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ABSTRACT
In this paper we study the densest subgraph problem, which plays

a key role in many graph mining applications. The goal of the prob-

lem is to find a subset of nodes that induces a graph with maximum

average degree. The problem has been extensively studied in the

past few decades under a variety of different settings. Several exact

and approximation algorithms were proposed. However, as nor-

mal graph can only model objects with pairwise relationships, the

densest subgraph problem fails in identifying communities under

relationships that involve more than 2 objects, e.g., in a network

connecting authors by publications.

We consider in this work the densest subgraph problem in hyper-

graphs, which generalizes the problem to a wider class of networks

in which edges might have different cardinalities and contain more

than 2 nodes. We present two exact algorithms and a near-linear

time r -approximation algorithm for the problem, where r is the

maximum cardinality of an edge in the hypergraph. We also con-

sider the dynamic version of the problem, in which an adversary

can insert or delete an edge from the hypergraph in each round and

the goal is to maintain efficiently an approximation of the densest

subgraph. We present two dynamic approximation algorithms in

this paper with amortized poly( rϵ logn) update time, for any ϵ > 0.

For the case when there are only insertions, the approximation ratio

we maintain is r (1+ϵ), while for the fully dynamic case, the ratio is

r2(1+ϵ). Extensive experiments are performed on large real datasets

to validate the effectiveness and efficiency of our algorithms.
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1 INTRODUCTION
In many data mining applications [4, 16, 18, 22, 26, 38], it is usually

important to extract a dense subset of nodes from a large graph.

In the Densest Subgraph Problem, we are given a (hyper) graph

∗
This research was partially supported by the Hong Kong RGC under the grants

17200214 and 17217716.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM’17 , November 6–10, 2017, Singapore, Singapore
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00

https://doi.org/10.1145/3132847.3132907

H (V ,E) (where E ⊆ 2
V
), and the problem is to find a subset of

nodes S ⊆ V such that the density ρ(S) = |E[S]|/|S | is maximized,

where E[S] = {e ∈ E : e ⊆ S} is the set of edges induced by S . In
normal graphs, the problem is equivalent to finding a subgraph

with maximum average degree. In the weighted setting, each e ∈ E
(resp. u ∈ V ) has a non-negative integer weightwe (resp.wu ), and

the density of S ⊆ V is defined as the ratio between the total edge

weightsw(E[S]) and the total node weightsw(S).
The Densest Subgraph Problem has enormous applications to a

wide variety of problems, ranging from community detection [27,

32, 36], expert team formation [12] to computational biology [6,

21, 34]. As one of the most fundamental problems in graph min-

ing, the problem has been extensively studied for decades. One of

the first to study the problem was Goldberg [23], who provided

a polynomial-time algorithm for the problem using O(logn) max-

flow computations, where n = |V |. While Goldberg’s algorithm

gives an exact solution for the problem by an elegant reduction

to max-flow computations, a more popular algorithm is the linear

time 2-approximation algorithm by Charikar [15]. By iteratively

removing nodes with minimum degree and returning the inter-

mediate subgraph with maximum density, Charikar’s algorithm

computes a 2-approximation of the densest subgraph in O(m) time,

wherem = |E |. An alternative exact-solution algorithm based on LP

was also proposed in [15], in which the Densest Subgraph Problem
is formulated as an LP with O(m + n) variables and the densest

subgraph is induced by the nodes with non-zero variables in the

optimal LP solution.

1.1 Densest Subset in Hypergraphs
Despite the enormous results on the Densest Subgraph Problem in

normal graphs, traditional model fails in extracting communities

that are bound together by relationships that involve more than

2 parties. In many applications, the set of objects (nodes) under

consideration are connected by relationships (hyperedges) that

involve more than 2 objects. In this case it is inaccurate to describe

the relationships between objects using normal edges. It is hence

natural to consider the Densest Subgraph Problem in hypergraphs.

For example, in the DBLP network, each node represents an au-

thor and each edge represents a publication. Since it often happens

that a publication is written by more than 2 authors, the network

can only be modeled by hypergraphs. Given the hypergraph, the

goal of the Densest Subgraph Problem is to identify a group of re-

searchers S such that the average number of collaborations within S
is maximized. It is also natural to consider the weighted case since it

is obvious that the impacts, e.g., number of citations, of publications

can be quite different, and one may wish to look for a group of

researchers with maximum “research impact” density. Compared

https://doi.org/10.1145/3132847.3132907


with existing solutions [19, 37], which model the problem using a

“co-authorship” normal graph, our modeling using hypergraph is

undoubtedly more accurate, as the co-author relationship favors

publications with many authors, which is counter-intuitive.

Other applications of the problem in hypergraphs include event

detection on Twitter, where each tweet can involve many tags,

and collusion detection in Bitcoin transactions [31], where each

transaction may involve multiple parties. Recently, the problem has

found applications in the spectral analysis of hypergraphs [14, 29].

Surprisingly, while the problem is very natural and has a wide

range of applications in theory and data mining, it is not well-

studied before. A special case of the problem on unweighted r -
uniform hypergraphs (in which we have |e | = r for all e ∈ E) was
recently studied by Tsourakakis [37], who introduced the r -clique
Densest Subgraph Problem, for r = O(1). Given an unweighted

normal graph and an integer r , they considered the problem of

finding a subset of nodes S such that the average number of r -
cliques induced by S is maximized. It is easy to observe that their

problem is a special case of the Densest Subgraph Problem in

r -uniform hypergraphs by simply replacing each r -clique in the

graph with a hyperedge (of cardinality r ). The problem was later

considered by Mitzenmacher et al. [33], who proposed randomized

approximation algorithms with better space and time complexities.

1.2 Dynamic Setting
In the aforementioned applications, e.g., DBLP, Twitter and Bitcoin

transactions, the hypergraphs are inherently dynamic, e.g., new

publications appear in the DBLP graph almost everyday.

It is assumed in the dynamic setting that every update comes

online and can either insert an edge to, or remove an existing edge

from the graph [5, 11, 19, 35]. The dynamic Densest Subgraph
Problem aims at maintaining an (approximate) densest subgraph

under edge insertions and deletions. As the first work to study the

efficient maintenance of dense subgraphs in the dynamic setting,

Angel et al. [5] analyzed the magnitude of change each single edge

weight update can cause in an edge-weighted graph and proposed

an algorithm under streaming edge weight updates.

TheDensest Subgraph Problem in the streaming model was later

considered by Bahmani et al. [7]. Their algorithm makesO( 1ϵ logn)
passes over the input, for any ϵ > 0, and outputs a subgraph whose

density is guaranteed to be within a factor (2 + ϵ) of the optimum.

Similar to Charikar’s approximation algorithm, their algorithm

iteratively removes the nodes with small degrees. However, instead

of removing one node at a time, their algorithm fixes a threshold β
and removes nodes with degree smaller than β in each iteration.

Although Bahmani et al.’s algorithm is neither faster nor simpler

than Charikar’s, it makes limited passes over the input and can be

adapted to support updates of edges in the dynamic setting [11, 19].

The dynamic maintenance of approximate densest subgraph

under edge insertions and deletions has recently drawn much atten-

tion. Epasto et al. [19] considered the problem where insertions are

adversarial and deletions are random: the edge to be deleted is cho-

sen uniformly at random from all existing edges. Based on Bahmani

et al.’s (2 + ϵ)-approximation algorithm [7], they achieved a ran-

domized (2+ϵ)-approximation algorithm that with high probability

handles each update in amortized poly( 1ϵ logn) time, usingO(m+n)

space. The case when deletions are also adversarial was considered

by Bhattacharya et al. [11], who presented a dynamic algorithm that

maintains a (4+ϵ)-approximation with amortized poly( 1ϵ logn) up-

date time andO(n · poly( 1ϵ logn)) space. Following [11, 19], several
other dynamic algorithms for the problem were proposed. McGre-

gor et al. [30], Esfandiari et al. [20] and Mitzenmacher et al. [33]

presented semi-streaming algorithms for the problem that main-

tain a (1+ ϵ)-approximation usingO(n · poly( 1ϵ logn)) space. Their

algorithms process each update also in poly( 1ϵ logn) time, but the

query-time can be as large as Ω(n · poly( 1ϵ logn)).
However, all the aforementioned results focus on normal graph.

As far as we know, we are the first to consider the dynamic mainte-

nance of approximate densest subgraphs in hypergraphs.

1.3 Our Results
We use r = maxe ∈E {|e |} to denote the maximum cardinality of a

hyperedge and defineM :=
∑
e ∈E |e | ≤ rm. We give two algorithms

for computing the exact solution for theDensest Subgraph Problem
in hypergraphs, which generalize the existing algorithms [15, 23,

37]. Both of our algorithms can be applied to the case when both

nodes and edges have non-negative integer weights.

Theorem 1.1. Given a weighted hypergraphH (V ,E) with n = |V |

nodes and m = |E | edges, the Densest Subgraph Problem can be
solved by either using O(logW ) computations of max-flow in a flow
network with O(M) edges, whereW is the total weight of nodes and
edges, or solving a linear program withO(m +n) variables andO(M)

constraints.

Our flow-based algorithm generalizes the result of [37], which

works only for unweighted r -uniform hypergraph. In addition,

we provide an LP-based solution for hypergraphs that extends

Charikar’s LP-based solution [15] for normal graphs, and a simple

r -approximation algorithm (in Section 2.3) that runs in Õ(M) time.

We then consider the dynamic version of the problem, in which

both the nodes and the edges have unit-weight. We first show that

Bahmani et al.’s algorithm [7], which is the basis of most existing

dynamic algorithms for normal graphs, can be extended to hyper-

graphs (Section 3.1). Built on top of that, we develop two dynamic

algorithms for the maintenance of approximate densest subgraphs

in hypergraphs with amortized poly( rϵ logn) update time.

Theorem 1.2. There exists a dynamic algorithm for the Densest
Subgraph Problem in unweighted hypergraphs that maintains an
r (1 + ϵ)-approximation under arbitrary edge insertions using O(n)
extra space, in amortized poly( rϵ logn) time per update.

Theorem 1.3. There exists a dynamic algorithm for the Densest
Subgraph Problem in unweighted hypergraphs that maintains an
r2(1+ϵ)-approximation under arbitrary edge insertions and deletions
using O(rm · poly( 1ϵ logn)) extra space, in amortized poly( rϵ logn)
time per update.

It is worth mentioning that all our algorithms and analysis do

not depend on mine ∈E {|e |} ≥ 2, which means that self-loops, e.g.,

single-author publications, are allowed in the hypergraphs. More-

over, our dynamic algorithms can be applied to multi-graphs and

hence both Theorems 1.2 and 1.3 hold for hypergraphs with integer

edge weights that are bounded by poly( rϵ logn). We doubt that



better results could be obtained for general edge weights since the

densest subgraph could change dramatically when an edge with

very large weight is inserted or deleted.

Experimental Evaluation.We evaluate our exact and approxima-

tion algorithms on several real-world networks. Our experimental

results show that our exact-solution algorithm runs efficiently, and

returns a subset of nodes with a much larger density than the solu-

tion returned by existing result [19], which replaces hyperedges by

complete graphs in a normal graph. Moreover, our approximation

algorithm runs several times faster than the exact algorithm, and

returns a solution with density very close to the optimum.

We perform an extensive evaluation of our dynamic algorithms

on dynamic real-world datasets. As in [19], we adopt a sliding win-

dow model on the hypergraphs, where hyperedges are added to the

graph by the time they are created, e.g., by the time when publica-

tions are accepted, while least recent hyperedges are removed. Our

experimental results show that we are able to maintain a dense sub-

graph within hundreds of microseconds per update on large graphs.

Moreover, as the first to implement the fully-dynamic maintenance

algorithm for densest subgraph on hypergraphs, compared to [19]

(which supports only random deletions), our maintained solution

has a higher density, and is more stable.

1.4 Other Related Work
When there is a size constraint on the subgraph, i.e., computing a

densest subgraph on k nodes, the problem is known as the Densest-
k-Subgraph Problem. In contrast to the Densest Subgraph Problem,

the Densest-k-Subgraph Problem turns out to be much harder. It

was proved in [25] that the problem does not admit any PTAS un-

less NP⊆ ∩ϵ>0 BPTIME(2
nϵ

). The current best approximation ratio

for the problem is O(n
1

4 ) by Bhaskara et al. [9] while there is evi-

dence showing that approximating the problem within ratio no(1)

might be harder than Unique Games or Small Set Expansion [10].

Following [9], the Densest-k-Subgraph Problem was extended to

hypergraphs very recently by [17], in which an O(n0.697831+ϵ )-
approximation algorithm was presented. Independent from our

work, they also considered the static Densest Subgraph Problem
in hypergraphs and proposed similar algorithms. Other generaliza-

tions of the problem that aim at finding at most k subgraphs have

also been considered [8, 39].

2 STATIC ALGORITHMS
We consider in this section the Densest Subgraph Problem in

weighted hypergraphs H (V ,E), i.e., each u ∈ V (resp. e ∈ E) has a
non-negative integer weightwu (resp.we ).

Notations. We denote n = |V |,m = |E |, and r = maxe ∈E |e |. Let
M =

∑
e ∈E |e |. We can assume that there are no isolated nodes,

and hence n ≤ M ≤ rm. Note that O(M) is the input size. For all

u ∈ V , we let Eu = {e ∈ E : u ∈ e} be the set of adjacent edges and
Eu [S] = {e ∈ E : u ∈ e ⊆ S} be the set of edges adjacent to u that

are induced by vertex subset S ⊆ V . For all F ⊆ E (resp. S ⊆ V ),
we denote by w(F ) =

∑
e ∈F we (resp. w(S) =

∑
u ∈S wu ) the total

weight of F (resp. S). From now on, we use S∗ to denote a set of

nodes that induces the maximum density: ρ(S∗) = maxS ⊆V ρ(S).

Observe that ρ(S∗) ≥
w (E)
w (V )

. For an integer k ≥ 1, we use [k] to

denote {1, 2, . . . ,k}.

2.1 Max-Flow-Based Exact Algorithm
We use binary search to find the maximum density. For each candi-

date value
w (E)
w (V )

≤ β ≤ w(E), we define a flow network Gβ , which

is a directed graph whose edges have capacities, and has source s
and sink t . The set of nodes inGβ is {s, t} ∪V ∪ E. The set of edges
in Gβ contains the following (as shown in Figure 1):

For all u ∈ V , there is an edge from s to u with capacity c(s,u) =
δu =

∑
e ∈Eu

we
|e | and an edge from u to t of capacity c(u, t) = βwu .

For all e ∈ E and u ∈ e , there is an edge from u to e with capacity

c(u, e) = we
|e | and an edge from e to u of capacity c(e,u) = ∞. Note

t

s

u

v

x

e = {u,v,x}

δv
δu

δx

βwu

βwv

βwx we/|e|

∞

V E

Figure 1: Auxiliary Graph Gβ

that Gβ hasm + n + 2 nodes, O(M) edges and can be constructed

in O(M) time.

Lemma 2.1. The maximum flow from s to t inGβ is less thanw(E)
if and only if ρ(S∗) > β .

Proof. Note that we always have max-flow(s, t) ≤ w(E) since
there is an st-cut ({s}, {t} ∪ V ∪ E) of capacity

∑
u ∈V δu = w(E).

Now suppose we compute the max-flow from s to t in Gβ and

find a minimum st-cut as ({s} ∪ V1 ∪ E1, {t} ∪ V2 ∪ E2), where
V2 = V \V1,E2 = E\E1, then we have (where cut(A,B) is the total
capacities of edges from A to B):

max-flow(s, t ;Gβ ) = cut({s} ∪V1 ∪ E1, {t} ∪V2 ∪ E2)
=
∑
u ∈V2

δu +
∑
u ∈V1

βwu + cut(V1,E2) + cut(E1,V2).
First, observe that cut(E1,V2) = 0, since otherwise cut(E1,V2) =

∞; this implies that any edge e intersecting V2 cannot be in E1. On
the other hand, since ({s} ∪V1 ∪ E1, {t} ∪V2 ∪ E2) is a minimum

st-cut, if there is an edge e ⊆ V1 such that e ∈ E2, then we can

strictly reduce the cut by moving e from E2 to E1. Hence, we have
shown that E1 = E[V1] and E2 = E\E[V1] and have the following:

max-flow(s, t ;Gβ )

=
∑
u ∈V

δu −
∑
u ∈V1

δu + βw(V1) + cut(V1,E\E[V1])

=w(E) − (cut(V1,E) − βw(V1) − cut(V1,E\E[V1]))

=w(E) − (cut(V1,E[V1]) − βw(V1))

=w(E) −w(V1)(ρ(V1) − β).

Hence, if the max-flow is less thanw(E), then ρ(S∗) ≥ ρ(V1) > β .
Conversely, if there is some V1 ⊆ V such that ρ(V1) > β , then

by taking V2 := V \ V1, E1 := E[V1] and E2 := E \ E1, the cut

({s}∪V1∪E1, {t}∪V2∪E2) has capacityw(E)−w(V1) · (ρ(V1)−β) <
w(E), which implies that the max-flow is strictly less thanw(E). �



Combing the above argument with a standard binary search on

β , Algorithm 1 solves the Densest Subgraph Problem in weighted

hypergraphs using O(logW ) max-flow computations, whereW :=

w(V ) +w(E).

Algorithm 1Weighted-densest-subgraph(H (V ,E)):

1: lower := w (E)
w (V )

, upper := w(E), S∗ := V .

2: while upper − lower ≥ 1

(w (V ))2
do

3: β :=
upper+lower

2
.

4: if max-flow(s, t ;Gβ ) =cut(Sβ ,Tβ ) < w(E) then
5: lower := β , S∗ := Sβ ∩V . ◃ S∗ keeps a candidate

solution: ρ(S∗) > β
6: else
7: upper := β . ◃ ∀S ⊆ V , ρ(S) ≤ β

8: return S∗.

For any two subsets of nodes S1 and S2, if ρ(S1) , ρ(S2), then
we have |ρ(S1) − ρ(S2)| ≥

1

w (S1)·w (S2)
≥ 1

(w (V ))2
. Hence, the above

binary search terminates in log((w(V ))2 ·(w(E)− w (E)
w (V )

)) = O(logW )

iterations. In each iteration with a fixed β , by Lemma 2.1, we can

either find a subgraph with density strictly larger than β , or make

sure that no subgraph has density larger than β by computing

max-flow(s, t ;Gβ ) in Gβ , which contains O(rm) edges. Hence, we

can solve the Densest Subgraph Problem in weighted hypergraphs

using O(logW ) computations of max-flow on a flow network with

O(rm) edges. We have shown the part of Theorem 1.1 concerning

the max-flow-based exact algorithm.

2.2 LP-Based Exact Algorithm
In this section, we use an LP similar to [15] to give an exact algo-

rithm to find a densest subgraph in a weighted hypergraph. We in-

troduce a variableyu ∈ [0, 1] for eachu ∈ V and variable xe ∈ [0, 1]

for each e ∈ E in the following LP.

max

∑
e ∈E wexe

s.t. xe ≤ yu , ∀u ∈ e∑
u ∈V wuyu = 1,

xe ,yu ≥ 0, ∀e ∈ E,u ∈ V .

The interpretation is that for some candidate subset S , we can
define a feasible solution zS = (yS ,xS ) such that ySu =

1

w (S ) if

u ∈ S and ySu = 0 otherwise. Moreover, xSe =
1

w (S ) if e ∈ E[S] and

0 otherwise. Note that zS is a feasible solution for the above LP,

and the density ρ(S) =
∑
e ∈E wex

S
e . By adopting a similar proof

strategy as in [8, Lemma 4.1], we obtain the following lemma.

Lemma 2.2. Given any optimal solution z∗ = (y∗,x∗) for the above
LP, P = {u ∈ V : y∗u > 0} induces a graph with maximum density.

Proof. First notice that given variables yu , the objective is max-

imized when xe = minu ∈e yu for all e ∈ E sincewe ≥ 0. As noted

above, for any S ⊆ V , we can derive a feasible solution zS = (yS ,xS ),
whose objective value is ρ(S). Let LP∗ = LP(z∗) be the optimal value

of the LP, then for all S ⊆ V we have

LP
∗ ≥ LP(zS ) =

∑
e ∈E[S ]

we
1

w(S)
= ρ(S). (1)

Let P ⊆ V be the nodes v such that y∗v > 0. Let a = w(P) and
b = minu ∈P y

∗
u . Note that ab ≤

∑
u ∈P wuy

∗
u = 1. Then we have

z∗ = abzP + (1 − ab )̂z, where

ẑ = (x̂ , ŷ), ŷu = max{0,
y∗u − b

1 − ab
}, x̂e = max{0,

x∗e − b

1 − ab
}.

Note that ẑ is feasible since x̂e = minu ∈e ŷu and

∑
u ∈V wuŷu =∑

u∈P wuy∗
u−ab

1−ab = 1.

Because the objective value is linear and the optimal solution is

a convex combination of feasible solutions zS and ẑ, it follows that
LP

∗ = LP(z∗) = LP(̂z) = LP(zP ) = ρ(P), which combined with (1)

implies that ρ(P) ≥ maxS ⊆V ρ(S). �

2.3 Near Linear-Time r -Approximation
Consider any node u ∈ S∗. Since ρ(S∗) = maxS ⊆V ρ(S), we have
w (Eu [S∗])

wu
≥ ρ(S∗), as otherwise ρ(S∗\{u}) = w (E[S∗])−w (Eu [S∗])

w (S∗)−wu
>

ρ(S∗) is a contradiction. Hence, similar to the idea of removing the

node with minimum degree in an unweighted normal graph [15],

we iteratively remove the node with minimum value of
w (Eu [S ])

wu
,

where S is the set of remaining nodes. We show that at the point

when a node u ∈ S∗ is removed as the minimum degree node, the

current graph must have a density within a factor r of the optimum.

Algorithm 2 Approx-densest-subgraph(H (V ,E)):

1: S1 := V .

2: for i = 1, 2, . . . ,n − 1 do
3: ui := argminu ∈Si

w (Eu [Si ])
wu

.

4: Si+1 := Si\{ui }.

5: return argmaxi ∈[n] ρ(Si ).

Lemma 2.3. Algorithm 2 returns an r -approximate densest sub-
graph in O(M logn) time.

Proof. Consider the iteration such that S∗ ⊆ Si while S
∗ * Si+1,

which means ui ∈ S∗. Then, by the above argument we have

ρ(Si ) =
w(E[Si ])

w(Si )
≥

∑
u ∈Si wu

w (Eu [Si ])
wu

rw(Si )
≥

∑
u ∈Si wu

w (Eui [Si ])
wui

rw(Si )

=
w(Eui [S

∗])

rwui
≥

ρ(S∗)

r
.

Since the algorithm returns Si with the maximum density over

all iterations, the approximation ratio follows. Note that we can

organize the set of nodes as a min-heap based on values
w (Eu [S ])

wu
,

where S is the set of nodes that remain. We also keep track of the

total remaining edge weights and node weights. In iteration i we

can compute ρ(Si ) and find a node ui with minimum
w (Eu [Si ])

wu
in

O(1) time.

When an edge e is removed (the first time a node in e is removed),

the values of at most |e | nodes in the remaining set will be affected.

Hence, in total, there will be at most

∑
e ∈E |e | updates to the min-

heap, each of which takesO(logn) time. Therefore, the total running

time of the algorithm is O(n +
∑
e ∈E |e | logn) = O(M logn). �

As we will see from our experimental results (Section 5), the

actual approximation ratio of our algorithm on several large real-

world graphs is very close to 1.



3 INCREMENTAL ALGORITHM
In this section, under the insertion-only (incremental) setting, we

give a dynamic algorithm to maintain an r (1+ϵ)-approximate dens-

est subgraph, with amortized poly( rϵ logn) time per edge insertion.

As argued in Section 1, our algorithm works for unweighted

hypergraphs but can be easily extended to edge-weighted hyper-

graphs with edge weights upper bounded by poly( rϵ logn). From
now on, we assume that the hypergraph under consideration is

unweighted, but might have multiple edges. In the following, Õ
hides the poly( rϵ logn) factor. Define τ := ⌈log

1+ϵ n⌉. In the dy-

namic case, we usem and M to refer to the number of edges and

the total degree in the current graph under consideration.

3.1 Static r (1 + ϵ)-Approximate Algorithm
We first show how to obtain a partitioning of nodes that is similar

to Bahmani et al.’s algorithm [7]. Note that in the unweighted case

we have
m
n ≤ ρ(S∗) ≤ m. We call |Eu [S]| the degree of node u in

the graph induced by S . Note that
∑
u ∈V |Eu | = M . Consider the

following algorithm that fixes a threshold β > 0 and removes nodes

of degree less than β .

Algorithm 3 Find(H (V ,E), β , ϵ):

1: S0 := A0 := V , i := 0.

2: while Si , ∅, Ai , ∅ and i < τ = ⌈log
1+ϵ n⌉ do

3: Ai := {u ∈ Si : |Eu [Si ]| < β}. ◃ nodes of small degree

4: Si+1 := Si\Ai .
5: i := i + 1.
6: return Ŝ := argmaxi≤τ ρ(Si ).

Let the Ai ’s be constructed as above and Aτ = Sτ . Note that

(A0, . . . ,Aτ ) defines a partitioning of nodes into τ+1 = O(log1+ϵ n)
batches and we have Si = A≥i = ∪τj=iAj .

Lemma 3.1. If β > r (1 + ϵ)ρ(Ŝ), then Sτ = ∅; if β ≤ ρ(S∗), then
S∗ ⊆ Sτ , ∅.

Proof. If ρ(Ŝ) <
β

r (1+ϵ ) , then ρ(Si ) <
β

r (1+ϵ ) for all Si , ∅.

For all Si , ∅, we have ρ(Si )|Si | = |E[Si ]| ≥
1

r
∑
u ∈Si |Eu [Si ]| ≥

β
r |Si\Ai | > (1 + ϵ)ρ(Si )|Si+1 |, which implies |Si+1 | <

|Si |
1+ϵ . Hence,

we have |Sτ | <
n

(1+ϵ )τ ≤ 1, which means Sτ = ∅.

As argued in Section 2.3, for all u ∈ S∗, |Eu [S
∗]| ≥ ρ(S∗). Hence

if β ≤ ρ(S∗), then |Eu [Si ]| ≥ β for all i = 0, 1, . . . ,τ − 1, which

means that no node from S∗ will be removed in any iteration. Thus

S∗ ⊆ Sτ , ∅. �

Algorithm 4 Approx-densest(H (V ,E), β0, ϵ):

1: Ŝ := V , β := max{ mrn , β0}. ◃ β0 provides a lower bound
2: while true do ◃ at most O(τ ) iterations
3: S ′ := Find(H , β , ϵ). ◃ Õ(M) time

4: if β ≤ r (1 + ϵ)ρ(S ′) then
5: Ŝ := S ′, β := (1 + ϵ)β .
6: else
7: return Ŝ .

Lemma 3.2. Algorithm 4 returns an r (1 + ϵ)2-approximation Ŝ of
the densest subgraph in O(Mτ 2) = Õ(M) time.

Proof. Define B = { mrn (1 + ϵ)i : i ∈ [2τ ]}. Let β∗ ∈ B be

the minimum such that Sτ = ∅ when Algorithm 3 is run with

β = β∗. Note that when run with β =
β ∗

1+ϵ in Algorithm 3, we have

Sτ , ∅. Let Ŝ be returned by Algorithm 3 when run with β = β∗.

By Lemma 3.1, we have ρ(Ŝ) ≥
β ∗

r (1+ϵ )2 >
ρ(S∗)

r (1+ϵ )2 , which implies a

r (1 + ϵ)2-approximation.

Since Algorithm 3 can be easily implemented in O(Mτ ) time

and Algorithm 4 terminates with O(τ ) calls of Algorithm 3, we

immediately have the lemma. �

Note that in Algorithm 4, in the last call of Find(H , β , ϵ), a par-
titioning of nodes into (A0,A1, . . . ,Aτ ) is constructed such that

Aτ = Sτ = ∅ (by Lemma 3.1).

3.2 Edge Insertion-Only Setting
We show in this section how to maintain an r (1 + ϵ)-approximate

densest subgraph under edge insertion-only setting. Our algorithm

maintains a partition (A0,A1, . . . ,Aτ ) such that Aτ = ∅ and Ai
contains the set of nodes (of degree less than β) that are removed

in the i-th iteration of Algorithm 3. Given such a partition, for all

u ∈ V , let l(u) be the level ofu:u ∈ Al (u) and b(u) = |Eu [Sl (u)]| < β
be the degree of u when it is removed. Let l(e) = minu ∈e l(u) for
all e ∈ E. Note that l(u) (resp. l(e)) is the time when u ∈ V (resp.

e ∈ E) is removed.

The intuition behind the update algorithm is simple: under edge

insertions, the degrees of nodes could only increase and to maintain

the partition, we increase the level of node u if b(u) = |Eu [Sl (u)]| ≥
β after edge insertions. To guarantee the approximation ratio, we

rebuild the partition if Aτ , ∅. We show that we do not need to

rebuild the partition frequently by showing that every time it is

rebuilt, β∗ is increased by a (1 + ϵ) factor.
Let N (u) = ∪e ∈Eu e\{u} be the neighbors of u.

Algorithm 5 Insertion-only-approx-densest(H (V ,E), ϵ):

1: Ŝ := Approx-densest(H , 0, ϵ),
2: let Ai , Si and β be as in the last call of Find(). ◃ Sτ = ∅

3: for each newly inserted edge e do
4: E := E ∪ {e} and update b(u) for all u ∈ e . ◃ O(|e |) time

5: label all nodes in e “bad”.
6: while exists a bad node do
7: pick a bad node u, label u “good” and let l ′(u) := l(u).
8: while b(u) ≥ β and l ′(u) < τ do
9: l ′(u) := l ′(u) + 1,
10: b(u) := |{e ∈ Eu : minv ∈e\{u } l(v) ≥ l ′(u)}|.

11: if l ′(u) > l(u) then
12: for each v ∈ N (u) s.t. l(u) < l(v) ≤ l ′(u) do
13: update b(v), label v “bad”.

14: l(u) := l ′(u).

15: if l(u) = τ then
16: Rebuild: Ŝ := approx-densest(H , β, ϵ),
17: update Ai , Si , β , l() and b().
18: label all nodes “good”.

Proof of Theorem 1.2: Approximation Ratio. As shown in Al-

gorithm 5, we always maintain β = β∗ to be the minimum value



in B such that produces a partition (A0,A1, . . . ,Aτ ) with Aτ = ∅.

Since β∗ is non-decreasing under edge insertions, by Lemma 3.1,

as long as Aτ = ∅, the subset Ŝ we maintain induces an r (1 + ϵ)-
approximation.

UpdateTime.At anymoment, consider the total update timewe

have spent so far. First we upper bound the total running time due

to the rebuild procedure. Since we only rebuild whenAτ , ∅, which

implies β < β∗, after each rebuild, β must be increased by a factor of

(1 + ϵ). Since β < m, the number of rebuilds we have performed so

far is at mostO(log
1+ϵ m) = O( rϵ logn). Hence, the update time due

to the rebuild procedures is Õ(m), by Lemma 3.2. It is easy to check

that the update time isO(|e |)when an edge is inserted andO(|N (u)|)
when l(u) is increased by one. Since l(u) < τ = O(log

1+ϵ n) and∑
u ∈V |N (u)| ≤ r2m, the total update time excluding the rebuild

procedure is O(M + τr2m) = Õ(m). Hence, the overall update time

is upper bounded by Õ(m) and the update time charged to each

update is poly( rϵ logn).
Space Complexity. It is easy to check that in addition to the

input hypergraph, it suffices to maintain l(u) and b(u) for each
node u (which induces Ai and Si ) together with constant number

of variables. Hence, the extra space needed is O(n). �

Remark. We remark that our algorithm can also be extended to

support random deletions as in [19]. The algorithm is the same as

they used: in addition to maintaining the sets Si (and rebuilding

when Sτ , ∅), we further maintain ρ(Ŝ) ≥
β

(1+ϵ )2 (and rebuild it

if this is not true), where Ŝ is our candidate solution that has the

maximum density among Si . To bound the amortized update time,

as argued in [19], we consider two cases depending on the number

of deletions R between two consecutive rebuilds:

• if R ≥ m
poly( rϵ logn) , then we charge the total update time Õ(m) to

the deletions, yielding an amortized poly( rϵ logn) update time;

• otherwise we can show that the density of Ŝ is not decreased a lot
(since the edges to be deleted are chosen uniformly at random),

i.e., after R deletions, ρ ′(Ŝ) >
ρ(Ŝ )
1+ϵ , which guarantees that Ŝ is

still an r (1 + ϵ)4-approximation.

Since our argument follows exactly as shown in [19], we omit

the details in this paper and interested readers can refer to their

original analysis.

4 FULLY DYNAMIC APPROXIMATION
We show in this section how to further extend our algorithms in

Section 3 to support arbitrary edge deletions. The dynamic algo-

rithm we use in this section also maintains a partitioning of nodes

into τ + 1 batches based on their degrees. However, unlike the

insertion-only case, under arbitrary edge insertions and deletions,

l(u) can either increase or decrease and it becomes difficult to main-

tain the partitions exactly. To introduce “flexibility” on maintaining

partitions, we apply the idea of “lazy update”, as used by [11] to the

partitions: for a fixed threshold β , we remove nodes with degree

less than β while keeping nodes with degree at least αβ , for some

α > 1. Since nodes with degree in [β ,αβ) are not guaranteed to be

removed or kept, we obtain a flexibility of partitions. However, as a

consequence of the flexibility, the approximation ratio is enlarged

by a factor of α .

Definition 4.1 ((α , β)-decomposition). An (α , β)-decomposition

(for some α ≥ 1) of H (V ,E) is a sequence of subsets of V such that

Sτ ⊆ Sτ−1 ⊆ . . . ⊆ S1 ⊆ S0 = V and for all i ∈ [τ ],

(1) {u ∈ Si−1 : |Eu [Si−1]| ≥ αβ} ⊆ Si ,
(2) {u ∈ Si−1 : |Eu [Si−1]| < β} ∩ Si = ∅.

Let Ai = Si\Si+1 for all 0 ≤ i ≤ τ − 1 and Aτ = Sτ . Let

Ŝ = argmaxi≤τ ρ(Si ). The following lemma is a generalization

of Lemma 3.1, in which α = 1. The first statements comes directly

from the proof of Lemma 3.1 since nodes with degree less than

β are removed and the second statement follows easily since for

all u ∈ S∗, u would always have degree at least αβ and never be

removed.

Lemma 4.2. If β > r (1 + ϵ)ρ(Ŝ), then Sτ = ∅; if β ≤
ρ(S∗)

α , then
S∗ ⊆ Sτ , ∅.

As before, let β∗ ∈ B = { m
αrn (1+ϵ)

t
: t ∈ [2τ ]} be the minimum

such that Sτ = ∅ in an (α , β∗)-decomposition. By Lemma 4.2, in the

(α , β∗)-decomposition we have ρ(Ŝ) ≥
β ∗

r (1+ϵ )2 >
ρ(S∗)

αr (1+ϵ )2 .

Since |B | = O(log
1+ϵ n), we maintain for every β ∈ B an (α , β)-

decomposition. Suppose the (α , β)-decomposition (and the densi-

ties ρ(S0), ρ(S1), . . . , ρ(Sτ )) are maintained for every β ∈ B, then in

O(τ 2) timewe can find β∗ togetherwith Ŝ in the (α , β∗)-decomposition,

which gives an αr (1 + ϵ)-approximation. Hence, to prove Theo-

rem 1.3, it suffices to showhow tomaintain each (α , β)-decomposition

using Õ(M) extra space in poly( rϵ logn) time, for α = r (1 + 3ϵ).

4.1 Maintaining an (α , β)-Decomposition
Fix β ∈ B, define (as before) l(u) and l(e) as the levels of nodes

and edges in the partitioning (A0,A1, . . . ,Aτ ) defined by the (α , β)-

decomposition. For all i ≤ l(u), let E
(i)
u = Eu [Si ] − Eu [Si+1] be

the hyperedges adjacent to u that are removed at level i . Note

that (E
(0)
u ,E

(1)
u , . . . ,E

(l (u))
u ) defines a partition of Eu , based on the

l(e). For all i ≤ l(u), let bi (u) = |Eu [Si ]|. Note that bi (u) is non-
increasing when i increases and we have bl (u)(u) = |Eu [Sl (u)]| <
αβ for all u < Sτ and bl (u)−1(u) ≥ β for all u < A0.

We maintain for each u ∈ V its level l(u), the partitioning

(E
(0)
u , . . . ,E

(l (u))
u ) of Eu and the degree of u at each level: b0(u), . . .,

bl (u)(u). We further maintain l(e) for every e ∈ E and ρ(Si ) for
each i = 0, 1, . . . ,τ . Since l(e), bi (u), Si and ρ(Si ) can be updated in

constant time whenever constant number of elements in E
(j)
u (for

some j ≤ i) are changed or l(u) is changed by 1, from now on we

only discuss how l(u) and E
(j)
u are maintained while assuming that

other data structures are maintained automatically. Note that for

each node u, the data structure we maintain takes O(|Eu | + l(u))
space, by keeping only identities of the adjacent hyperedges. Hence

in total, it takes

∑
u ∈V O(|Eu | + l(u)) +O(m) +O(τ ) = Õ(M)-space

to maintain one (α , β)-decomposition.

For each update, Algorithm 6 maintains the pre-described data

structures. Algorithm 6 updates the partitioning of each Eu and

guarantees bl (u)(u) < αβ (otherwise increase l(u)) and bl (u)−1(u) >
β (otherwise decrease l(u)). Note that the algorithm executes in

O(|e |) time if neither Promote(u) nor Demote(u) is triggered.
In the Promote(u) sub-routine (Algorithm 7), l(u) is increased

by one. Assume l(u) = t , to maintain the partitioning of Eu , the

partition E
(t )
u if split into two. Since l(e) is possibly also increased



Algorithm 6Maintain-decomposition(H (V ,E)):

1: if insert(e) then ◃ initialize l(e) := minu ∈e l(u)

2: for each u ∈ e , E
(l (e))
u := E

(l (e))
u ∪ {e}.

3: else if delete(e) then
4: for each u ∈ e , E

(l (e))
u := E

(l (e))
u \{e}.

5: for each u ∈ e s.t. l(u) = l(e), label u “bad”.

6: while exists a bad node u do
7: if l(u) < τ and bl (u)(u) ≥ αβ then
8: Promote(u).
9: else if l(u) > 0 and bl (u)−1(u) < β then
10: Demote(u).
11: else
12: label u “good”.

Algorithm 7 Promote(u):

1: t := l(u), l(u) := t + 1, E
(t+1)
u := ∅. ◃ |E

(t )
u | ≥ αβ

2: for each e ∈ E
(t )
u do ◃ O(|E

(t )
u |)-iterations

3: if minv ∈e\{u }{l(v)} ≥ t + 1 then ◃ O(|e |)-time

4: for each v ∈ e do
5: E

(t )
v := E

(t )
v \{e}, E

(t+1)
v := E

(t+1)
v ∪ {e}.

6: if l(v) = t + 1 and v , u then
7: label v “bad”.

Algorithm 8 Demote(u):

1: t := l(u), l(u) := t − 1. ◃ |E
(t )
u | < β

2: for each v ∈ e ∈ E
(t )
u do ◃ O(

∑
e ∈E (t )

u
|e |)-time

3: E
(t )
v := E

(t )
v \{e}, E

(t−1)
v := E

(t−1)
v ∪ {e}.

4: if l(v) = t then
5: label v “bad”.

for e ∈ E
(t )
u , we also need to update the partitioning of Ev , for each

v ∈ e . Note that the whole procedure executes in O(
∑
e ∈E (t )

u
|e |) =

O(r |E
(t )
u |) time. Similarly, Demote(u) (Algorithm 8) decreases l(u) by

one and updates the maintained data structure in O(
∑
e ∈E (t )

u
|e |) =

O(r |E
(t )
u |) time.

As we have argued, as long as an (α , β)-decomposition is main-

tained for each β ∈ B, we are able to maintain an αr (1 + ϵ)-
approximation of densest subgraph in O(τ 2) time. Hence, to prove

Theorem 1.3, it suffices to show that Algorithm 6 executes in amor-

tized poly( rϵ logn) time for α = r (1 + 3ϵ).

Potential Function Analysis. To bound the amortized update

time, we define the potential function depending on l(u) andbi (u) as

P :=
∑
u ∈V P(u)+

∑
e ∈E P(e) ≥ 0, where P(u) :=

∑l (u)−1
i=1 max{0,αβ−

ϵbi (u)} and P(e) := r (τ −l(e)+
| {u ∈e :l (u)=l (e)} |

|e | ). The potential func-

tion increases when edges are inserted or deleted; decreases when

the data structures we maintain are updated. The following lemma

implies Theorem 1.3.

Lemma 4.3. For each computation cost in the update procedure
(Algorithm 6), the potential decreases by at least Ω( ϵr ) while each
edge update increases the potential by at most O(rτ ).

Proof. For notational convenience, in the following, for any set

and variable, we use
′
to denote the new one after Promote(u)/Demote(u).

We first upper bound the increase in potential after each update:

• Insert(e): P′ − P ≤ P ′(e) ≤ rτ .
• Delete(e): P′ − P ≤

∑
u ∈e (P

′(u) − P(u)) ≤ ϵ |e |τ ≤ ϵrτ .

We next lower bound the decrease in potential after each pro-

motion/demotion.

Promote(u): assume l(u) = t , then bt (u) ≥ αβ , l ′(u) = t + 1 and
S ′t+1 = St+1 ∪ {u}. The potential of nodes and edges are changed

as follows.

• Since S ′i = Si for all i ≤ t , we have

P(u) − P ′(u) = −max{0,αβ − ϵbt (u)} ≥ ϵbt (u) − αβ .

• For all v ∈ e ∈ Eu [St ] s.t. l(v) ≥ t + 2,

P(v)−P ′(v) = max{0,αβ−ϵbt+1(v)}−max{0,αβ−ϵb ′t+1(v)} ≥ 0.

• For all other nodes v , P(v) − P ′(v) = 0.

• For all e ∈ Eu [St ] s.t. minv ∈e\{u }{l(v)} ≥ t + 1,

P(e) − P ′(e) ≥ r (l ′(e) − l(e) +
1

|e |
− 1) =

r

|e |
≥ 1.

• For all e ∈ Eu [St ] s.t. minv ∈e\{u }{l(v)} = t ,

P(e) − P ′(e) ≥
r

|e |
≥ 1.

• For all other edges e , P(e) − P ′(e) = 0.

Hence, overall the total potential is decreased by at least P−P′ ≥
ϵbt (u) − αβ + |Eu [St ]| ≥ ϵ |Eu [St ]|. Since each promotion executes

in O(r |E
(t )
u |) = O(r |Eu [St ]|) time, for each computation cost, the

potential is decreased by Ω( ϵr ).

Demote(u): assume l(u) = t , then bt−1(u) < β , l ′(u) = t − 1 and

S ′t = St \{u}. The potential of nodes and edges are changed as

follows.

• Since S ′i = Si for all i ≤ t , we have P(u) − P ′(u) = max{0,αβ −

ϵbt−1(u)} = αβ − ϵbt−1(u).
• For allv ∈ e ∈ Eu [St ] s.t. l(v) ≥ t+1, P(v)−P ′(v) = max{0,αβ−

ϵbt (v)}−max{0,αβ −ϵb ′t (v)} ≥ −ϵ(bt (v)−b
′
t (v)), which means

that the increase in potential of each such nodev is at most ϵ frac-
tion of the number of hyperedges adjacent to v at level t that are
removed due to the demotion ofu. Hence, the total decrease of po-
tential of those nodes is

∑
v ∈e ∈Eu [St ] s.t. l (v)≥t+1 P(v) − P ′(v) ≥

−ϵ
∑
e ∈Eu [St ] |e | ≥ −ϵr |Eu [St ]|.

• For all other nodes v , P(v) − P ′(v) = 0.

• For all e ∈ Eu [St ], P(e) − P ′(e) ≥ r (l ′(e) − l(e) + 1

|e | −
1

|e | ) = −r .

• For all e ∈ E
(t−1)
u , P(e) − P ′(e) ≥ − r

|e | ≥ −r .

• For all other edges e , P(e) − P ′(e) = 0.

Hence, the total potential decrease by (when α = r (1 + 3ϵ))

P − P′ ≥ αβ − ϵbt−1(u) − ϵrbt (u) − r |Eu (St )| − r |E
(t−1)
u |

≥ αβ − (ϵ + ϵr + r )bt−1(u) ≥ ϵ |Eu [St−1]|.

Since each demotion executes in O(r |E
(t )
u |) = O(r |Eu [St−1]|)

time, for each computation cost, the potential is decreased by Ω( ϵr ),
which completes the analysis. �



5 EXPERIMENTS
We conduct an extensive evaluation on real-world and synthetic

graphs to show the effectiveness and efficiency of our algorithms.

Recall that for hypergraphs with bounded edge weight, e.g.,we =

O(1), we can modify our unweighted algorithm to support find-

ing and maintaining densest subgraph on weighted scenarios by

inserting and deleting multiple edges simultaneously.

We first evaluate the effectiveness and efficiency of the solutions

returned by our exact and approximate algorithms. As it is time-

consuming to compute the exact densest subgraph, the comparison

is run on some small size graphs. We also study how different values

of ϵ affect the density of the solution, and the running time of the

algorithm. Then we consider dynamic maintenance of the approxi-

mate densest subgraphs on large graphs, for which recomputing

the approximate solutions for each update is time-consuming.

5.1 Datasets & Experimental setup
Real world Datasets. The datasets are publicly available. We sum-

marize their features in table1.

• DBLP. The DBLP dataset is obtained from [2]. Nodes in the

graph represent authors while hyperedges represent publications.

We use a sliding window spanning five years, i.e., publications

are removed five years after their insertions. To avoid trivial

solutions
1
, we regard publications with the exact same group of

authors as a single hyperedge.

• CiteULike. The Tag-publication network dataset is obtained

from [1]. We construct a hypergraph in which nodes represent

publications and hyperedges represent tags. We insert a hyper-

edge e ⊆ V if in the past three days, the publications in e are

all labeled with the same tag. We remove a hyperedge if it is

inserted three days ago.

• YouTube. This is a social network in which nodes represent

YouTube users [3]. We insert a hyperedge for a group of users if

they all make new friends to the same user in the last three days.

We remove a hyperedge if it is inserted three days ago.

Datasets |V | |E | Time

DBLP 1,159,694 1,778,467 1959-2016

CiteULike 1,038,323 2,411,819 2005-2008

YouTube 3,223,589 9,375,374 2004

Table 1: Properties of the dynamic datasets analyzed, where
Time indicates the period when those edges were inserted.

Synthetic Datasets. As introduced in [24], we generate synthetic

non-uniform evolving hypergraphs with attractiveness. The hyper-

graph is constructed while nodes are inserted. When a constant

number of nodes are inserted, a random hyperedge is formed by

picking a constant number of existing nodes (and all the newly-

inserted nodes), where the probability that an existing node is

chosen is proportional to some power of its current degree.

Observe that the maximum density of the above hypergraph

is always at most 1, which means that trivially the whole graph

is a close-optimal solution. To fix this (and make it denser), at

1
We observe that in the dataset, Sudhakar M. Reddy and Irith Pomeranz co-authored

173 papers, which trivially induced a densest subgraph with density 86.5

each round, we introduce new nodes with probability p, and with

probability 1 − p we add a random hyperedge on existing nodes.

Experimental Setup.The experiments were performed on a single

machine, with Intel(R) Core(TM) i7-6700 CPU at 3.40GHz, 8192 KB

cache size and 64 GB of main memory, running on Ubuntu 14.04

LTS. We run our max-flow based exact-solution algorithm based

on the sub-routine MAXFLOW [13, 40]. All our experiments were

implemented using C++ compiled with g++ and -O4 optimization.

Each run employs a single core of machine while using at most 20%

of the main memory.

5.2 Exact vs Approximation
DBLP Dataset. We include papers from conferences belonging to

the following three research areas to conduct our experiments:

• TCS: STOC, FOCS, SODA, ICALP, ESA, STACS
• ML: ICML, NIPS, IJCAI, AAAI

• DB: SIGMOD, VLDB, ICDE, CIKM

The properties of the resulting data are summarized in Table 2.

Catagory # Author # Paper Avg. Authors Max. Authors

TCS 9074 11991 2.56 15

ML 25526 20606 2.78 25

DB 18863 13420 3.27 36

Table 2: Properties of publications, where Avg. Authors de-
notes the average number of authors per paper andMax. Au-
thor denotes the maximum number of authors in a paper.

The results are shown in Table 3. As it can be observed, the

approximate algorithm runs several times faster than the exact al-

gorithm, and returns solutions with a close-optimal density (much

better than the theoretical guarantee). Moreover, sometimes the ap-

proximate solution has a smaller cardinality than the exact solution.

Method Measure TCS ML DB

Exact |S |/|V |(%) 2.56 0.17 0.38

Density 3.96 2.95 2.66

Time(ms) 196.12 314.59 198.90

ϵ = 0.1 |S |/|V |(%) 7.76 0.10 0.25

Density 3.64 2.16 1.60

Time(ms) 53.57 123.96 82.24

ϵ = 0.5 |S |/|V |(%) 7.76 0.10 0.25

Density 3.64 2.16 1.60

Time(ms) 54.91 121.08 83.05

Table 3: Performance on real datasets

Method Measure TCS ML DB

Ours |S | 232 43 71

|E[S]| 919 127 189

Existing work [19] |S | 288 25 48

|E[S]| 983 4 2

Table 4: Comparison of hyperedge density

Comparison of Effectiveness. In existing work [19]
2
, to solve

the problem on finding a subset of authors with maximum collabo-

ration density, the underlining graph is a normal graph in which

2
We use their code from https://github.com/aepasto/densest-subgraph



edges represent co-authorship. We compare in Table 4 our solu-

tion with theirs, and show that our solution induces a much larger

number of publications per author. As we can see from Table 4, in

some cases, their solutions (which have the highest densities in

the co-authorship network) actually induce very few number of

publications. The reason is, in their model, publications that are not

induced by the returned solution have contributes to the density.

Synthetic Datasets. To generate evolving hypergraph, we start

from an empty graph with ten nodes. We fix an integer parameter

c and let p := c+1
4c . In each round, the number of selected existing

nodes and the number of newly-inserted nodes are chosen uni-

formly at random from [c], independently. We generate datasets for

c ∈ {2, 4} and for n ∈ {1k, 10k}. The results are shown in Table 5,

where each number in the table is the average of the corresponding

data from 10 independent random experiments.

Method Measure (1k, 2) (1k, 4) (10k, 2) (10k, 4)

Exact |S |/|V |(%) 1.25 1.19 0.16 0.13

Density 12.50 25.93 21.50 74.40

Time(ms) 15.06 32.93 279.34 543.12

ϵ = 0.1 |S |/|V |(%) 1.50 0.98 0.13 0.13

Density 9.70 23.51 20.83 74.39

Time(ms) 5.65 6.79 66.23 66.11

ϵ = 0.5 |S |/|V |(%) 7.56 2.07 0.09 0.11

Density 6.31 17.36 17.53 73.26

Time(ms) 4.43 6.21 67.65 66.25

Table 5: Performance on synthetic datasets

As shown in the table, where (10k, 4) meansn = 10, 000 and c = 4,

the approximate algorithm gives high quality results compared to

the optimal solution, and runs much faster than the exact algorithm

(especially when the graph becomes larger).

5.3 Incremental Case
Recall from our theoretical analysis, in Algorithm 4, the number

r is used as a parameter and hence may affect the quality of the

result. While an r -approximation ratio is guaranteed, in practice, a

large r , e.g., r = 20, would lead to trivial solutions, e.g., a single hy-

peredge, especially in the dynamic case. We resolve this by passing

in smaller values of r , e.g., the average degree of the hypergraph,
into Algorithm 4, and evaluate the resulting solutions.

Evolution of the Densest Subgraph. The results are shown in

Figure 2, where we fix ϵ = 0.1. As expected (and similar to the

normal graph case [19]), the density of the approximate solution

increases continuously while its size changes in a stepwise fashion.

(a) DBLP (b) CiteULike (c) YouTube

Figure 2: Evolution of densest subgraph: insertion only.

Efficiency Accuracy Trade-offs.We evaluate how different val-

ues of ϵ affect our approximate solution. In Figure 3, we compare

the maximum density (the density of the approximate solution after

all insertions), average density (of the approximate solution after

each insertion), and the update time, for ϵ ∈ {0.01, 0.1, 0.2, 0.5}.

(a) max. density (b) avg. density (c) avg. update time

Figure 3: Effect of ϵ in the incremental case.

As expected, in general, the update time increases when ϵ gets
small. For ϵ = 0.1, which we choose to run most of our dynamic

algorithms, the update time per update is within a hundred mi-

croseconds for all datasets, which is much faster than running the

static approximation algorithm. Surprisingly, our experimental re-

sults show that the improvement of density is very small for smaller

value of ϵ , which means that it is unnecessary to fix a very small ϵ .

5.4 Fully Dynamic Case
Recall that in the fully-dynamic algorithm, we maintain an (α , β)-
decomposition for each β ∈ B, where |B | = 2τ . Hence the space
and time complexity of the algorithm is much higher than the

incremental algorithm. However, in general we do not need to

maintain that many copies as we know that ρ(S∗) ≤ maxu ∈V |Eu |,
which is usually small in real-world graphs.

Improved Maintenance on Normal Graphs. We first evaluate

our dynamic algorithm on normal graphs under arbitrary inser-

tions and deletions. To the best of our knowledge, we are the first

to implement a fully dynamic algorithm for maintaining densest

subgraphs in evolving graphs. We use the DBLP dataset, which is

also used by Epasto et al. [19]. We compare the density curve of

our approximate solution with theirs (which we denote by “ELS”)

in the following table. Recall that our algorithm supports arbitrary

edge deletions, while theirs supports only random deletions.

Figure 4: Evolution of the densest subgraph: ours vs ELS

As shown in Figure 4, our approximate solution is almost always

better than the solution maintained by ELS
3
. Moreover, compared

to ELS, which rebuilds the solution periodically (when “rebuilds” are

triggered as the maintained solution becomes unacceptably sparse),

our solution is more “stable”, i.e., the density of our solution changes

gradually over the updates of edges. As we can see from the figure,

there is a clear trend of increase in the density, which is consistent

with previous observations [19, 28].

3
Here we plot the density curve with a finer granularity than theirs [19].



Evolution of the Densest Sub-hypergraph. We then evaluate

our algorithm performance on dynamic hypergraphs. We first re-

port the evolution of the densest subgraph in the following figure.

As shown in Figure 5, the approximate solutions change contin-

uously while edges are inserted and deleted from the data sets.

(a) DBLP (b) CiteULike (c) YouTube

Figure 5: Evolution of densest subgraph: fully Dynamic.

Efficiency Accuracy Trade-offs. At last, we evaluate the effect
of ϵ on the density and update time. As the space complexity is

high, we do not perform the experiment with ϵ = 0.01, which has

been shown not very helpful, in the previous experimental results.

(a) avg. density (b) avg. update time

Figure 6: Trade-off between the average update time (in mi-
croseconds) and the density of the subgraph.

As shown in Figure 6, even when the hypergraphs change dra-

matically, our dynamic algorithm maintains the approximate so-

lution efficiently (within 200 microseconds). Unsurprisingly, the

density and update time decrease while ϵ increases. However, simi-

lar to the incremental case, it turns out that compared to the update

time, the density of the solution is less sensitive to the change of ϵ .
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