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Abstract
State machine replication (SMR) uses PAXOS to enforce
the same inputs for a program (e.g., Redis) replicated
on a number of hosts, tolerating various types of failures.
Unfortunately, traditional PAXOS protocols incur pro-
hibitive performance overhead on server programs due to
their high consensus latency on TCP/IP. Worse, the con-
sensus latency of extant PAXOS protocols increases dras-
tically when more concurrent client connections or hosts
are added. This paper presents APUS, the first RDMA-
based PAXOS protocol that aims to be fast and scalable
to client connections and hosts. APUS intercepts inbound
socket calls of an unmodified server program, assigns a
total order for all input requests, and uses fast RDMA
primitives to replicate these requests concurrently.

We evaluated APUS on nine widely-used server pro-
grams (e.g., Redis and MySQL). APUS incurred a mean
overhead of 4.3% in response time and 4.2% in through-
put. We integrated APUS with an SMR system Calvin.
Our Calvin-APUS integration was 8.2X faster than the
extant Calvin-ZooKeeper integration. The consensus la-
tency of APUS outperformed an RDMA-based consensus
protocol by 4.9X. APUS source code and raw results are
released on github.com/hku-systems/apus.

1 Introduction

State machine replication (SMR) runs the same program
on replicas of hosts and invokes a distributed consensus
protocol (typically, PAXOS [54]) to enforce the same to-
tal order of inputs among replicas. Since the consensus
on an input can be reached as long as a quorum (typ-
ically, majority) of replicas agree, SMR tolerates vari-
ous errors, including hardware failures of minor replicas.
SMR is deployed on clouds to make the metadata (e.g.,
leadership) of a distributed system highly available.

The strong fault-tolerance of SMR makes it an ideal
high-availability service for general server programs. Re-
cent SMR systems [49, 40, 31] use PAXOS to enforce the
same inputs for a server program, and they use advanced
techniques (e.g., deterministic inter-thread synchroniza-
tion [31, 78]) to make the program transit the same exe-
cution states across replicas. These SMR systems tolerate
hardware failures for server programs.

Unfortunately, despite much effort, state-of-the-art
still lacks a fast, scalable PAXOS protocol for general

server programs. A main reason is that traditional PAXOS
protocols [75, 66, 31] go through software network lay-
ers in OS kernels [72], which incurs high consensus
latency. For efficiency, PAXOS protocols typically take
the Multi-Paxos approach [53]: it assigns one replica as
the “leader” to invoke consensus requests, and the other
replicas as “backups” to agree on requests. To agree on
an input, at least one round-trip time (RTT) is required
between the leader and a backup. Given that a ping RTT
in LAN typically takes hundreds of µs, and that the re-
quest processing time of key-value store servers (e.g.,
Redis) is at most hundreds of µs, PAXOS incurs high
overhead in the response time of server programs.

Worse, the consensus latency of extant consensus pro-
tocols is often scale-limited: it increases drastically when
the number of concurrent requests or replicas increases.
For instance, the consensus latency of ZooKeeper [42]
increases by 2.6X when the number of concurrent
proposing requests increases from 1 to 20 (on 3 repli-
cas). Scatter [38] shows that the consensus latency of its
PAXOS protocol increases by 1.6X when the number of
replicas increases from 3 to 9.

Our evaluation found that the scalability problem in
traditional consensus protocols mainly stem from OS
kernels. We ran 4 popular consensus protocols [6, 23, 31,
75] on 24-core hosts with 40Gbps network (i.e., network
bandwidth was not a bottleneck), we then ran 24 concur-
rent request connections. When the number of replicas
increased from 3 to 9, the consensus latency of 3 pro-
tocols increased by 105.4% to 168.3%, and 36.5% to
63.7% of the increase was in OS kernels.

As modern server programs tend to support more con-
current client connections, and advanced SMR systems
tend to deploy more replicas (e.g., Azure [52] deploys
seven or nine replicas) to support both replica failures
and upgrades, the limited scalability in extant consensus
protocols becomes even more pronounced.

To reduce consensus latency, NOPaxos [56] uses a
dedicated network switch in a datacenter to totally order
packets, and it safely skips consensus if packets arrived at
the switch and replicas are in the same order. NOPaxos is
not designed for server programs with many concurrent
connections and replicas, because prior work [34, 55, 14]
shows that packet reordering rate increases when more
network flows and hosts are added.

Recent hardware-accelerated consensus protocols [44,
33, 43, 74, 56] are also effective on reducing consensus
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latency, but they are either unsuitable for general server
programs or are not designed to be scalable on concur-
rent client connections. For instance, DARE [73], a novel
consensus protocol, achieves the lowest consensus la-
tency on a small number of client connections, but both
its evaluation and ours show that its consensus latency
increases quickly when more connections are added.

We argue that the problem of high, scale-limited con-
sensus latency is not fundamental in PAXOS. OS kernels,
a major source of this problem, can be bypassed with ad-
vanced network features such as Remote Direct Memory
Access (RDMA) within the same datacenter. Moreover,
FaSST [47] shows that RDMA can obtain scalable la-
tency on many concurrent transactions.

We present APUS,1 the first RDMA-based PAXOS
protocol and runtime system. APUS intercepts an un-
modified server program’s inbound socket calls (e.g.,
recv()), assigns a total order for all received requests
in all connections, and uses fast RDMA primitives to in-
voke consensus on these requests concurrently. To ensure
the same robustness as regular PAXOS, APUS’s runtime
system efficiently tackles several reliability challenges,
including atomic delivery of messages (§4.2), persistent
input logging (§5.1), and failure recovery (§5.2).

A fast and scalable PAXOS protocol, APUS has many
practical applications, and we elaborate two below. First,
it can be integrated into existing SMR systems (e.g.,
Calvin [78]), making the response time of a server pro-
gram running in these systems almost as fast as the pro-
gram’s unreplicated execution.

Second, it can support many server programs that are
already well-tested or deterministic, including single-
threaded ones such as Redis [76] and multi-processed
ones such as Nginx [67] and MediaTomb [12]. Even if
a program is pre-mature and undergoing debugging, en-
forcing the same order of inputs by APUS can still help
debugging tools (e.g., PRES [71]) easily reproduce bugs.
§3.2 further illustrates APUS’s broad applications.

We implemented APUS in Linux and compared it
with five open source consensus protocols, including
four traditional ones (libPaxos [75], ZooKeeper [6],
CRANE [31] and S-Paxos [23]), and an RDMA-
based one (DARE [73]). We evaluated APUS on nine
widely used or studied programs, including 4 key-
value stores (Redis [76], Memcached [62], SSDB [77],
and MongoDB [65]), a SQL server MySQL [13], an
anti-virus server ClamAV [28], a multimedia server
MediaTomb [12], an LDAP server OpenLDAP [70], and
an SMR database Calvin [78]. Evaluation shows that
1. APUS is fast and scalable. Figure 1 shows that

APUS’s consensus latency outperformed four tradi-
tional consensus protocols by at least 32.3x. Its con-

1We name our system after apus, one of the fastest birds.
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Figure 1: Comparing APUS to five existing consensus proto-
cols. All six protocols ran a client with 24 concurrent con-
nections. The Y axis is broken to fit in all protocols.

sensus latency stayed almost constant to the number
of concurrent requests and replicas. Its consensus la-
tency was faster than DARE by 4.9X in average.

2. APUS is easy to work with SMR. The Calvin-APUS
integration took only 39 lines of code. Calvin-
APUS’s response time was 8.2X faster than the ex-
tant Calvin-ZooKeeper integration, and it incurred
only 10.6% overhead in response time and 4.1% in
throughput over Calvin’s unreplicated execution.

3. APUS achieves low overhead on real-world server
programs. Compared to all nine server programs’ un-
replicated executions, APUS incurred 4.3% overhead
in response time and 4.2% in throughput.

4. It is robust on replicas failures and packet losses.
Our major contribution is the first PAXOS protocol that

achieves low performance overhead on diverse, widely-
used server programs. A fast, scalable, and deployable
PAXOS protocol, APUS can widely promote the adoption
of SMR and improve the fault-tolerance of various sys-
tems [52, 48, 31, 40, 22, 23] within a datacenter.

The remaining of this paper is organized as follows. §2
introduces PAXOS and RDMA background. §3 gives an
overview of APUS. §4 presents APUS’s consensus proto-
col with its runtime system. §5 presents implementation
details. §6 compares APUS with DARE. §7 does evalua-
tion, §8 discusses related work, and §9 concludes.

2 Background

2.1 PAXOS

PAXOS [54, 53] enforces a total order of inputs for a pro-
gram running across replicas. Because a consensus can
be reached as long as a majority of replicas agree, PAXOS
is known for tolerating various faults, including hardware
failures of minor replicas and packet losses.

SMR systems [40, 31] often use PAXOS to replicate
important online services. An typical SMR system con-
tains two orthogonal parts: (1) a PAXOS protocol that en-
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forces a total order of inputs for the same program run-
ning across replicas; and (2) a technique (e.g., determin-
istic mutex locks [31, 78]) that makes the program transit
same execution states on the same inputs.

The consensus latency of PAXOS protocols is notori-
ously high and unscalable [6, 38]. As datacenters incor-
porate faster networking hardware and more CPU cores,
traditional consensus protocols [75, 23, 31, 40, 6] are
having fewer performance bottlenecks on network band-
width and CPU resources.

However, software TCP/IP layers in OS kernels re-
main performance bottlenecks [72]. To quantify this bot-
tleneck, we evaluated four traditional consensus proto-
cols [6, 23, 31, 75] on 24-core hosts with 40Gbps net-
work, and we spawned 24 concurrent consensus connec-
tions. When changing the replica group size from 3 to
9, although network and CPUs were not saturated, the
consensus latency of 3 protocols drastically increased by
105.4% to 168.3% (Figure 1), and 36.5% to 63.7% of
this increase was in OS kernel. When only one consen-
sus connection was spawned, the latency increase on the
number of replicas was more gentle (Table 2 in §7.1).

This evaluation shows that both the number of con-
current requests and replicas make consensus latency in-
crease drastically. This problem becomes worse as server
programs tend to support more concurrent requests and
advanced SMR systems (e.g., Azure [52]) deploy seven
to nine replicas to in case replica failures and upgrades.

2.2 RDMA

RDMA architectures (e.g., Infiniband [1] and RoCE [3])
become common within a datacenter due to its ultra low
latency, high throughput, and its decreasing prices. The
ultra low latency of RDMA not only comes from bypass-
ing the OS kernel, but also its dedicated network stack
implemented in hardware. Therefore, RDMA is consid-
ered the fastest kernel bypassing technique [46, 64, 73];
it is several times faster than software-only kernel by-
passing techniques (e.g., DPDK [2] and Arrakis [72]).

RDMA has three operation types, from fast to slow:
one-sided read/write operations, two sided send/recv op-
erations, and IPoIB (IP over Infiniband). IPoIB run un-
modified socket programs, but it is a few times slower
than the other two types. A one-sided RDMA write can
directly write from one replica’s memory to a remote
replica’s memory without involving the remote OS ker-
nel or CPU. Prior work [64] shows that one-sided opera-
tions are up to 2x faster than two-sided operations [47],
so APUS uses one-sided operations (or “WRITE” in this
paper). On a WRITE success, the remote NIC (network
interface card) sends an RDMA ACK to local NIC.

A one-sided RDMA communication between a local
and a remote NIC has a Queue Pair (QP), including a

send queue and a receive queue. Such a QP is a global
data structure between every two replicas, but pushing a
message into a local QP takes at most 0.2 µs in our eval-
uation. Different QPs between different replicas work in
parallel (leveraged by APUS in §4.1). Each QP has a
Completion Queue (CQ) to store ACKs. A QP belongs
to a type of “XY”: X can be R (reliable) or U (unreli-
able), and Y can be C (connected) or U (unconnected).
HERD [46] shows that WRITEs on RC and UC OPs in-
cur almost the same latency, so APUS uses RC QPs.

Normally, to ensure a WRITE resides in remote mem-
ory, the local replica busily polls an ACK from the CQ
before it proceeds (or signaling). Polling ACK is time
consuming as it involves synchronization between the
NICs on both sides of a CQ. We looked into the ACK
pollings in a recent RDMA-based consensus protocol
DARE [73]. We found that, although it is highly opti-
mized (its leader maintains one global CQ to receive all
backups’ ACKs in batches), busily polling ACKs slowed
DARE down (§7.3): when the CQ was empty, each poll
took 0.039∼0.12 µs; when the CQ has one or more
ACKs, each poll took 0.051∼0.42 µs.

Fortunately, depending on protocol logic, one can do
selective signaling [46]: it only checks for an ACK after
pushing a number of WRITEs. Because APUS’s protocol
logic does not rely on RDMA ACKs, it just occasionally
invokes selective signaling to clean up ACKs.

3 Overview

3.1 APUS Architecture
APUS deployment is similar to a typical SMR’s: it runs
a program on replicas within a datacenter. Replicas con-
nect with each other using RDMA QPs. Client programs
located in LAN or WAN. The APUS leader handles client
requests and runs its RDMA-based protocol to enforce
the same total order for all requests across replicas.

Figure 2 shows APUS’s architecture. APUS intercepts
a server program’s inbound socket calls (e.g., recv())
using a Linux technique called LD PRELOAD. APUS
involves four key components: a PAXOS consensus pro-
tocol for input coordination (in short, the coordinator), a
circular in-memory consensus log (the log), a guard pro-
cess that handles checkpointing and recovering a server’s
process and file system state (the guard), and an optional
output checking tool (the checker).

The coordinator is involved when a thread of a pro-
gram running on the APUS leader calls an inbound socket
call (e.g., recv()). The thread executes the Libc call,
gets the received data, and appends a log entry on the
leader’s local consensus log in a total order. The leader
replicates this log entry to other backups’ consensus logs
in the same order using our PAXOS protocol (§4).
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Figure 2: APUS Architecture (key components are in blue).

In this protocol, all threads in the server program run-
ning on the leader replica can concurrently invoke con-
sensus on their log entries (requests), but APUS enforces
a total order for all entries in the leader’s local consensus
log. As a consensus request, each thread does an RDMA
WRITE to replicate its log entry to the corresponding log
entry position on all APUS backups. Each APUS backup
polls from the latest un-agreed entry on its local con-
sensus log; if it agrees with the proposed log entry, it
does an RDMA WRITE to write a consensus reply on
the leader’s corresponding entry.

To ensure PAXOS safety [60], all APUS backups agree
on the entries proposed from the leader in a total or-
der without allowing any entry gap. When a majority of
replicas (including the leader) has written a consensus
reply on the leader’s local entry, this entry has reached a
consensus. By doing so, APUS consistently enforces the
same consensus log for both the leader and backups. §4.5
presents a proof sketch on the correctness of the protocol,
and §4.6 analyzes why it is fast and scalable.

The output checker is periodically invoked as a pro-
gram replicated in APUS executes outbound socket calls
(e.g., send()). For every 1.5KB (MTU size) of accu-
mulated outputs per connection, the checker unions the
previous hash with current outputs and computes a new
CRC64 hash. For simplicity, the output checker uses
APUS’s input consensus protocol (§4) to compare hashes
across replicas.

Our evaluation found that the output checker had negli-
gible performance impact and all output divergence were
due to physical times (§7.4). This suggests that many
server programs are well-tested, and the output checker
can be turned on only in program debug phase. If APUS
is integrated into an SMR system, the output checker is
not needed because SMR already has techniques to en-
force the same program executions.

A guard runs on each APUS replica to cope with
replica management, including checkpointing program
states and adding/recovering replicas (§5.2).

3.2 Motivating Applications of APUS

Building fast SMR systems. Extant SMR systems (e.g.,
CRANE [31], Rex [40], and Calvin [78]) use TCP/IP-
based consensus protocols, thus they incur high overhead
in server programs’ response time. For instance, Calvin
uses ZooKeeper [42]. Evaluation (§7.2) shows that the
response time of our Calvin-APUS integration on real-
istic SQL workloads was 8.2X than its extant Calvin-
ZooKeeper integration. Compared to Calvin’s unrepli-
cated execution, APUS incurred only 10.6% overhead in
response time and 4.1% in throughput.

Improving the availability of server programs.
Many real-world server programs handle online requests
and store important data, so they naturally demand high-
availability on hardware failures. Many programs are al-
ready well-tested or deterministic (e.g., single-threaded
ones such as Redis and multi-processed ones such as
Nginx and MediaTomb). Our evaluation (§7.4) shows
that, compared to all nine evaluated programs’ unrepli-
cated executions at peak performance, APUS incurs 4.2%
overhead in throughput and 4.3% in response time.

Improving debugging efficiency. Even if a server pro-
gram is under development and may contain nondeter-
minsitic concurrency bugs, APUS can still benefit extant
debug tools [71, 15, 50] because these tools often require
extra mechanisms to frequently replay the same total or-
der of inputs. APUS logs program inputs persistently, and
it can efficiently replay these inputs in the same order
when integrated into debug tools (e.g., PRES [71]).

4 The RDMA-based PAXOS Protocol

This section shows APUS protocol in normal case (§4.1),
handling concurrent connections (§4.3), leader election
(§4.4), correctness (§4.5), and performance (§4.6).

4.1 Normal Case

APUS’s consensus protocol takes the Multi-Paxos ap-
proach [53] with three main elements. First, the PAXOS
consensus log. Second, threads of leader’s server pro-
gram (or leader threads), which handle socket calls and
are hooked by LD PRELOAD to invoke consensus re-
quests. We denote the data received from each inbound
socket call (e.g., recv()) as a consensus request, or a
log entry. Third, a thread running on every backup (or
backup threads), which agrees on consensus requests.

Figure 3 shows the format of a log entry in APUS’s
consensus log. Most fields are regular as those in a typ-
ical PAXOS protocol [60] except three: the reply ar-
ray, the conn vs, and the call type. The reply ar-
ray is a dedicated memeory on the leader side, preserved
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struct log entry t {
consensus ack reply[MAX]; // Per replica consensus reply.
viewstamp t vs;
viewstamp t last committed;
int node id;
viewstamp t conn vs; // client connection ID.
int call type; // socket call type.
size t data sz; // data size in the call.
char data[0]; // data, with a canary value in the last byte.

} log entry;
Figure 3: APUS’s log entry for each socket call.

for backups to do RDMA WRITEs for their consen-
sus replies. The conn vs is for identifying which TCP
connection this socket call belongs to (see §4.3). The
call type identifies different types of socket calls (e.g.,
the accept() type and the recv() type) in the consen-
sus request.

Figure 4 shows APUS’s consensus protocol. Suppose a
leader thread invokes a consensus request when it calls a
socket call recv(). This thread’s consensus request has
four steps. The first step (L1, not shown in Figure 4) is
executing the actual socket call, because the thread needs
to get the received data and returned value, to allocate a
distinct log entry, and to replicate the entry in backups’
consensus logs.

The second step (L2) is local preparation, including
assigning a global viewstamp to totally order this entry in
the consensus log, allocating a distinct entry in the log,
and storing this entry to a local fast storage (§5.1). We
denote the time taken on storing an entry as tSSD.

Third, each leader thread concurrently invokes a con-
sensus via the third step (L3): WRITE the log entry to
remote backups. This step is thread-safe because each
leader thread works on its own distinct entry and remote
backups’ corresponding entries. An L3 WRITE returns
quickly after pushing the entry to its local QP connecting
the leader and each backup. We denote the time taken for
this push as tPUSH , which took at most 0.2 µs in our eval-
uation. tPUSH is serial for concurrently arriving requests
on each QP, but the WRITEs (all L3 arrows in Figure 3)
to different QPs run in parallel.

The fourth step (L4) is that the leader thread polls on
its reply field in its local log entry to wait for back-
ups’ consensus replies, otherwise it breaks the poll if a
number of heartbeats fail (§4.4). If a majority of replicas
agrees on the entry, an input consensus is reached, the
leader thread leaves this recv() call and proceeds with
its program logic.

On each backup, a backup thread polls from the lat-
est unagreed log entry, otherwise it breaks the poll if
a number of heartbeats fail (§4.4). If no heartbeat fails,
the backup thread then agrees on entries in the same to-
tal order as those on the leader’s consensus log, using
three steps. First (B1), it does a regular PAXOS view ID
check [60] to see whether the leader’s view ID matches
its own one, it then stores the log entry in its local SSD.
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                  Begin/End of  consensus

                  Begin/End of waiting quorumSSD
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Backup 1

Backup 2

Leader
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Figure 4: APUS consensus algorithm in normal case.
To scale to concurrently arriving requests, the backup
thread scans multiple entries it agrees with at once, it
then stores them in APUS’s parallel storage (§5.1).

Second (B2), on each entry the backup agrees, the
backup thread does an RDMA WRITE to send back
a consensus reply to the reply array element in the
leader’s corresponding entry. Third (B3, not shown in
Figure 4), the backup thread does a regular PAXOS
check [60] on last committed and to know the latest
entry that has reached consensus. It then “executes” the
committed entries by forwarding the data in these entries
to the server program on its local replica. Carrying latest
committed entries in next consensus requests is a com-
mon, efficient PAXOS implementation method [60].

To ensure PAXOS safety, the backup thread agrees on
log entries in order without allowing any gap [60]. If the
backup suspects it misses some log entries (e.g., because
of packet loss), it invokes a learning request to the leader
asking for the missing entries. We found one backup
thread per backup suffices to achieve low overhead on
concurrent connections (§7.3).

4.2 Atomic Message Delivery

On a backup side, one tricky challenge is that atomicity
must be ensured on the leader’s RDMA WRITEs on all
entries and backups’ polls. For instance, while a leader
thread is doing a WRITE on vs to a remote backup, the
backup’s thread may be reading vs concurrently, causing
a corrupted read value.

To address this challenge, one prior approach [35, 46]
leverages the left-to-right ordering of RDMA WRITEs
and puts a special non-zero variable at the end of a fix-
sized log entry because they mainly handle key-value
stores with fixed value length. As long as this vari-
able is non-zero, the RDMA WRITE ordering guaran-
tees that the log entry WRITE is complete. However,
because APUS aims to support general server programs
with largely variant received data lengths, this approach
cannot be applied in APUS.

Another approach is using atomic primitives provided
by RDMA hardware, but a prior evaluation [80] has
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shown that RDMA atomic primitives are much slower
than normal RDMA WRITEs and local memory reads.

APUS tackles this challenge by adding a canary value
after the actual data array. Because APUS uses a QP
with the type of RC (reliable connection) (§2), a backup
thread always first checks the canary value according to
data size and then starts a standard PAXOS consensus
reply decision [60]. This synchronization-free approach
ensures that a APUS backup thread always reads a com-
plete entry efficiently.

4.3 Handling Concurrent Connections
Unlike traditional PAXOS protocols which mainly handle
single-threaded programs due to the deterministic exe-
cution assumption in SMR, APUS aims to support both
single-threaded as well as multi-threaded or -processed
programs running on multi-core machines. Therefore, a
strongly consistent mechanism is needed to map every
client TCP connection on the leader and to its corre-
sponding connection on backups. A naive approach is
matching a leader connection’s socket descriptor to the
same one on a backup, but programs on backups may
return nondeterministic descriptors due to systems re-
source contention.

Fortunately, PAXOS already makes viewstamps [60] of
requests (log entries) strongly consistent across replicas.
For TCP connections, APUS adds the conn vs field, the
viewstamp of the the first socket call in each connection
(i.e., accept()) as the connection ID for log entries.

4.4 Leader Election
Leader election on RDMA raises a main challenge: be-
cause backups do not communicate with each other in
normal case, a backup proposing itself as the new leader
does not know the remote memory locations where the
other backups are polling. Writing to a wrong remote
memory location may cause the other backups to miss
all leader election messages. A recent system [73] es-
tablishes an extra control QP to handle leader election,
complicating deployments.

APUS addresses this challenge with a simple, clean de-
sign. It runs leader election on the normal-case consen-
sus log and QP. In normal case, the leader does WRITEs
to remote logs as heartbeats with a period of T. Each
consensus log maintains a control data structure called
elect[MAX], one element for each replica. Normal case
operations and heartbeats use the other parts of the con-
sensus log but leave this elect array alone. Once back-
ups miss heartbeats from the leader for 3*T, they suspect
the leader to fail, close the leader’s QPs, and start to elect
a new leader by making backup threads poll the elect

array.

Backups use a standard PAXOS leader election algo-
rithm [60] with three steps. Each backup writes to its
own elect element indexed by its replica ID on other
replicas’ elect. First, each backup waits for a random
time (similar to random election timeouts in Raft [68]),
and it proposes a new view with a standard two-round
PAXOS consensus [53] by including both its view and the
index of its latest log entry. The other backups also pro-
pose their views and poll on this elect array in order to
agree on an earlier proposal or confirm itself as the win-
ner. The backup whose log is more up-to-date will win
this proposal. A log is more up-to-date if its latest entry
has either a higher view or the same view but a higher
index.

Second, the winner proposes itself as a leader candi-
date using this elect array. Third, after the second step
reaches a quorum, the new leader notifies remote replicas
itself as the new leader and it starts to WRITE periodic
heartbeats. Overall, APUS safely avoids multiple “lead-
ers” to corrupt consensus logs, because only one leader
is elected in each view, and backups always close an out-
dated leader’s QPs before electing a new leader. For ro-
bustness, the above three steps are inherited from a prac-
tical PAXOS election algorithm [60], but APUS makes the
election efficient and simple in an RDMA domain.

4.5 Correctness

APUS’s protocol derives from a practical, viewstamp-
based PAXOS protocol [60]. We made this design choice
because PAXOS is notoriously difficult to understand [53,
54, 79], implement [27, 60], and verify [82, 39]. Deriving
from a practical protocol [60] helps us incorporate these
readily mature understanding and theoretically verified
safety rules into APUS.

APUS’s protocol complies with PAXOS safety: all
replicas see the same total order of request entries in
their local consensus logs. Below, we give a sketch of
proof based on the disscussion of the emergence of view
change and packet loss. We first prove APUS’s safety is
guaranteed with or without view change. Then we show
that packet loss will not affect APUS’s saftety.

Normal Case. Normal case safety is guranteed by
three protocol steps. First, the leader assigns a total-
ordered viewstamp for each incoming request, and each
request log entry has a thread-safe, distinct position on
the leader’s log (in L2). Second, only the leader can write
to other replicas’ consensus logs, which enforces the
same consensus log for all replicas; APUS does not al-
low an outdated leader to write to remote replicas (§4.4).
Third, APUS guarantees the integrity of each log entry
by its atomicity mechanism (§4.2). In normal case, APUS
enforces same total order of log entries across replicas.

View Change. View change safety is ensured by two
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steps. First, APUS leader always carries a total-ordered
viewstamp in its consensus request; an outdated leader
can be detected by APUS’s heartbeats and it is not al-
lowed to write to remote replicas (§4.4). Second, ev-
ery new leader’s log contains all already-committed en-
tries. This is achieved by the election restriction that the
leader’s log contains the most recent entry among a ma-
jority of servers (§4.4).

Packet Loss. Although APUS’s PAXOS protocol
works on a RDMA network, the reliability of APUS does
not rely on a loss-less RDMA. There are three types
of RDMA packets in APUS: heartbeats, consensus re-
quests, and consensus replies. First, loss of heartbeat
packets does not affect the safety because it may only
trigger view changes. Second, loss of consensus requests
may cause entries missing in some backups’ consensus
logs. However, all backups agree on entries without al-
lowing entry gaps, and they invoke learning processes
to fetch missing entries (§4.1). Third, loss of consensus
replies may make the leader fail to achieve consensus,
but the leader will retry and safety is not affected. In
short, packet loss does disturb APUS’s safety.

4.6 Analytical Analysis on Performance
APUS is designed to be scalable to the number of concur-
rent client connections for general server programs. In
contrast, a recent RDMA-based protocol DARE [73] is
designed to achieve the lowest latency on a small number
of connections for its own key-value store server. Below
is an analytical analysis on APUS’s consensus latency,
and we compare APUS and DARE in §6.1.

Suppose the APUS leader has N client connections,
and N requests arrive at the same time. APUS invokes
consensus on all requests in the same way without distin-
guishing them as “read only” or “write”. Suppose there
are only three replicas.

According to the leader’s four steps L1∼L4, to reach
consensus for all these N requests, the time taken on the
leader’s ith request includes five parts: (1) an SSD stor-
age time tSSD in L2 (each leader thread does a SSD store
in parallel) ; (2) because an RDMA QP is a global data
structure between every two replicas, so pushing a mes-
sage to a QP takes i× tPUSH for ith request; (3) a 1

2 tRT T in
L3; (4) an SSD storage time tSSD in B1 for each backup
(done by backups in parallel); and (5) a 1

2 tRT T in B2.
APUS’ average latency for all N requests sums up as the
equation below:

APUS = (
N

∑
i=1

(2tSSD + i× tPUSH + tRT T ))/N

= 2tSSD +
(N +1)

2
tPUSH + tRT T

(1)

This equation shows that APUS is scalable to concur-
rent requests because tPUSH is often below 0.2 µs (§2.2).

5 Implementation Details

5.1 Parallel Input Logging Storage

To handle replica failovers, a PAXOS protocol must pro-
vide a persistent input logging storage. APUS uses the
PAXOS viewstamp of each input log entry (§4.1) as key
and the input data as value, and it persistently stores
this key-value pair in Berkeley DB (BDB) by enabling
thread-safety the BTree access method [20]. Our devel-
opment found BTree fastest in BDB.

To be fast and scalable, APUS’s input storage has two
key features. First, if more inputs are inserted, the BTree
height will grow, which will cause the key-value inser-
tion latency to largely increase. To keep BTree height
small, we implemented a parallel logging approach [21]:
instead of maintaining a single BDB store, we maintain
an array of BDB stores. We use an index to indicate the
current active store and insert new inputs. Once the num-
ber of insertions reach a threshold, we move the index to
the next empty store in the array and recycle preceding
stores. This implementation made APUS logging latency
efficient: 2.8∼8.7 µs (§7.4). Second, our storage has in-
ternal threads, which receive multiple log entries from a
APUS backup thread (§4.1) and concurrently log them.

5.2 Checkpoint and Restore

We proactively design APUS’s checkpoint mechanism to
incur little performance impact in normal case. A check-
point operation is invoked periodically in one backup
replica, so the leader and other backups can still reach
consensus on new inputs rapidly.

A guard process is running on each replica to check-
point and restore the local server program. It assigns
one backup replica’s guard to checkpoint the local server
program’s process state and file system state of current
working directory within a one-minute duration.

Such a checkpoint operation and its duration are not
sensitive to normal case performance because the other
backups can still reach quorum rapidly. Each checkpoint
is associate with a last committed socket call viewstamp
of the server program. After each checkpoint, the backup
dispatches the checkpoint zip file to the other replicas.

Specifically, APUS leverages CRIU [30], a popular,
open source tool, to checkpoint a server program’s pro-
cess state (e.g., CPU registers and memory). Since CRIU
does not support checkpointing RDMA connections,
APUS’s guard first sends a “close RDMA QP” request
to an APUS internal thread, lets this thread closes all re-
mote RDMA QPs, and then invokes CRIU.
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Figure 5: DARE’s RDMA-based protocol. It is a sole-leader,
two-round protocol with three steps: (1) the leader WRITEs
a consensus request to all backups’ consensus logs and waits
for ACKs to check if they succeed; (2) for the success-
ful backups in (1), the leader does WRITEs to update tail
pointer of their consensus logs; and (3) on receiving a ma-
jority of ACKs in (2), a consensus is reached, the leader does
WRITEs to notify backups.

5.3 Network Output Checking Tool
Server programs often send replies with non-blocking
IO. to align outputs across replicas, APUS uses a bucket-
based hash computation mechanism. When a server calls
a send() call, APUS puts the sent bytes into a local, per-
connection bucket with 1.5KB (MTU size). Whenever a
bucket is full, APUS computes a new CRC64 hash on a
union of the current hash and this bucket. To compare a
hash across replicas, the output checker uses APUS’ in-
put consensus protocol (§4.1). Because this protocol is
invoked rarely, we did not observe its performance im-
pact. The output checker is mainly for server programs’
development purpose (§3.1).

6 Discussions

6.1 Comparing APUS with DARE
DARE [73] deviates from PAXOS due to its central-
ized, sole-leader protocol: in normal case, the leader does
all consensus work via RDMA, and the other replicas
are silent and do not consume CPU. Figure 5 shows
DARE’s protocol with two-rounds: first, leader does
RDMA WRITEs of consensus requests on each replica;
second, leader does RDMA WRITEs on each replica to
update a global variable that points to the latest request
(tail of consensus log) in each backup. Because the sec-
ond round updates a global variable on every backup,
which serializes all input requests, DARE is not designed
to be scalable on many concurrent connections.

DARE is mainly designed to achieve low consensus
latency for key-value stores. To this end, it has two
main features. First, on an input consensus, DARE needs
to store the input only once on the leader, because its
backups are silent. In current DARE implementation,
leader does not store inputs and works purely in-memory.
Second, it batches SET and GET requests separately.
For GET requests, leader does only one-round RDMA
READs to check view IDs from backups. Despite the
two features, DARE still has the serialization problem,

especially when SET and GET arrive randomly. DARE’s
evaluation [73] confirmed this problem: on three replicas
and nine concurrent connections, DARE’s throughput on
the 50% SET and 50% GET randomly arrival workload
was 43.5% lower than that on the 100% SET workload.

We provide DARE’s analytical performance (for sim-
plicity, we ignored tPUSH in DARE). Suppose 50% SET
and 50% GET of N requests arrive concurrently and ran-
domly, and suppose N is even. tSET denotes the time for
the consensus latency of a single SET request, and tGET
denotes the time for the consensus latency of a single
GET request. According to Figure 5, tSET = tSSD+2tRT T ,
and tGET = tRT T . DARE’s consensus latency is shown as
the equation below:

DARE = (
N

∑
i=1

(d i
2
etSET + b i

2
ctGET ))/N

=
(2+N)

4
tSET +

N
4

tGET

(2)

From the above formula, when N = 1 and the connec-
tion sends only SET requests, DARE’s consensus latency
is tSSD+2tRT T , and APUS’s consensus latency is approx-
imately 2tSSD + tPUSH + tRT T (§4.6). As DARE currently
works purely in-memory, its consensus latency is actu-
ally 2tRT T , faster than APUS (when N = 1). However, on
1 to 24 connections, APUS’s consensus latency is faster
than DARE by 4.9X in average (§7.3).

Overall, APUS differs from DARE in three aspects.
First, APUS is a PAXOS protocol for general server pro-
grams; DARE is a novel, sole-leader consensus proto-
col for key-value stores. Second, APUS is designed to be
scalable on many concurrent client connections; DARE
is mainly designed to achieve lowest consensus latency
on smaller number of connections. Third, APUS is a
persistent protocol; DARE currently works purely in-
memory. These differences show that APUS is more suit-
able for general server programs, and DARE more suit-
able for maintaining metadata.

6.2 APUS Limitations

APUS currently does not replicate physical times such
as time() because these physical results are often ex-
plicit and easy to examine from network outputs (e.g.,
a timestamp in the header of a reply). Existing PAXOS
approaches [49, 60] can be leveraged to intercept these
functions and make programs produce the same results
among replicas.

To replicate general client requests [73, 31], APUS to-
tally orders all types of requests and it has not incor-
porated read-only optimization [49], because its perfor-
mance overhead is already low (§7.4).
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7 Evaluation

Evaluation was done on nine RDMA-enabled, Dell R430
hosts. Each host has Linux 3.16.0, 2.6 GHz Intel Xeon
CPU with 24 cores, 64GB memory, and 1TB SSD. NICs
are Mellanox ConnectX-3 (40Gbps) connected with In-
finiband [1]. All programs’ unreplicated executions run
on IPoIB (§2.2). Workloads run on idle replicas.

We compared APUS with five open source consensus
protocols, including four traditional ones (libPaxos [75],
ZooKeeper [6], CRANE [31] and S-Paxos [23]) and an
RDMA-based one (DARE [73]). S-Paxos is designed to
achieve scalable throughput on more replicas.

Program Benchmark Workload/input description
ClamAV clamscan [8] Files in /lib from a replica
MediaTomb ApacheBench [11] Transcoding videos
Memcached mcperf [7] 50% set, 50% get operations
MongoDB YCSB [10] Insert operations
MySQL Sysbench [9] SQL transactions
OpenLDAP Self LDAP queries
Redis Self 50% set, 50% get operations
SSDB Self Eleven operation types
Calvin Self SQL transactions

Table 1: Benchmarks and workloads. “Self” in the Bench-
mark column means we used a program’s own benchmark.

We evaluated APUS on nine widely used or stud-
ied programs, including 4 key-value stores Redis,
Memcached, SSDB, MongoDB; MySQL, a SQL server;
ClamAV, an anti-virus server that scans files and delete
malicious ones; MediaTomb, a multimedia storage server
that stores and transcodes video and audio files; OpenL-
DAP, an LDAP server; Calvin, a widely studied SMR
system for databases. We picked Calvin because it
uses a highly-engineered consensus protocol ZooKeeper
to replicate inputs, then the performance improvement
of Calvin-APUS integration over Calvin-ZooKeeper
would be particularly useful. Table 1 shows workloads.
The rest of this section focuses on five questions:
§7.1: Is APUS much faster than traditional consensus?
§7.2: How easy is APUS to integrate into SMR systems?
§7.3: How faster is APUS compared to DARE?
§7.4: What is the performance overhead of running APUS

with server programs? How well does it scale?
§7.5: How well does APUS handle replica failures?

7.1 Comparing w/ Traditional Consensus
We ran APUS and four traditional consensus protocols
using their own client programs or popular client pro-
grams with 100K requests of similar sizes. For each pro-
tocol, we ran a client with 24 concurrent connections on a
24-core machine located in LAN, and we used up to nine
replicas. Both the number of concurrent connections and
replicas are common high values [6, 31, 40, 73].

All four traditional protocols were run on IPoIB (§2.2).
Figure 1 shows that the consensus latency of three tra-

ditional protocols increased almost linearly to the num-
ber of replicas (except S-Paxos). S-Paxos batches re-
quests from replicas and invokes consensus when the
batch is full. More replicas can take shorter time to form
a batch, so S-Paxos incurred a slightly better consensus
latency with more replicas. Nevertheless, its latency was
always over 600 µs. APUS’s consensus latency outper-
forms these four protocols by at least 32.3x.

Proto-#Rep Latency First Major Process Sys
libPaxos-3 81.6 74.0 81.6 2.5 5.1
libPaxos-9 208.3 145.0 208.3 12.0 51.3
ZooKeeper-3 99.0 67.0 99.0 0.84 31.2
ZooKeeper-9 129.0 76.0 128.0 3.6 49.4
CRANE-3 78.0 69.0 69.0 13.0 0
CRANE-9 148.0 83.0 142.0 30.0 35.0
S-Paxos-3 865.1 846.0 846.0 20.0 0
S-Paxos-9 739.1 545.0 731.0 35.0 159.1

Table 2: Performance breakdown of traditional protocols on
leader with only one connection. The “Proto-#Rep” column
is the protocol name and replica group size; “Latency” is
the consensus latency; “First” is the latency of leader’s first
received consensus reply; “Major” is the latency of leader’s
consensus; “Process” is leader’s time spent in processing
all replies; and “Sys” is leader’s time spent in systems (OS
kernel, network stacks, and JVM) between the “First” and
“Major” reply. Times are in µs.

To find scalability bottlenecks in traditional protocols,
we used only one client connection and broke down their
consensus latency on leader (Table 2). From 3 to 9 repli-
cas, the consensus latency (the “Latency” column) of
these protocols increased more gently than that on 24
concurrent connections. For instance, when the number
of replicas increased from three to nine, ZooKeeper la-
tency increased by 30.3% with one connection; this la-
tency increased by 168.3% with 24 connections (Fig-
ure 1). This indicates that concurrent consensus requests
are the major scalability bottleneck for these protocols.

Specifically, three protocols had scalable latency on
the arrival of their first consensus reply (the “First”
column), which implies that network is not saturated.
libPaxos is an exception because its two-round proto-
col consumed much bandwidth. However, on the leader,
there is a big gap between the arrival of the first con-
sensus reply and the “majority” reply (the “Major” col-
umn). Given that the replies’ CPU processing time was
small (the “Process” column), we can see that various
systems layers, including OS kernels, network libraries,
and language runtimes (e.g., JVM), are another major
scalable bottleneck (the “Sys” column). This indicates
that RDMA is useful on bypassing systems layers.

Both CRANE and S-Paxos’s leader handles consensus
replies rapidly, so they two had same “First” and “Major”
arrival times (i.e., “Sys” times were 0 on three replicas).
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7.2 Integrating APUS into Calvin

The Calvin-APUS integration took 39 lines of code.
Calvin currently uses ZooKeeper to batch inputs and
then replicate them. To reduce response time, Calvin-
APUS replicates each request immediately on its arrival.
Figure 6 shows that the consensus latency of ZooKeeper
was 7.6X higher than Calvin’s own request process-
ing time, which indicates that ZooKeeper added a high
overhead in Calvin’s response time. Calvin-APUS’s re-
sponse time was 8.2X faster than Calvin-ZooKeeper’s
because APUS’s consensus latency was 45.7X faster than
ZooKeeper’s. Calvin’s unreplicated execution through-
put is 19825 requests/s, and Calvin-ZooKeeper was
16241 requests/s. Calvin-APUS was 19039 requests/s,
a 4.1% overhead over Calvin’s unreplicated execution.

7.3 Comparing with DARE

Because DARE only supported a key-value server writ-
ten by the authors, we ran APUS with Redis, a pop-
ular key-value server for comparison. Figure 7 shows
APUS and DARE’s consensus latency on variant concur-
rent connections. Both APUS and DARE ran seven repli-
cas with randomly arriving, update-heavy (50% SET and
50% GET) and read-heavy (10% SET and 90% GET)
workloads. DARE performance on two workloads were
different because it handles GETs with only one consen-
sus round [73]. APUS handles all requests with the same
protocol. When there was only one connection, DARE
achieved the lowest consensus latency we have seen in
prior work because it is a sole-leader protocol (§6.1). On
variant connections, APUS’s average consensus latency
was faster than DARE by 4.9X for two main reasons.

First, APUS is a one-round protocol and DARE is
a two-round protocol (for SETs), so DARE’s “actual-
consensus” time was 53.2% higher than APUS. Even
using read-heavy workloads (DARE uses one-round for
GETs) with APUS, APUS’s actual consensus time was
still slightly faster than DARE’s on over six connections,
because APUS avoids expensive ACK pollings (§2.2).

Second, DARE’s second consensus round updates a
global variable for each backup and serializes consensus
requests (§6.1). Although DARE mitigates this limitation
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Figure 7: APUS and DARE consensus latency (divided into
two parts) on variant connections. “Wait-consensus” is the
time an input request spent on waiting consensus to start.
“Actual-consensus” is the time spent on running consensus.

by batching same SET or GET types, randomly arriv-
ing requests often break batches, causing a large “wait-
consensus” time (a new batch can not start consensus un-
til prior batches reach consensus). DARE evaluation [73]
confirmed such a high wait duration: with three replicas
and nine concurrent connections, DARE’s throughput on
real-world inspired workloads (50% SET and 50% GET
arriving randomly) was 43.5% lower than that on 100%
SET workloads. APUS’s “wait-consensus” was almost 0
as it enables concurrent consensus requests (§4.1).

DARE evaluation also showed that, with 100% SET
workloads, its throughput decreased by 30.1% when the
number of replicas increased from three to seven. We re-
produced a similar result: we used the same workloads
and 24 concurrent connections, and we varied the num-
ber of replicas from three to nine. We found that APUS
consensus latency increased merely by 7.3% and DARE
increased by 67.3% (shown in Figure 1).

Overall, we found DARE better on smaller number of
concurrent connections and replicas (e.g., metadata [25,
6]), and APUS better on larger number of connections or
replicas (e.g., replicating server programs [40, 31]).

7.4 Performance Overhead

To stress APUS, we used nine replicas to run all nine
server programs without modifying them. We used up
to 32 concurrent client connections (most evaluated pro-
grams reached peak throughput at 16), and then we mea-
sured mean response time and throughput in 50 runs.

We turned on output checking (§5.3) and didn’t ob-
serve a performance impact. Only two programs (MySQL
and OpenLDAP) have different output hashes caused by
physical times (an approach [60] can be leveraged to en-
force same physical times across replicas).

Figure 8 shows APUS’s throughput. For Calvin, we
only collected the 8-thread result because Calvin uses
this constant thread count in their code to serve re-
quests. Compared to these server programs’ unrepli-
cated executions, APUS merely incurred a mean through-
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Figure 8: APUS throughput compared to server programs’ unreplicated executions.

put overhead of 4.2% (note that in Figure 8, the Y-
axises of most programs start from a large number).
As the number of threads increases, all programs’ un-
replicated executions got a performance improvement
except Memcached. Prior work [40] also showed that
Memcached itself scaled poorly. Overall, APUS scaled as
well as unreplicated executions on concurrent requests.

To understand APUS’s performance overhead, we
broke down its consensus latency on the leader replica.
Table 3 shows these statistics per 10K requests, 8 or max
(if less than 8) threads. According to the consensus al-
gorithm in Figure 4, for each socket call, APUS’s leader
does an “L2”: SSD write (the “SSD time” column in Ta-
ble 3) and an “L4”: quorum waiting phase (the “quo-
rum time” column). L4 implies backups’ performance
because each backup stores consensus requests in local
SSD and then WRITEs a reply to the leader.

Program # Calls Input SSD time Quorum time
ClamAV 30,000 37.0 7.9 µs 10.9 µs
MediaTomb 30,000 140.0 5.0 µs 17.4 µs
Memcached 10,016 38.0 4.9 µs 7.0 µs
MongoDB 10,376 490.6 7.8 µs 9.2 µs
MySQL 10,009 28.8 5.1 µs 7.8 µs
OpenLDAP 10,016 27.3 5.5 µs 6.4 µs
Redis 10,016 40.5 2.8 µs 6.0 µs
SSDB 10,016 47.0 3.0 µs 6.2 µs
Calvin 10,002 128.0 8.7 µs 10.8 µs

Table 3: Leader’s input consensus events per 10K requests, 8
threads. The “# Calls” column means the number of socket
calls that went through APUS input consensus; “Input”
means average bytes of a server’s inputs received in these
calls; “SSD time” means the average time spent on storing
these calls to stable storage; and “Quorum time” means the
average time spent on waiting quorum.

By adding the last two columns in Table 3, APUS con-
sensus latency took 8.8∼22.4 µs. This small consensus

latency makes it achieve a low overhead of 4.3% on re-
sponse time in Figure 9. Figure 7 and Table 3 also in-
dicate that APUS had a low overhead of on programs’
response time.

7.5 Checkpoint and Recovery
We ran same performance benchmark as in §7.4 and
measured programs’ checkpoint timecost. Each program
checkpoint operation (§5.2) costs 0.12s to 11.6s depend-
ing on the amount of modified memory and files since
a program’s last checkpoint. ClamAV incurred the largest
checkpoint time (11.6s) because it loaded and scanned
files in the /lib directory. Checkpoints did not affect
APUS performance in normal case because they were
done on only one backup. Leader and other backups still
formed majority and reached consensus rapidly.

To evaluate APUS’s PAXOS robustness, we ran APUS
with Redis with three replicas. We manually killed one
backup and then modified another backup’s code to drop
all its consensus reply messages. We did not observe a
performance change, as other seven replicas still reach
consensus. We then manually killed the APUS leader and
measured Redis throughput on the leader election ap-
proach (§4.4). APUS’s default heartbeat period was 100
ms, and its three-round leader election took only 10.7 µs.
Redis throughput is shown in Figure 10. After a new
leader was elected, Redis throughput went up slightly
because there were only two replicas left.

8 Related Work

Software-based consensus. There exist various PAXOS
algorithms [60, 54, 53, 79, 66] and implementations [27,
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Figure 9: APUS response time compared to server programs’ unreplicated executions.
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Figure 10: Redis throughput on APUS leader election.

60, 25, 31]. PAXOS is notoriously difficult to be fast and
scalable [63, 48, 38], so server programs carry a weaker
asynchronous replication approach (e.g., Redis [76]).
Consensus is essential in datacenters [83, 41, 5] and
worldwide distributed systems [29, 57], so much work is
done to improve PAXOS’s input commutativity [66, 58],
understandability [68, 54], and verification [82, 39].
PAXOS is extended to tolerate byzantine faults [24, 61,
18, 26, 51, 59, 17, 16] and hardware faults [19].

Three SMR systems, Eve [49], Rex [40], and
CRANE [31], use traditional PAXOS protocols to im-
prove the availability of server programs with modest
overhead. None of these systems has evaluated their re-
sponse time overhead on key-value servers, which are ex-
tremely sensitive on latency. APUS is the first SMR sys-
tem that achieves low overhead on both response time
and throughput on real-world key-value servers.
Hardware- or Network- assisted consensus. Recent
systems [44, 33, 43, 74, 56] leverage augmented network
hardware or topology to improve PAXOS consensus la-
tency. Three systems [44, 33, 43] implement consensus
protocols in hardware devices (e.g., switches). “Consen-
sus in a Box” [44] implemented ZooKeeper’s protocol in
FPGA. These systems reported similar performance as

DARE and they are suitable to maintain compact meta-
data (e.g., leader election). Prior work [56] pointed out
that these systems’ programmable hardware are not suit-
able to store large amount of replicated states (e.g., server
programs’ continuously arriving inputs).

Speculative Paxos [74] and NOPaxos [56] use the dat-
acenter topology to order requests, so they can eliminate
consensus rounds if packets are not reordered or lost. If
packets are lost or reordered, they invoke consensus to
rescue. These two systems are not designed for scala-
bility because when the number of concurrent requests
or replicas increase, the probability of reordered or lost
packets will increase [34, 55, 14]. Moreover, these two
systems’ consensus modules are TCP/UDP-based and in-
cur high consensus latency, which APUS can help.
RDMA-based systems. RDMA techniques have been
implemented in various architectures, including Infini-
band [1], RoCE [3], and iWRAP [4]. RDMA are used
to speed up high performance computing [37], key-value
stores [64, 46, 35, 45], transactional systems [80, 36, 47],
and file systems [81]. For instance, FaRM [35] runs
on RDMA and it provides in a primary-backup repli-
cation [32, 69]. PAXOS provides better availability than
primary-backup. These systems use RDMA to speed up
different aspects, so they are complementary to APUS.

9 Conclusion

We have presented APUS, the first RDMA-based PAXOS
protocol and its runtime system. Evaluation on five con-
sensus protocols and nine widely used programs shows
that APUS is fast, scalable, and deployable. It has the po-
tential to greatly promote the deployments of SMR and
improve the reliability of many real-world programs.

12



References

[1] An Introduction to the InfiniBand Architec-
ture. http://buyya.com/superstorage/
chap42.pdf.

[2] Data Plane Development Kit (DPDK). http://
dpdk.org/.

[3] Mellanox Products: RDMA over Converged Ether-
net (RoCE). http://www.mellanox.com/
page/products_dyn?product_family=
79.

[4] RDMA iWARP. http://www.chelsio.
com/nic/rdma-iwarp/.

[5] Why the data center needs an operating system.
https://cs.stanford.edu/˜matei/
papers/2011/hotcloud_datacenter_
os.pdf.

[6] ZooKeeper. https://zookeeper.apache.
org/.

[7] A tool for measuring memcached server perfor-
mance. https://github.com/twitter/
twemperf, 2004.

[8] clamscan - scan files and directories for
viruses. http://linux.die.net/man/
1/clamscan, 2004.

[9] SysBench: a system performance benchmark.
http://sysbench.sourceforge.net,
2004.

[10] Yahoo! Cloud Serving Benchmark. https://
github.com/brianfrankcooper/YCSB,
2004.

[11] ab - Apache HTTP server benchmarking tool.
http://httpd.apache.org/docs/2.2/
programs/ab.html, 2014.

[12] MediaTomb - Free UPnP MediaServer. http://
mediatomb.cc/, 2014.

[13] MySQL Database. http://www.mysql.
com/, 2014.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture.
In ACM SIGCOMM Computer Communication Re-
view, volume 38, pages 63–74. ACM, 2008.

[15] G. Altekar and I. Stoica. ODR: output-
deterministic replay for multicore debugging. In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP ’09), pages 193–
206, Oct. 2009.

[16] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane,
C. Nita-Rotaru, J. Olsen, and D. Zage. Steward:
Scaling byzantine fault-tolerant replication to wide
area networks. IEEE Transactions on Dependable
and Secure Computing, 7(1):80–93, 2010.

[17] F. Araujo, R. Barbosa, and A. Casimiro. Replica-
tion for dependability on virtualized cloud environ-
ments. In Proceedings of the 10th International
Workshop on Middleware for Grids, Clouds and e-
Science, page 2. ACM, 2012.

[18] B. Balasubramanian and V. K. Garg. Fault toler-
ance in distributed systems using fused state ma-
chines. Distrib. Comput., 2014.

[19] D. Behrens, D. Kuvaiskii, and C. Fetzer. Hard-
paxos: Replication hardened against hardware er-
rors. In Reliable Distributed Systems (SRDS), 2014
IEEE 33rd International Symposium on, Oct 2014.

[20] http://www.sleepycat.com.

[21] A. Bessani, M. Santos, J. a. Felix, N. Neves, and
M. Correia. On the efficiency of durable state ma-
chine replication. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’13), 2013.

[22] C. E. Bezerra, F. Pedone, and R. V. Renesse. Scal-
able state-machine replication. In Proceedings
of the 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,
DSN ’14, 2014.

[23] M. Biely, Z. Milosevic, N. Santos, and A. Schiper.
S-paxos: Offloading the leader for high throughput
state machine replication. In Proceedings of the
2012 IEEE 31st Symposium on Reliable Distributed
Systems, SRDS ’12, 2012.

[24] Y. Brun, G. Edwards, J. Y. Bang, and N. Medvi-
dovic. Smart redundancy for distributed compu-
tation. In Proceedings of the 2011 31st Interna-
tional Conference on Distributed Computing Sys-
tems, ICDCS ’11, 2011.

[25] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
Seventh Symposium on Operating Systems Design
and Implementation (OSDI ’06), pages 335–350,
2006.

[26] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation
(OSDI ’99), Oct. 1999.

13

http://buyya.com/superstorage/chap42.pdf
http://buyya.com/superstorage/chap42.pdf
http://dpdk.org/
http://dpdk.org/
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.chelsio.com/nic/rdma-iwarp/
http://www.chelsio.com/nic/rdma-iwarp/
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://github.com/twitter/twemperf
https://github.com/twitter/twemperf
http://linux.die.net/man/1/clamscan
http://linux.die.net/man/1/clamscan
http://sysbench.sourceforge.net
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://mediatomb.cc/
http://mediatomb.cc/
http://www.mysql.com/
http://www.mysql.com/
http://www.sleepycat.com


[27] T. D. Chandra, R. Griesemer, and J. Redstone.
Paxos made live: An engineering perspective. In
Proceedings of the Twenty-sixth Annual ACM Sym-
posium on Principles of Distributed Computing
(PODC ’07), Aug. 2007.

[28] http://www.clamav.net/.

[29] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig,
Y. Saito, M. Szymaniak, C. Taylor, R. Wang,
and D. Woodford. Spanner: Google’s globally-
distributed database. In Proceedings of the 12th
Symposium on Operating Systems Design and Im-
plementation (OSDI ’16), Oct. 2012.

[30] Criu. http://criu.org, 2015.

[31] H. Cui, R. Gu, C. Liu, and J. Yang. Paxos made
transparent. In Proceedings of the 25th ACM Sym-
posium on Operating Systems Principles (SOSP
’15), Oct. 2015.

[32] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: High
availability via asynchronous virtual machine repli-
cation. In Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation, pages 161–174. San Francisco, 2008.

[33] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
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