SegStereo: Exploiting Semantic Information for
Disparity Estimation
—Supplementary Material

1 DModels

Due to space limitations in the paper, we detail the models involved in our paper,
including SegStereo and ResNetCorr.

1.1 SegStereo

We give structural definition of SegStereo in Tab. 1. Our model resembles ResNet-
50 [6]. It can be divided into three parts: shallow feature extractor, feature aggre-
gator and disparity encoder-decoder. The shallow part is utilized to extract image
features on input stereo images. It subsamples the input images in two stages:
“conv_block1_1” and “max_pooll”, which results in 1/8 scaling to raw images.
The feature aggregator realizes the semantic feature embedding, where semantic
features computed from PSPNet-50 [15] are concatenated with correlated fea-
tures and left transformed features. We further utilize disparity encoder-decoder
to regress final disparity map.

In Tab. 1, “conv_block” denotes the convolutional block, where a convo-
lutional layer is followed by batch normalization(BN) and ReLU activation.
“Res_block” denotes the residual block designed by [6]. The attributes of “res_block”
describe the key convolutional layer in residual block. Several convolutional lay-
ers in disparity encoder adopt dilated pattern [3] to integrate larger receptive
field. The deconvolutional block in disparity decoder is composed of deconvolu-
tional layer, BN layer and ReLU layer.

1.2 ResNetCorr

We introduce ResNetCorr model as a baseline that excludes semantic informa-
tion. Compared to SegStereo, the feature aggregator excludes semantic features
as shown in Tab 2. In addition, semantic feature warping does not appear in
ResNetCorr.

2 Segmentation Branch

We give a more detailed description to segmentation branch in SegStereo, in-
cluding semantic feature warping and segmentation results on KITTI dataset.

2

G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia

Table 1: Layers in our SegStereo architecture
Layer Attributes Channels I/O Scaling Inputs
1. Shallow Feature Extractor
conv_block1_1 kernel size = 3, stride = 2 3/64 1/2 input stereo images
conv_blockl 2 kernel size = 3, stride = 1 64 / 64 1/2 conv_blockl_1
conv_block1_3 =1 64 /128 1/2 conv_block1 2
max_pool_blockl =2 128 / 128 1/4 conv_block1_3
res_block2_1 128 / 256 1/4 max_pool_blockl
res_block2 2 256 / 256 1/4 res_block2_1
res_block2_3 256 / 256 1/4 res_block2_2
res_block3_1 kernel size = 3, stride = 1 512 / 512 1/8 res_block2 3
2. Feature Aggregator
conv_block_pre kernel size = 3, stride = 1 512 / 256 1/8 res_block3_1
PSPNet layers from conv3_2 to conv5_4 [17] 256 / 128 1/8 res_block2_3
corr_1d max displacement = 24, single direction [10] 256 / 25 1/8 res_block pre
conv_trans kernel size = 3, stride = 1 256 / 256 1/8 res_block_pre
concat semantic feature embedding (128 + 256 + 25) / 409 1/8 PSPNet, corr_1d, conv_trans
3.1. Disparity Encoder
res_block3_2 kernel size = 3, stride = 1 409 / 512 1/8 concat
res_block3_3 kernel size = 3, stride = 1 512 / 512 1/8 res_block3_2
res_block3 4 kernel size = 3, stride = 1 512 / 512 1/8 res_block3_3
res_block4_1 kernel size = 3, stride = 1, dilated pattern 512 / 1024 1/8 res_block3_3
res_block4_2 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4_1
res_blockd 3 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4 2
res_block4_4 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4_3
res_block4_5 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4_4
res_blockd 6 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4 5
res_block5_1 kernel size = 3, stride = 1, dilated pattern 1024 / 2048 1/8 res_block4_6
res_block5_2 kernel size = 3, stride = 1, dilated pattern 2048 / 2048 1/8 res_block5_1
res_block5 3 kernel size = 3, stride = 1, dilated pattern 2048 / 2048 1/8 res_block5 2
conv_block5_4 kernel size = 3, stride = 1 2048 / 512 1/8 res_block5_3
3.2. Disparity Decoder
deconv_blockl kernel size = 3, stride = 2 512 / 256 1/4 conv_block5_4
deconv_block2 256 / 128 1/2 deconv_blockl
deconv_block3 128 / 64 1 deconv_block2
disp_conv kernel size = 3, stride = 1 64 /1 1 deconv_block3

2.1 Semantic Feature Warping

We obtain predicted disparity map D from disparity branch and right semantic
feature map F," from segmentation branch. To preserve more semantic informa-
tion, we extract the features at “conv5_4” layer in PSPNet-50 [15], which gets
1/8 spatial size to raw image. As shown in Fig. 1, before semantic warping on
disparity map D, we upsample semantic feature map F," to original size. The
warped feature map is downsampled to 1/8 size to adopt the followed convo-
lutional layer “conv6” in PSPNet-50 [15]. We compute the softmax loss Lgeq

between predicted semantic map and semantic label.

Right
Seg Map
F

-]:—7

DisparityMap: D Cony.
Up-sample Down-sample
Up-sampled Right Up-sampled Warped
Seg Map Warping Seg Map

Predicted Seg Map
Softmax Loss: [,W

P S

Seg Label

Fig. 1: Diagram of semantic feature warping

SegStereo Supplementary Material 3

Table 2: Layers in baseline ResNetCorr architecture

Layer Attributes Channels I/O Scaling Inputs
1. Shallow Feature Extractor
conv_block1_1 kernel size = 3, stride = 2 3/64 1/2 input stereo images
conv_block1_2 kernel size = 3, stride = 1 64 / 64 1/2 conv_blockl_1
conv_block1_3 kernel size = 3, stride = 1 64 /128 1/2 conv_blockl_2
max_pool_block1 kernel size = 3, stride = 2 128 / 128 1/4 conv_block1_3
res_block2_1 kernel size = 3, stride = 1 128 / 256 1/4 max_pool_blockl
res_block2_2 kernel size = 3, stride = 1 256 / 256 1/4 res_block2_1
res_block2_3 kernel size = 3, stride = 1 256 / 256 1/4 res_block2_2
res_block3_1 kernel size = 3, stride = 1 512 / 512 1/8 res_block2_3
2. Feature Aggregator
conv_block_pre kernel size = 3, stride = 1 512 / 256 1/8 res_block3_1
corr_1d max displacement = 24, single direction [10] 256 / 25 1/8 res_block_pre
conv_trans kernel size = 3, stride = 1 256 / 256 1/8 res_block_pre
concat excludes semantic features (256 + 25) /281 1/8 corr_1d, conv_trans

3. Disparity Encoder

res_block3_2 kernel size = 3, stride = 1 409 / 512 1/8 concat
res_block3_3 kernel size = 3, stride = 1 512 / 512 1/8 res_block3_2
res_block3_4 kernel size = 3, stride = 1 512 / 512 1/8 res_block3_3
res_block4_1 kernel size = 3, stride = 1, dilated pattern 512 / 1024 1/8 res_block3_3
res_block4_2 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4_1
res_block4_3 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4_2
res_block4_4 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4_3
res_block4_5 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4_4
res_block4d 6 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res_block4_5
res_block5_1 kernel size = 3, stride = 1, dilated pattern 1024 / 2048 1/8 res_block4_6
res_block5_2 kernel size = 3, stride = 1, dilated pattern 2048 / 2048 1/8 res_block5_1
res_block5_.3 kernel size = 3, stride = 1, dilated pattern 2048 / 2048 1/8 res_block5_2
conv_block5_4 kernel size = 3, stride = 1 2048 / 512 1/8 res_block5_3
4. Disparity Decoder
deconv_block1 kernel size = 3, stride = 2 512 / 256 1/4 conv_block5 4
deconv_block2 kernel size = 3, stride = 2 256 / 128 1/2 deconv_block1
deconv_block3 kernel size = 3, stride = 2 128 / 64 1 deconv_block2
disp_conv kernel size = 3, stride = 1 64 /1 1 deconv_block3

2.2 Segmentation Results

Before we train disparity branch of SegStereo on KITTI set, we finetune the
segmentation sub-network based on the released semantic labels [1]. Fig. 2 shows
several examples predicted by our model, which illustrates that our model is able
to provide consistent semantic estimates. We further submit the segmentation
results of SegStereo to KITTI Pixel-level Semantic Evaluation. The final mean
IoU over 19 classes is 59.10%. We attempt to use disparity predictions to help
semantic estimation, but no obvious improvements are found. We argue that
segmentation tends to fail on boundary and small regions which are also hard
for disparity estimation.

Table 3: Unsupervised SegStereo models trained by softmax loss or pixel-wise
distance. The results are evaluated on KITTI stereo 2015 dataset [11]

Loss Combinations | NocEPE NocDI1| AIEPE AllDI1

photometric + smooth + softmax 1.61 8.95 1.89 10.03
photometric + smooth + pixel-wise distance 1.57 8.95 1.96 10.36

4 G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia

Fig.2: Segmentation examples of KITTI Semantic Benchmark [1]. From top to
bottom: input images, predicted segmentation images and error maps. In error
maps, red color indicates wrong label and category. Yellow color denotes the
wrong label but the correct category. Green color represents correct label

3 Disparity Results

3.1 Unsupervised SegStereo Trained by Pixel-wise Distance

We also try the pixel-wise euclidean loss between referenced feature maps Fs"

and warped feature maps F,' in segmentation branch. With the constraints mea-
sured by pixel-wise distance, our model gets rid of the dependance on semantic
labels, which makes a purely unsupervised precedure. In Table 3, compared to
original model trained with softmax loss, the model trained with pixel-wise dis-
tance achieves similar accuracy on non-occluded regions, which demonstrates
usefulness of pixel-wise regularization. For the overall slightly lower accuracy on
all regions, it is because pixel-wise distance on occluded areas cannot provide
correct constraints owing to lack of corresponding pixels.

3.2 KITTI Stereo 2012 Results

In Tab. 4, we compare SegStereo to other methods on KITTT Stereo 2012 bench-
mark [4]. It can be found that our method outperforms other methods except
for PSMNet [2].

3.3 Qualitative results

More Qualitative results are shown in Fig. 3 and Fig. 4. There results are di-
rectly grabbed on KITTI benchmark website. Our SegStereo model reaches ad-
vanced performance with the guidance of semantic information. We provide a
video “seg_stereo.mp4” that shows predictions of SegStereo on raw KITTI and
CityScapes sequences.

SegStereo Supplementary Material 5

Table 4: Compare to other disparity estimation methods on the test set of 2012
dataset [4]. Our method achieves state-of-the-art results on this benchmark

> 3 pixels > 4 pixels > 5 pixels Mean Error |[Runtime

Noc All | Noc All | Noc All | Noc All (s)
L-ResMatch [13] | 227 340 1.76 267 | 1.50 226 |0.7 px 1.0 px| 48
PBCP [12] 236 3.45 | 1.88 2.74| 1.62 2.32 |0.7px 0.9 px 68
Displets v2 [7] 237 3.09 | 197 252 | 1.72 217 |0.7px 0.8 px| 265
MC-CNN-arct [14]| 2.43 3.63 | 1.90 285 | 1.64 239 |0.7px 0.9 px 67
Content-CNN [9] 3.07 4.29 | 239 336 | 2.03 2.82|0.8px 1.0px 0.7
Deep Embed [3] 310 4.24 | 1.73 232| 1.92 268 |09 px 1.1 px 3
DispNetC [10] 411 465 | 2.77 330 | 2.05 239 |09px 1.0px| 0.06
GC-NET [7] 1.77 230 | 1.36 1.77 | 1.12 1.46 [0.6 px 0.7 px 0.9
iResNet [3] 1.71 216 | 1.30 1.63 | 1.06 1.32 |0.5px 0.6 px| 0.12
PSMNet [2] 1.49 1.89| 1.12 1.42| 0.90 1.15|0.5 px 0.6 px| 0.41
SegStereo(Ours)| 1.68 2.03 | 1.25 1.52 | 1.00 1.21 |0.5 px 0.6 px| 0.6

Left
Input Image

L-ResMatch S

PBCP

Displets
v2

MC-CNN =

Content-
CNN

Deep
Embed

DispNetC

GC-NET

Ours

Fig.3: Comparative Qualitative results in the test set of KITTI Stereo
2012 dataset [4]. From top to bottom: left input image, disparity error maps
of different methods. The error maps scale linearly between 0 (black) and >=5
(white) pixels error. Red denotes all occluded pixels. By exploiting semantic
information, our SegStereo model can handle challenging scenarios

6

G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia

Left
Tnput Tmage [

SPS-st

Content-
CNN

MC-CNN

v2

DRR

CRL

Fig. 4: Comparative Qualitative results in the test set of KITTI Stereo
2015 dataset [11]. From top to bottom: left input image, disparity error maps
of different methods. The error maps use the log-color scale, depicting correct
estimates (<3 px or <5% error) in blue and wrong estimates in red color tones.
Dark regions in error images denote the occluded pixels. With the guidance of
semantic consistency, our model is able to predict reliable disparities on difficult
areas, including exposure, shadow, and complex grass. Our SegStereo method
outperforms other first-class approaches

SegStereo Supplementary Material 7

References

10.

11.

12.

13.

14.

15.

. Alhaija, H.A., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Aug-

mented reality meets deep learning for car instance segmentation in urban scenes.
In: BMVC (2017) 3, 4

Chang, J., Chen, Y.: Pyramid stereo matching network. In: CVPR (2018) 4, 5
Chen, Z., Sun, X., Wang, L., Yu, Y., Huang, C.: A deep visual correspondence
embedding model for stereo matching costs. In: ICCV (2015) 1, 5

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: CVPR (2012) 4, 5

Guney, F., Geiger, A.: Displets: Resolving stereo ambiguities using object knowl-
edge. In: CVPR (2015) 5

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 1

Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A.,
Bry, A.: End-to-end learning of geometry and context for deep stereo regression.
In: ICCV (2017) 5

Liang, Z., Feng, Y., Guo, Y., Liu, H., Chen, W., Qiao, L., Z., L., Z., J.: Learning
for disparity estimation through feature constancy. In: CVPR (2018) 5

Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching.
In: CVPR (2016) 5

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: CVPR (2016) 2, 3, 5

Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR, (2015)
3,6

Seki, A., Pollefeys, M.: Patch based confidence prediction for dense disparity map.
In: BMVC (2016) 5

Shaked, A., Wolf, L.: Improved stereo matching with constant highway networks
and reflective confidence learning. In: CVPR (2017) 5

Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network
to compare image patches. JMLR (2016) 5

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
CVPR (2017) 1, 2

