43, 43, 42, 42, 38]
Amoe. 2190 5	 10�5 [283, 238, 238, 238, 238, 286, 237, 432]
GNMT 86 6	 10�2 [11, 12, 11, 10, 8, 9, 13, 12]
VGG16 40 2	 10�2 [22, 18]
ResNet50 175 2	 10�2 [116, 59]

Baseline systems with VPIPE start with the same default partition.

ZHAO ET AL.: VPIPE: A VIRTUALIZED ACCELERATION SYSTEM FOR ACHIEVING EFFICIENT AND SCALABLE PIPELINE PARALLEL... 499

network communications was invoked, VPIPE tackled the
PCIe interference between swap and network communica-
tion in Section 4.2. Moreover, when NAS was enabled, VPIPE

improved GPipe by up to 291.3 percent, and we discuss it in
Section 6.3.

When training “small” DNNs VGG16 and ResNet50,
VPIPE improved Pipedream and GPipe by merely 5.2 and 7.3
percent on average. The reason is that when we trained the
VGG16 and ResNet50, following the setting of Pipe-
dream [33], we partitioned both VGG16 and ResNet50 into
two stages: a stage that contained convolution layers and a
stage that contained fully connected layers. We used 7
GPUs to perform data parallelism on the former stage and
uses 1 GPU to train the latter one. This two-stage setting
limited the optimization space of VPIPE’s SRP algorithm.

We also evaluated the ideal throughput of GPipe and Pipe-
dream, and both Pipedream-VPIPE and GPipe-VPIPE incurred a
degradation from the ideal throughput. The reason is that due
to limits of GPU memory capacity and PCIe bandwidth, to
support sufficient large batch size that made all GPU’s ALU
units fully utilized, VPIPE incurred inevitable recompute over-
head on the front stage to avoid exceeding GPU physical
memory limit (G1). In total, as shown in the GPU utilization
column of Table 3, VPIPE needed 6.7 percent inevitable wasted
ALUutilization on average for recompute.

Overall, VPIPE accelerated both Pipedream and GPipe on
various complex DNNs under static training settings.
VPIPE’s improvement stemmed from a higher utilization rate
of all GPU resources, including the effective ALU utiliza-
tion, memory, and PCIe usage.

6.2 Scalability

To evaluatewhether VPIPE is scalable to largeGPU clusters,we
ran Pipedream-VPIPE, GPipe-VPIPE, Pipedream, and GPipe on
different numbers (4-16) of GPU. In addition, an alternative
approach to apply dynamic swap and recompute systems
(i.e., Capuchin [37]) to distributed settings is to integrate
Capuchin to each worker of data parallelism. We also evalu-
ated Capuchin with data parallelism (parameter server) on a
different number of GPUs. For pipeline parallelism, the moti-
vation of using larger GPU clusters is often to train larger
DNNs [19]. Thus, we made the DNN layer number propor-
tional to the number of involved GPUs (e.g., DNNs used for
16 GPU setting had doubled layers comparing with DNNs
used for 8 GPU setting). In Fig. 12, we used the total effective
utilization of all GPUs to evaluate the scalability.

Pipedream achieved poor scalability. In pipeline parallel-
ism, the number of simultaneously injected input batches
are proportional to the GPU (Stage) number (Section 2.2); as
Pipedream directly keeps activation tensors in GPU mem-
ory, an increasing GPU number makes the number of acti-
vation tensors kept by a single GPU (with a fixed memory)
also increased. To avoid exceeding GPU memory limit,
Pipedream needed to proportionally decrease the size of
each input batch. For example, when training Transformer
with 8 GPUs, the batch size supported by Pipedream was
32; when training Transformer with 16 GPUs, the batch size
supported by Pipedream dropped to 16.

A larger training batch size can lead to higher GPU ALU
utilization [60]; however, in the settings of Fig. 12, the batch
size supported by Pipedream were often not high enough to
fully utilize a GPU’s ALU units. Therefore, when more
GPUs were involved in Pipedream, the total effective ALU
utilization increased little and even dropped when training
AmoebaNet, as the batch size dropped to a very low num-
ber (e.g., 1 when training with 16 GPUs) and the parallel uti-
lization of ALUs on all GPUs dropped significantly.

Compared with Pipedream, Pipedream-VPIPE, GPipe-VPIPE,
and GPipe did not suffer from batch size degradation when
more GPUs were involved. GPipe used all� recompute strat-
egy without keeping any activation tensors in GPU memory,

Fig. 8. Model fitting score versus time for training six models using 8 GPUs. For a-f, the models are training with GPipe (G) and GPipe-VPIPE (G+V).
For g-l, the models are training with Pipedream (P) and Pipedream-VPIPE (P+V). For BERT, the score metric is next sentence prediction accuracy [10].
For Transformer and GNMT, the score metric is BLEU [58]. For AmoebaNet, VGG16, and ResNet 50, the score metric is top-5 accuracy [15], [33],
[39], [44].

Fig. 9. Throughput of four systems with 8 GPU setting.

500 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

and thus supported a sufficiently large batch size to fully uti-
lize a GPU’s ALU units. With VPIPE integrated, Pipedream-
VPIPE and GPipe-VPIPE supported the same large batch size as
GPipe, while VPIPE reduced the recompute overhead in
GPipe. Thus, Pipedream-VPIPE and GPipe-VPIPE were as scal-
able as GPipe and achieved better total effective utilization
than GPipe.

For both vanilla data parallelism (DP) and Capuchin
with data parallelism (DP-C), the scalability was poor
because for complex DNNs, the network communication
cost for parameter synchronization was the major bottle-
neck (Section 2). However, DP-C still incurred better effec-
tive ALU utilization as Capuchin used swap and recompute
to enlarge the training batch size supported by each GPU,
making a high ALU utilization on each GPU worker.

To sum, with VPIPE, both BSP (GPipe-VPIPE) and ASP
(Pipedream-VPIPE) systems achieved almost linear scalabil-
ity that is comparable to the scalable pipeline parallelism
system GPipe, while VPIPE achieved better total effective

GPU utilization. These results indicate that VPIPE is both effi-
cient and scalable. As the emergence of more giant DNNs
can be foreseen [6], the design of VPIPE is able to remain effi-
cient when more and more GPUs are involved.

6.3 Dynamic DNN Training (i.e., NAS Enabled)

To evaluate VPIPE’s efficiency on dynamic training workload,
we conducted a case study of how VPIPE performed on neural
architecture search (NAS), one of the most prevalent dynamic
training processes. We selected twomodels (Transformer [52]
and AmoebaNet [39]) that have been pervasively used for
neural architecture search. For both Transformer and Amoe-
baNet, we implemented the NAS process according to their
published description [45] of an evolution algorithm: it creates
a set of population DNNmodels, which have a similar archi-
tecture, and train them on a subset (around 1000 data entries)
of their Dataset to fast eliminate those unqualified models.
This elimination process often took the most time during a
NAS process. To ensure fair evaluation, we made the evolu-
tion algorithm deterministic: i.e., for each NAS process, the
population ofmodelswas trained in a determined sequence.

Overall, VPIPE accelerated both GPipe and Pipedream on
these two NAS-enabled DNN training by 245.4-291.3 per-
cent and 421.3-463.4 percent, while VPIPE made no impacts
on the upper evolutionary algorithm and did not down-
grade the quality of NAS.

Fig. 12. Scalability. DP means pure data parallelism. DP-C means data
parallelism + Capuchin [37].

TABLE 3
Resource Consumption, Final Fitting Scores, and Micro Events of Training Four Large DNNs With Four Systems on 8 GPUs

BE. is BERT. TR. is Transformer. AM. is AmoebaNet. GN. is GNMT. Sco. is the final model fitting score when the training finishes, and score metric of each
model is the same as Fig. 8. Bat. is training batch size. GPU is all GPUs’ effective/total ALU utilization. Fwd and bwd mean forward pass time and backward
pass time of each training iteration.

Fig. 10. Resource usage of each GPU when training (NAS-disabled)
Transformer with Pipedream, Pipedream-VPIPE, Pipedream-VPIPE-SR on
8 GPUs. Unfilled bars are wasted GPU ALU utilization for recompute.

Fig. 11. Resource usage of each GPU when training (NAS-disabled)
Transformer with GPipe, GPipe-VPIPE, GPipe-VPIPE-SR on 8 GPUs.
Unfilled bars are wasted GPU ALU utilization for recompute.

ZHAO ET AL.: VPIPE: A VIRTUALIZED ACCELERATION SYSTEM FOR ACHIEVING EFFICIENT AND SCALABLE PIPELINE PARALLEL... 501

We selected a snippet for each NAS-enabled model (Trans-
former and AmoebaNet) training on two baseline systems
(Pipedream and GPipe), and Fig. 13 shows how VPIPE

improved both two systems on NAS-enabled model training.
In Figs. 13a and 13b, 8 layerswere added twice at 342s and 594s
on the first stage, and 8 layers were deleted twice at 880s and
1123s on the second stage. In Figs. 14b and 14b, 46 layers were
deleted twice at 921s and 1157s on the first stage, and 46 layers
were added twice at 1265s and 1483s on the second stage.

For vanilla baseline systems without VPIPE (Pipedream
and GPipe), the static partition strategy used by both sys-
tems did not cope with this training dynamicity: taken the
Transformer in Fig. 13a and 13b as an example, when layers
were added on the first stage, both systems incurred a per-
formance drop as the execution time of stage 0 suddenly
increased, bottlenecking the whole pipeline; when layers
were deleted on the second stage, the whole pipeline’s
throughput did not increase as the stage 0 was still the
throughput bottleneck. In Figs. 13a and 13b, although the
ALU utilization of stage 0 was high, other stages all
incurred a low ALU utilization as these stages often needed
to wait for the execution of stage 0.

When only VPIPE’s local swap and recompute optimiza-
tion (Algorithm 2) on each stage (i.e., VPIPE-SR) was enabled,
although VPIPE-SR improved the two baseline systems’
throughput by enlarging the supported batch size (for Pipe-
dream) or reducing the recompute overhead (for GPipe),
VPIPE-SR was also not able to cope with this training dynam-
icity. This implies that existing single GPU swap and
recompute systems (e.g., Capuchin [37]) are not sufficient to
achieved efficient pipeline parallelism in two folds: first,
these systems do not support distributed memory manage-
ment (Section 4.2); second, even if a distributed swap and
recompute system (e.g., VPIPE-SR) exists, it still incurs sub-
optimal training efficiency.

In contrast, when VPIPE with a full implementation of
Algorithm 1 was integrated into Pipedream and GPipe,
under training dynamicity, both systems (Pipedream-VPIPE

and GPipe-VPIPE) adjusted its layer distribution on all stages
to achieve a near-optimal training throughput. In Fig. 13,
the second figure of each sub-figure shows how VPIPE

adjusted the layer distribution when layer activation/de-
activation was suddenly triggered during a training pro-
cess. For example, when layers were added on stage 0 at the

Fig. 14. Training profiling under dynamic training processes (AmoebaNet) with the same setting in Fig. 13.

Fig. 13. Training profiling under dynamic training processes (Evolved Transformer). V-SRmeans VPIPE with swap/recompute enabled and repartition
disabled. In all sub-figures of (a) and (b), the 1st is training throughput collected at every input batch finished; the 2nd is real-time layer number of
each stage (redmeans layer increase; blue means layer decrease); the 3rd and 4th are the resource utilizations of all GPUs at the end of each sub-
figure’s time axis.

502 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

342s in Figs. 13a and 13b, VPIPE’s global planner collected the
runtime statistics of all stages and noticed an imbalance of
execution time among stages. VPIPE then triggered Algo-
rithm 3 to generate a new balanced partition. VPIPE’s layer
manager immediately started to migrate layers from stage 0
to the subsequential stages (i.e., stage 3, 5, and 6). Then,
VPIPE’s layer manager locally performed Algorithm 2 to find
an optimized local memory management plan. After that,
as described in Algorithm 1, VPIPE iteratively performed
Algorithm 3 and Algorithm 2 until no better SRP strategy
was found.

In our evaluation, each iterative process of Algorithm 1 fin-
ished within 3-9 iterations (Section 6.1) without performance
downgrade thanks to VPIPE’s fast SRP algorithm and live layer
migration protocol. Wewill further discuss this in Section 6.3.
We also evaluated the ideal throughput in Fig. 13, and VPIPE

incurred a degradation from the ideal throughput for the
same reason aswe discussed in Section 6.1.

To sum, with VPIPE, both Pipedream-VPIPE and GPipe-
VPIPE transparently changed their layer distribution along
with the training dynamicity; and by doing so, both systems
kept their training throughput close to the ideal throughput
during an extremely dynamic training. Both forward and
backward layer migrations were triggered frequently dur-
ing a NAS training process, making both VPIPE’s forward
and backward layer migration designs desirable.

6.4 Effectiveness of VPIPE’s Algorithms

Effectiveness of VPIPE ’s SRP Algorithm. VPIPE’s SRP algorithm
(Algorithm 1) is a decomposition method that iteratively
optimizes two sub-problems: a local search of swap and
recompute (Algorithm 2); and a global search of stage parti-
tion (Algorithm 3).

We first summarize how VPIPE’s SRP algorithm improved
the baseline systems. For both static training processes (Sec-
tion 6.1) and dynamic training processes (Section 6.3), VPIPE

made the training throughput of both Pipedream and GPipe
always close to ideal throughput; VPIPE’s throughput degra-
dation from the ideal throughput was caused by the inevita-
ble recompute overhead to make all GPU’s total effective
ALU utilization high (e.g., Figs. 10 and 11). From Table 3,
compared with bare-metal baseline systems Pipedream and
GPipe, VPIPE’s SRP algorithm essentially well utilized all
available resources of all GPUs.

We then examined how fast VPIPE’s SRP algorithm was.
Overall, each invoking of SRP algorithm finished within 10
iterations. The major time cost of each iteration is taken by
the graph partition sub-algorithm (Algorithm 3), which

solves the NP-hard graph partitioning problem (Section 4.1).
In Table 4, we compared the runtime cost of VPIPE’s partition
algorithm (Algorithm 3) with the original KL-algorithm [50]
on partitioning four complex DNNs. The results show that
VPIPE speeded up the KL algorithm by 4x-32x. The reason is
that VPIPE’s coarsen step greatly reduced the complexity of
the graph used in the partitioning (Section 4.2). On average,
VPIPE reduced the number of graph nodes by 3x-32x and the
number of graph edges by 3x-35x. This time cost is negligible
comparing with the training time. The final edge cuts (i.e.,
total network communication costs across partitions) pro-
duced by VPIPE and KL algorithm were equal, as VPIPE used
KL-refinement to ensure that no better partition on the origi-
nal graphwasmissed.

In Fig. 15a, we collected the network communication costs
of Pipedream-VPIPE and Pipedream using the same setting in
Fig. 9. Overall, Pipedream-VPIPE achieved comparable network
communication costs with Pipedream when training the four
complex DNNs. VPIPE’s layer migration costs and control mes-
sage costs incurred little overhead as the these costs were
amortized over the long training time (up to hundreds of
hours). During a layer migration process, VPIPE’s peak data
transfer rate was about 432MB/s, far from blocking both the
network connection and the PCIe connection across stages.

To sum, these results indicate that VPIPE’s SRP algorithm
is both fast converging and can achieve a near-optimal plan
that well utilizes all GPU resources to achieve efficient pipe-
line parallel training.

Effectiveness of Live Layer Migration Protocol. VPIPE’s live
layer migration protocol 4.3 transparently migrates a layer
to realize a new partition without degrading the training
throughput. This guarantees that VPIPE can iteratively search
for a better SRP plan (Section 4.2) with a negligible training
performance penalty.

To examine the necessity of VPIPE’s live layer migration
protocol, we compared it with a non-live layer migration
approach (Section 4.2): stop injecting new input batches for
the upper system, clean up the pipeline, manuallymigrate the
layer to a new stage, and reboot a new pipeline. In Fig. 13, the
red dashed line is the training throughput using a non-live
layermigration. The non-livemigration degraded the training
throughput by up to 60.3 percent because, in each iteration of
VPIPE’s Algorithm 1, a repartition would be triggered, and the
pipeline would be cleaned up. Fig. 15b shows the real-time
ALU utilization comparison between VPIPE’s live migration
approach and the non-live migration approach, during an
iterative Algorithm 1 that triggers 9 stage repartition. In each
repartition, the total ALU utilization dropped to zero as the

TABLE 4
Performance of VPIPE’s Partition Algorithm versus

Kernighan-Lin Algorithm [50]

O. G means the original graph with N layers and E edges. C. G means coars-
ened graph. Cost means the network communication cost caused by the parti-
tion algorithm (1e7 bytes per training sample). Each DNN models used is for
16 GPU training, and the algorithms partition each DNN into 16 stages.

Fig. 15. (a) Network usage of Pipedream with and without VPIPE. VPIPE’s
network usage contains VPIPE’s network overhead (in unfilled red bars)
including layer migration and control message costs. (b) Real time GPU
ALU utilization statistics with VPIPE’s live migration and the non-live
migration approach.

ZHAO ET AL.: VPIPE: A VIRTUALIZED ACCELERATION SYSTEM FOR ACHIEVING EFFICIENT AND SCALABLE PIPELINE PARALLEL... 503

pipeline was clean up. In comparison, VPIPE live-migrated a
layerwithout notable throughput degradation andGPU stall.

6.5 Discussions

VPIPE has two limitations. First, VPIPE assumes that for any
DNN workload trained with VPIPE, a single layer fits within
the memory limits of a single GPU. This is also assumed by
other pipeline parallel systems (e.g., Pipedream and GPipe).
In reality, for all recent complex DNNs evaluated by VPIPE,
the layers can all fit in a single GPU. Second, VPIPE’s layer
migration protocol (Section 4.3) remains live when the time
cost of transferring a layer’s tensors can overlap with the
computation time of DNN training. There might exist spe-
cial DNNs where the execution time of all layers is
extremely short, while a layer holds a non-negligible
amount of data to transfer. In all the models we studied and
literature, DNNs are both computation intensive and mem-
ory intensive [18], [37], making VPIPE’s off-the-critical-path
data transfer realizable, verified in Section 6.4.

In future work, we envision three applications of VPIPE.
First, VPIPE has the unique strength to support more dynamic
training paradigms (e.g., DyNet [34]) other than NAS, as
DyNet enabled dynamic DNNs (e.g., LSTM [31]) are preva-
lent andpowerful in handling input datawith varying lengths
(e.g., sentences). Second, existing NAS algorithms produce
DNN evolvement with the assumption that GPU memory
is unlimited. However, when these NAS algorithms are
deployed with pipeline parallelism, they may produce DNN
evolvements that cannot be realizedwith pipeline parallelism,
leading to poor search quality. Leveraging VPIPE’s pipeline sta-
tistics, researchers can let NAS algorithms be aware of the
underlying pipeline resources, makingNAS both highly accu-
rate and feasible under limited hardware resources. Third, as
DNNs today are deployed with various training framework,
in addition to PyTorch, VPIPE can also augment other impera-
tive training engines (e.g.,MxNet [8] and Tensorflow [1]).

7 RELATED WORK

Data Parallel Systems. Data parallelism [28] has been widely
adopted in DNN training to support large batch size train-
ing. In data parallelism, inputs are partitioned across work-
ers. Each worker maintains a local copy of the model
parameters and trains on its own partition of inputs while
periodically synchronizing weights with other workers.
Typical data parallelism systems assume that a DNN model
can fit into a single GPU. Nevertheless, the size of recent
DNNs has grown far beyond a single GPU’s capacity, driving
researchers to conduct studies [19], [21] onmodel parallelism.
To support large DNN training with data parallelism, Deep-
Speed [38] partitions a DNN’s status of parameters and opti-
mizers to each worker, and on-demand transfers the status
during the training. DeepSpeed [38] reported a 1.5x network
communication volume comparedwith a typical data parallel
system (e.g., Parameter Server). Comparedwith data parallel-
ism, pipeline parallelism (e.g., VPIPE) incurs much less net-
work communication volume [19], [33] and better scalability
during large DNN training [19] (see Section 6.2). Overall, data
parallelism is complementary to pipeline parallelism systems
and can be integrated to VPIPE asmixed parallelism to support
large batch size training.

Pipeline Parallel Systems. Pipeline (model) parallelism is a
special type of model parallel system. Model parallel sys-
tems are designed to train complex DNN models that can-
not fit into a single GPU’s memory. Despite Pipedream [33]
and GPipe [19], there are many successive pipeline parallel
systems that try to address Pipedream’s parameter staleness
problem. XPipe [14] uses parameter prediction to mitigate
the staleness issues incurred by the ASP pipeline parallel
systems (i.e., Pipedream). XPipe directly keeps the activa-
tion memories in GPU and have the same performance
model as Pipedream. PipeMare [59] adopts the GPipe’s all
recompute strategy to ASP systems and has a similar model
to GPipe’s performance and memory. However, PipeMare
shares the same limitations as GPipe.

Hybrid Parallel Systems. Existing pipeline parallel sys-
tems [14], [19], [33], [59] assume that GPU resource consump-
tions of layers are roughly evenly distributed. In most recent
large DNNs like Transformer [52], BERT [10], GPT-3 [6],
AmoebaNet [39], DNN layers are usually homogenous and
even in training resource consumption. Nevertheless, in some
DNNs like ResNet50 [15] and VGG16 [44], convolution layers
usually take much more computation time than the fully
connected layers. Hybrid parallelism systems, including
OWT [26], FlexFlow [30], etc, are designed to improve the
training efficiency of such heterogenous DNNs. Specifically,
these systems apply data parallelism to convolution layers
and apply model parallelism to fully connected layers. These
systems are orthogonal to VPIPE, and we leave the support of
hybrid parallelism as VPIPE’s futurework.

Training Memory Reduction. DNN training is memory int-
ensive. Training memory reduction has been widely studied
by existing work [18], [37]. Existing memory reduction
approaches mainly fall into two categories: transparent
approaches including swap [18] and recompute [37] that do
not affect the training accuracy; and opaque approaches such
as low precision training [20] and mixed-precision training
that trade-off training accuracy with training memory. VPIPE

aims to act as a transparent layer so that VPIPE’smemory reduc-
tion will not affect the upper systems. Thus, opaque memory
reduction approaches are orthogonal to VPIPE. There are many
transparent memory reduction systems that are designed for
single GPU training. vDNN [40] and SwapAdvisor [18] focus
only on swap. SuperNeuron [56] andCapuchin [37] coherently
combine swap and recompute to dynamically reduce the
memory consumption ofDNN training on a singleGPU.How-
ever, these single GPU systems are not designed to cope with
challenges stemming from pipeline parallelism (Section 2). A
recent study [54] partially offloads the recompute overhead to
the CPU processors. This work is complementary to VPIPE and
can be integrated into VPIPE to further reduce the recompute
overhead.

Nvidia proposes Unified Memory [51], a general unified
memory address space accessible from both CPU and GPU,
so that a process can allocate a memory space larger than a
GPU’s physical capacity. Nvidia Zero-Copy [61] allows inte-
gratedGPU (GPUandCPUphysically sharememorydevices,
common inmobile devices) to directly access pinnedmemory
on CPU. VPipe focuses on discrete GPUs (GPU has its own
memory devices) in data centers. If a training process exceeds
a GPU’s physical capacity, Unified Memory automatically
migrates tensors (e.g., activations) from GPU to CPU. When

504 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

these tensors are accessed later by the GPU ALUs, Unified
Memory page fault is triggered, and tensors needed are syn-
chronously moved back from CPU to GPU. Such per-host on-
demand moving back significantly blocks a Deep Learning
application’s execution (e.g., Unified Memory can slow down
a DNN’s execution by more than 1x [5]). Compared with Uni-
fied Memory, VPIPE’s distributed runtime (Section 4.2) enables
VPIPE to predict when tensors in CPUwill be needed and asyn-
chronously pre-fetches these tensors back to GPU before they
are accessed, which prevents blocking the normal execution;
VPIPE’s async swap has an overall negligible overhead on the
training performance (Section 4.2). Besides swap, VPIPE’s dis-
tributed memory management also contains features like
recompute andmigrate.

8 CONCLUSION

In this paper, we present VPIPE, the first dynamic memory
and layer partition management system for pipelined paral-
lelism, acting as a virtualized layer between a typical pipe-
line parallel system and its underlying execution engine.
VPIPE can accelerate existing pipeline parallel systems under
both static and dynamic training of complex DNNs, making
them both efficient and scalable. VPIPE’s source code is
released at: github.com/hku-systems/vpipe.

ACKNOWLEDGMENTS

The authors would like to thank all reviewers for their valu-
able comments. This work was funded in part by Huawei
Innovation Research Program (HIRP) Flagship, under
Grants HK RGC ECS 27200916, HK RGC GRF 17207117,
17202318, and 27208720, in part by Croucher Innovation
Award, in part by National NSF China under Grant
61802358, and in part by the USTCResearch Funds of Double
First-Class Initiative, under Grant YD2150002006. Shixiong
Zhao and Fanxin Li contributed equally to this work.

REFERENCES

[1] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2016, pp. 265–283.

[2] S. Areibi, “An integrated genetic algorithm with dynamic hill
climbing for VLSI circuit partitioning,” in Proc. Genet. Evol. Com-
put. Conf., 2000, pp. 97–102.

[3] S. Areibi and A. Vannelli, “Distributed advanced search techni-
ques for circuit partitioning,” in Proc. IEEE Can. Conf. Elect. Com-
put. Eng., 1998, pp. 553–556.

[4] PyTorch cuda streams. Accessed: Nov. 12, 2020. [Online]. Available:
https://pytorch.org/docs/stable/notes/cuda.html#cuda-streams

[5] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “PipeSwitch: Fast pipelined con-
text switching for deep learning applications,” in Proc. 14th USENIX
Symp. Operating Syst. Des. Implementation, 2020, pp. 499–514.

[6] T. B. Brown et al., “Language models are few-shot learners,” 2020,
arXiv:2005.14165.

[7] T. N. Bui and C. Jones, “A heuristic for reducing fill-in in sparse
matrix factorization,” Soc. Ind. Appl. Math., Philadelphia, PA,
USA, Tech. Rep., 1993.

[8] T. Chen et al., “MXNet: A flexible and efficient machine learn-
ing library for heterogeneous distributed systems,” 2015,
arXiv:1512.01274.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” 2018, arXiv:1810.04805.

[11] S. Dutt, “New faster Kernighan-Lin-type graph-partitioning algo-
rithms,” in Proc. Int. Conf. Comput. Aided Des., 1993, pp. 370–377.

[12] C. Farhat, E. Wilson, and G. Powell, “Solution of finite element
systems on concurrent processing computers,” Eng. Comput.,
vol. 2, no. 3, pp. 157–165, 1987.

[13] P.-O. Fj€allstr€om, Algorithms for Graph Partitioning: A Survey,
vol. 3. Link€oping, Sweden: Link€oping University, Electronic
Press, 1998.

[14] L. Guan, W. Yin, D. Li, and X. Lu, “XPipe: Efficient pipeline
model parallelism for multi-GPU DNN training,” 2019,
arXiv:1911.04610.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[16] M. T.Heath andP. Raghavan, “A cartesian parallel nested dissection
algorithm,” SIAM J. Matrix Anal. Appl., vol. 16, no. 1, pp. 235–253,
1995.

[17] B. Hendrickson and R. Leland, “A multi-level algorithm for parti-
tioning graphs,” in Proc. ACM/IEEE Conf. Supercomputing, 1995,
pp. 28–es.

[18] C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Pushing deep learn-
ing beyond the GPU memory limit via smart swapping,” in Proc.
25th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2020, pp. 1341–1355.

[19] Y. Huang et al., “GPipe: Efficient training of giant neural networks
using pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst.,
2019, pp. 103–112.

[20] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” J. Mach. Learn. Res., vol. 18, no.
1, pp. 6869–6898, 2017.

[21] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model paral-
lelism for deep neural networks,” 2018, arXiv:1807.05358.

[22] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck
identification and scheduling in multithreaded applications,”
ACM SIGARCH Comput. Architect. News, vol. 47, no. 4, pp. 223–234,
2012.

[23] G. Karypis and V. Kumar, “Multilevel graph partitioning schemes,”
inProc. Conf. ICPP (3), 1995, pp. 113–122.

[24] G. Karypis and V. Kumar, “Analysis of multilevel graph parti-
tioning,” in Proc. ACM/IEEE Conf. Supercomputing, 1995, pp. 29–es.

[25] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
Feb. 1970.

[26] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” 2014, arXiv:1404.5997.

[27] C.-H. Lee, M. Kim, and C. I. Park, “An efficient k-way graph parti-
tioning algorithm for task allocation in parallel computing sys-
tems,” in Proc. 1st Int. Conf. Syst. Integration, 1990, pp. 748–751.

[28] M. Li et al., “Scaling distributed machine learning with the param-
eter server,” in Proc. 11th USENIX Symp. Operating Syst. Des.
Implementation, 2014, pp. 583–598.

[29] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi,“A sur-
vey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[30] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A flexi-
ble dataflow accelerator architecture for convolutional neural
networks,” in Proc. IEEE Int. Symp. High Perform. Comput. Archi-
tect., 2017, pp. 553–564.

[31] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimiz-
ing LSTM language models,” 2017, arXiv:1708.02182.

[32] J. M. Mulvey and A. Ruszczy�nski, “A new scenario decomposition
method for large-scale stochastic optimization,” Operations Res.,
vol. 43, no. 3, pp. 477–490, 1995.

[33] D. Narayanan et al., “PipeDream: Generalized pipeline parallel-
ism for DNN training,” in Proc. 27th ACM Symp. Operating Syst.
Princ., 2019, pp. 1–15.

[34] G. Neubig et al., “DyNet: The dynamic neural network toolkit,”
2017, arXiv:1701.03980.

[35] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, “Hermes: Dynamic
partitioning for distributed social network graph databases,” in
Proc. 18th Int. Conf. ExtendingDatabase Technol., 2015, pp. 25–36.

[36] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[37] X. Peng et al., “Capuchin: Tensor-based GPU memory manage-
ment for deep learning,” in Proc. 25th Int. Conf. Architectural Sup-
port Program. Lang. Operating Syst., 2020, pp. 891–905.

ZHAO ET AL.: VPIPE: A VIRTUALIZED ACCELERATION SYSTEM FOR ACHIEVING EFFICIENT AND SCALABLE PIPELINE PARALLEL... 505

github.com/hku-systems/vpipe
https://pytorch.org/docs/stable/notes/cuda.html#cuda-streams

[38] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory
optimizations toward training trillion parameter models,” in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., 2020, pp. 1–16.

[39] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolu-
tion for image classifier architecture search,” in Proc. AAAI Conf.
Artif. Intell., 2019, pp. 4780–4789.

[40] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design,” in Proc. 49th Annu. IEEE/ACM
Int. Symp. Microarchitect., 2016, pp. 1–13.

[41] I. Safro, P. Sanders, and C. Schulz, “Advanced coarsening schemes
for graph partitioning,” J. Exp. Algorithmics, vol. 19, pp. 1–24, 2015.

[42] R. Sennrich, B. Haddow, and A. Birch, “Edinburgh neural
machine translation systems for WMT 16,” 2016, arXiv:1606.02891.

[43] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed
deep learning in tensorflow,” 2018, arXiv:1802.05799.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.

[45] D. R. So, C. Liang, and Q. V. Le, “The evolved transformer,” 2019,
arXiv:1901.11117.

[46] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy con-
siderations for deep learning in NLP,” 2019, arXiv:1906.02243.

[47] Y. Sun, M. Kirley, and S. K. Halgamuge, “A recursive decomposi-
tion method for large scale continuous optimization,” IEEE Trans.
Evol. Comput., vol. 22, no. 5, pp. 647–661, Oct. 2018.

[48] S. H. Teng and P. Spheres, “Unified geometric approach to graph
separators,” in Proc. 31st Ann. Symp. Foundations Comput. Sci.,
1991, pp. 538–547.

[49] F. Teraoka, Y. Yokore, and M. Tokoro, “A network architecture
providing host migration transparency,” in Proc. Conf. Commun.
Architecture Protoc., 1991, pp. 209–220.

[50] J. L. Tr€aff, “Direct graph k-partitioning with a Kernighan–Lin like
heuristic,”Operations Res. Lett., vol. 34, no. 6, pp. 621–629, 2006.

[51] Nvidia unified memory. Accessed: Mar. 21, 2021. [Online]. Avail-
able: https://developer.nvidia.com/blog/unified-memory-cuda-
beginners/

[52] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[53] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell,
and K. Saenko, “Sequence to sequence – Video to text,” in Proc.
IEEE Int. Conf. Comput. Vis., 2015, pp. 4534–4542.

[54] M.Wahib et al., “Scalingdistributeddeep learningworkloads beyond
thememory capacitywithKARMA,” 2020, arXiv:2008.11421.

[55] L.Wang, S. Xie, T. Li, R. Fonseca, andY. Tian, “Sample-efficient neural
architecture search by learning action space,” 2019, arXiv:1906.06832.

[56] L. Wang et al., “Superneurons: Dynamic GPU memory manage-
ment for training deep neural networks,” in Proc. 23rd ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., 2018, pp. 41–53.

[57] L. Wang, Y. Zhao, Y. Jinnai, Y. Tian, and R. Fonseca, “AlphaX:
Exploring neural architectures with deep neural networks and
Monte Carlo tree search,” 2019, arXiv:1903.11059.

[58] Y. Wu et al., “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation,” 2016,
arXiv:1609.08144.

[59] B. Yang, J. Zhang, J. Li, C. R�e, C. R. Aberger, and C. De Sa,
“PipeMare: Asynchronous pipeline parallel DNN training,” 2019,
arXiv:1910.05124.

[60] E. Yang, S.-H. Kim, T.-W. Kim, M. Jeon, S. Park, and C.-H. Youn,
“An adaptive batch-orchestration algorithm for the heterogeneous
GPU cluster environment in distributed deep learning system,” in
Proc. IEEE Int. Conf. Big Data Smart Comput., 2018, pp. 725–728.

[61] Nvidia CUDA zero-copy. Accessed: Mar. 21, 2021. [Online].
Available: https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html#zero-copy

[62] Y. Zhao, L. Wang, Y. Tian, R. Fonseca, and T. Guo, “Few-shot neu-
ral architecture search,” 2020, arXiv:2006.06863.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

506 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#zero-copy
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#zero-copy

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

