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Abstract—The Lovász ϑ-function [Lov79] on a graph G =
(V, E) can be defined as the maximum of the sum of the entries
of a positive semidefinite matrix X, whose traceTr(X) equals
1, and Xij = 0 whenever {i, j} ∈ E. This function appears as
a subroutine for many algorithms for graph problems such as
maximum independent set and maximum clique. We apply Arora
and Kale’s primal-dual method for SDP to design an approximate
algorithm for the ϑ-function with an additive error of δ > 0,
which runs in time O(α2n2

δ2 log n · Me), where α = ϑ(G) and
Me = O(n3) is the time for a matrix exponentiation operation.
Moreover, our techniques generalize to theweighted Lovász ϑ-
function, and both the maximum independent set weight and the
maximum clique weight for vertex weighted perfect graphs can
be approximated within a factor of (1+ǫ) in time O(ǫ−2n5 log n).

I. I NTRODUCTION

The Lov́asz ϑ-function [Lov79] on a graphG = (V,E)
can be defined as the maximum of the sum of the en-
tries of ann × n positive semidefinite matrixX, such that
Tr(X) = 1 and Xij = 0 for {i, j} ∈ V , wheren = |V |
and m = |E|. The ϑ-function is a fundamental concept in
graph theory that was first defined by Lovász [Lov79] in 1979
to compute theShannon capacityof the pentagon graphC5.
When the input graph isperfect, theϑ-function coincides with
the maximum independent set sizeα(G) of G. Grötschel,
Lovász, and Schrijver showed in 1988 that theϑ-function
can be computed in polynomial time using the ellipsoid
method [GLS87], thereby obtaining polynomial time algo-
rithms for computing maximum independent sets, maximum
cliques and minimum colorings of perfect graphs. In particular,
the weighted version of Lov́asz ϑ-function is an important
subroutine in computing minimum colorings of perfect graphs.
Despite years of research on perfect graphs and the resolution
of the strong perfect graph conjecture [CRST06], the algorithm
of Grötschel, Lov́asz, and Schrijver (via the computation of the
ϑ-function) is the only algorithm known to compute maximum
independent sets of perfect graphs. The algorithm’s reliance
on semidefinite program solvers implies a prohibitive running
time: a central open question in the theory of perfect graphs
is therefore the development of fast algorithms to compute
maximum independent sets and minimum colorings of perfect
graphs [Sey06].

In this paper, we use the primal-dual framework of Arora
and Kale [AK07] to give fast algorithms to approximate the

ϑ-function of a general graph; this approximation algorithm
will then be sufficient for exact computation of the maximum
independent set sizeα(G) of a perfect graph. For the range
α(G) ≤ o(n3/4), our algorithm is the fastest among existing
methods to approximate the weighted Lovászϑ-function with
constant additive error. The main theorem we prove in this
paper is as follows.

Theorem I.1 Approximating the Lovász ϑ-Function Sup-
pose the Lov́aszϑ-function on a given graphG is α = ϑ(G).
Then, the valueϑ(G) can be approximated within an additive
error of δ > 0 in timeO(α2n2 log n

δ2 ·Me), whereMe = O(n3)
is the time to perform a matrix exponentiation. Settingǫ := δ

α ,
a multiplicative(1+ǫ)-approximation can be obtained in time
O(n2 log n

ǫ2 · Me).

Our techniques generalize to theweighted Lovász ϑ-
Function as well. Hence, we can obtain approximation algo-
rithms for the weighted versions of maximum independent set
and maximum clique.

Corollary I.2 Approximating the Weighted Lov ász ϑ-
Function Given a non-negative weight functionw : V → R+

on the vertices of a perfect graphG = (V,E), the maximum
independent set weight and the maximum clique weight can
be approximated within a multiplicative factor of(1 + ǫ) in
time O(ǫ−2n5 log n).

Our Techniques. Out of the various formulations [GLS87]
of the Lov́asz ϑ-function, we utilize the one for which
Arora and Kale’s primal-dual method [AK07] for semidefinite
programming can be readily applied. The main technical
difficulty here is to design an ORACLE with small width that,
given some “candidate” primal solutionX (feasible or not),
decides whether to improveX and return an appropriate primal
feasible solution, or to return a dual solution that can be used
to improveX. Thus, given candidate primal solutionX, our
ORACLE checks how far it is from feasible by inspecting an
“error” matrix XE . The magnitude of the error is measured
by the Frobenius norm‖XE‖F , and if it is less than some
threshold, then the ORACLE performs a rounding procedure
on X to return a feasible primal solution̂X. Otherwise, the
ORACLE returns a dual solutionY, which is a scaled version
of XE .



A. History of theϑ-Function and Perfect Graphs

The Shannon capacity of a graph [Sha56], is defined as
limn→∞

n

√
α(Gn), whereGn is thestrong productof G with

itself n times1, and α(G) denotes the size of a maximum
independent set inG. In general,

lim
n→∞

n

√
α(Gn) ≥ α(G). (1)

For general graphs, there are no known algorithms (even
exponential time) to compute the Shannon capacity. In a
breakthrough paper [Lov79], Lovász computed the Shannon
capacity ofC5 exactly by introducing theϑ-function. Theϑ-
function of a graph is an upper bound on the Shannon capacity,
but is exact forC5. Further, theϑ-function can be computed in
polynomial time via semi-definite programming (See Knuth’s
paper [Knu94] for a deeper discussion on theϑ-function).
Shannon observed that the class of graphs for which equality
holds in (1) are exactly those graphs for whichα(H) = χ(H)
holds for all induced subgraphsH of G. whereG denotes the
complement graph ofG, andχ(G) is its chromatic number.
While bothχ(G) andα(G) are inapproximable, it was shown
by Lovász thatα(G) ≤ ϑ(G) ≤ χ(G).

Recently, the recognition problem of perfect graphs was
shown to be polynomial time solvable [CCL+05]. Despite
this progress on the understanding of the structural aspects
of perfect graphs, no method faster than that of Grötschel,
Lovász, and Schrijver is known for computing maximum
independent sets or optimal colorings of perfect graphs. A
central open question in the theory of perfect graphs is the
development of fast algorithms for such computations [Sey06].

B. Related work

Primal-Dual Algorithms for Solving Mathematical Pro-
gramming Problems. Many primal-dual algorithms for ap-
proximately solving linear programs have appeared in the
algorithms literature (see the survey paper [Vaz95] by Vazi-
rani). For certain types of linear programs, these primal-
dual algorithms can be faster than general-purpose LP solvers
based on the ellipsoid or interior point methods [Ali95]. Some
of these algorithms are loosely based on the multiplicative
update algorithm associated with the weighted majority algo-
rithm [AHK]. Plotkin, Shmoys and Tardos [PST91] gave the
first such approximation algorithm for linear programming.
The running time of this algorithm depends upon a quantity
known as the width, which is a property of the specific problem
at hand. For problems with sufficiently small width, their
framework can be an improvement over general LP solvers.
For the important special case of packing and covering linear
programs, Garg and K̈onemann [GK98] gave fast approxima-
tion algorithms that were later improved by Koufogiannakis
and Young [KY07].

1For graphsG, H, the strong product graphG × H is defined as follows.
Its vertex set is the cartesian product of the vertex sets ofG and H. The
edges{(u, a), (v, b)} ∈ E(G × H) are all edges such that{u, v} ∈ E(G)
and{a, b} ∈ E(H), or u = v and{a, b} ∈ E(H), or {u, v} ∈ E(G) and
a = b

A few studies have generalized the above primal-dual tech-
niques to solving semidefinite programs. Klein and Lu [KL96]
showed that the framework from [PST91] can be applied to
solve SDP relaxations of Max Cut and Vector Coloring faster
than general SDP solvers based on interior point algorithms.
Arora, Hazan and Kale [AHK04] suggested primal-dual algo-
rithms for solving SDPs related to sparsest cut, and later Arora
and Kale [AK07] presented a framework for solving general
SDPs, on which our algorithm is based.
Approximating the Lov ász ϑ-Function. As noted by Klein
and Lu [KL96], the straightforward approach2 to solve the
SDP takes timeO(

√
nm3), which can beO(n6.5) for dense

graphs. In the same paper [KL96], they used the frame-
work [PST91] by Plotkin et al. to approximate the Vec-
tor Coloring SDP, whose optimal solution is coincides with
the Lov́aszϑ-function on the complement graph in the case
where graph is perfect. To obtain a multiplicative error of
(1 + ǫ) for the ϑ-function on perfect graphs, the running time
using their algorithm isÕ(ǫ−5α3nm),3 whereα = ϑ(G) and
m is the number of edges in the complement graph. Iyengar
et al. [IPS] has improved the time to approximate the Vector
Coloring SDP toÕ(ǫ−1n2m).

It would seem that for perfect graphs, it would be better
to consider the Vector Coloring SDP than the Lovász ϑ-
function. However, in applications like finding the optimal
coloring of perfect graphs [GLS87], the weighted version of
the ϑ-function is used. Unfortunately, there is no straight-
forward method to generalize the Vector Coloring SDP to
the weighted version. Hence, to approximate the weighted
Lovász ϑ-function, our algorithm performs better than the
straightforward approach whenα = o(n3/4).

Iyengar et al. [IPS] considered subgradient methods for
approximating theϑ-function SDP, which runs in time
O(ǫ−2 log3(ǫ−1)n4 log n) in the worst case. However, their
methods can only give nearly feasible solutions due to the
equality trace constraint, and hence their result does not
compare directly with ours.

II. N OTATION AND PRELIMINARIES

Given an undirected graphG = (V,E) of vertex size
n = |V |, let α(G) denote its maximum independent set
size, andχ(G) := χ(G) denote the chromatic number of
its complement graph. All the matrices in this paper are
symmetric and have dimensionsn×n. The sum of the diagonal
entries of a square matrixX is denoted by the traceTr(X).
Given two matricesX andY, let X•Y := Tr(XT

Y), where
X

T is the transpose ofX. We index the rows and the columns
of a matrix with the verticesV of the graphG. The Lov́asz
ϑ-function [Lov79] can be formulated as the solution to a
semidefinite program.

2In Alizadeh’s paper [Ali95], it is stated that the interior point method
for SDP takesO(

√
n) iterations; and Nayakkankuppam and Overton [NO96]

explicitly analyzed the running time of each iteration to beO(m3).
3 We use the notatioñO(·) to suppress logarithmic factors.



Definition II.1 (Lov ász ϑ-Function) Given a graph G =
(V,E), the Lov́aszϑ-functionϑ(G) on G is the optimal value
of the following semidefinite program, together with its dual.

(P) max J • X

I • X = 1
∀{i, j} ∈ E : Eij • X = 0

X � 0

(D) min z
z I +

∑
{i,j}∈E yijEij � J

z, yij ∈ R

Here, the identity matrix is denoted byI, andJ is the matrix
in which every entry is 1. For each edge{i, j} ∈ E, Eij

is the matrix in which both the(i, j)-th and (j, i)-th entries
are 1, and every other entry is 0. For ease of notation, we
sometimes writeY :=

∑
{i,j}∈E yijEij . We say thatX is

a primal solution, and(z,Y) is a dual solution, though not
necessarily feasible.

There are alternative formulations forϑ(G); for example, it
is equivalent to the strict vector chromatic number [KMS98]
of the graph’s complementG. It is well-known that the Lov́asz
ϑ-function satisfies the Sandwich Property:α(G) ≤ ϑ(G) ≤
χ(G); in the case whereG is a perfect graph, both equalities
hold. Recall that a graphG is perfect if for all its induced
subgraphsH, α(H) = χ(H).

Given a matrixX, we denote its operator norm by‖X‖2,
which is also the largest eigenvalue ofX in absolute value.
We denote its Frobenius norm by‖X‖F :=

√∑
ij X2

ij =
√

X • X. The following proposition states some well-known
properties about the mentioned norms.

Proposition II.2 SupposeX and Y are square matrices.
(a) Cauchy-Schwarz Inequality. We haveX • Y ≤
‖X‖F ‖Y‖F . If there existsκ ≥ 0 such thatY = κX,
then equality holds.

(b) We have‖X‖2 ≤ ‖X‖F .

III. A RORA AND KALE ’ S PRIMAL -DUAL METHOD

We describe how we apply Arora and Kale’s frame-
work4 [AK07] to approximate the SDP stated inDefinition II.1
with arbitrarily small additive errorδ > 0. The algorithm uses
binary search, and given a candidate valueα, each binary step
either produces a primal feasible solutionX with value at least
α (thereby producing a lower bound for the optimal value) or
a dual feasible solution(z,Y :=

∑
{i,j}∈E yijEij) with value

at mostα+δ (and hence giving an upper bound for the optimal
value). We next describe how this step is performed for a fixed
α.

4Arora and Kale described a framework that works for the type ofSDPs
in which the primal has inequality constraints, and the dual has non-negative
variables. However, it is straight forward to apply the same argument and
technique to an SDP in which the primal has equality constraints and the
dual has unrestricted variables.

ORACLE with width ρ. Arora and Kale’s method requires an
auxiliary algorithm known as the ORACLE, whose specifica-
tion in our case is as follows. GivenW � 0,5 the ORACLE

either (1) produces a primal feasible solutionX̂ with value at
leastα; or (2) produces a dual solution(z,Y) (not necessarily
feasible) such thatW • (z I + Y − J) ≥ 0, andz = α.6 The
ORACLE is said to havewidth ρ if any dual solution(z,Y)
that it produces satisfies‖z I + Y − J‖2 ≤ ρ. The width ρ
depends on the current tested valueα, and we sometimes use
the subscriptρα to make this dependence explicit. The details
of the ORACLE are given inSection V.

Primal-Dual Algorithm for the Lov ászϑ-Function SDP
Set W(1) := I. Let ε := δ

2ρ , ε′ := − ln(1 − ε) and T :=
8ρ2 ln n

δ2 .
For t from 1 to T , do:

1. Run the ORACLE with W
(t).

2. If the ORACLE returns a primal feasible solution̂X,
outputX̂ and terminate.

3. Otherwise, letY(t) :=
∑

{i,j}∈E y
(t)
ij Eij be the dual

solution returned by the ORACLE.
4. Let M(t) := (αI + Y

(t) − J + ρI)/2ρ.
5. Compute W

(t+1) := (1 − ε)
∑

t

τ=1 M
(τ)

=
exp(−ε′

∑t
τ=1 M

(τ)).
Return the dual solution(z = α + δ,Y := 1

T

∑T
t=1 Y

(t)).

Proposition III.1 (Arora and Kale’s Primal-Dual
Method [AK07, Theorem 1]) Suppose in the Primal-
Dual algorithm, theORACLE with width ρ has not returned
a primal feasible solutionX̂ after T := 8ρ2 ln n

δ2 iterations.
Then, (z = α + δ,Y := 1

T

∑T
t=1 Y

(t)) is a feasible dual
solution with objective valueα + δ.

IV. A NALYZING THE RUNNING TIME

If we run the binary search step for candidate valueα with
additive errorδα, it takesTα = O(

ρ2
α

δ2
α

log n) iterations.7 In
each iteration of the binary step, the ORACLE is accessed once
and one matrix exponentiation is performed. As we shall see
later, each ORACLE access takes timeO(n2) and hence the
time for each iteration is dominated by thetime for one matrix

5In Arora and Kale’s description, it is suggested that the ORACLE is run
with a “candidate” primal solutionX := W

Tr(W)
, but this is not entirely

necessary, and we incorporate this rescaling operation in the ORACLE itself
to simplify the description. Moreover, in their descriptionof the ORACLE, the
primal solution returned is alwaysX itself. However, in their applications,
the ORACLE can also return a slightly modified version ofX, in a manner
which is more in accordance with our description.

6According to Arora and Kale’s framework, it is sufficient to have z ≤ α.
However, in our case, it is to our advantage for the ORACLE to produce a
dual solution withz = α.

7We remind the reader here that the widthρα of the ORACLE depends on
the candidate valueα currently being tested.



exponentiation, which we denote byMe. 8

Theorem IV.1 Suppose the Lovász ϑ-function on a given
graph G is α∗. Then, the valueϑ(G) can be approximated

within an additive error ofδ > 0 in time O(
ρ2

α∗

δ2 log n · Me),
whereMe is the time for matrix exponentiation andρα∗

is the
width of theORACLE applied with candidate valueα∗.

Proof: We describe how the binary search can be per-
formed carefully to avoid an extra factor ofO(log α∗

δ ) (the
number of binary search steps) in the total running time. In the
first phase, we double the value ofα until we obtain an upper
boundα for α∗. In this phase, we use additive errorδα = 1.
Observe thatα ≤ 2α∗ and as we shall see inSection V, the
width of the ORACLE is ρα = O(nα). Hence, the running
time in this phase is dominated byTα = O(ρ2

α log n) =
O(ρ2

α∗

log n).

In the second phase, we gradually decrease the additive error
δα in each step of the binary search. Observe that if the length
of the active intervalin binary search is currentlyL, then it
is enough to set the additive errorδ := L

4 in order for the
active interval to decrease geometrically after each binary step.
Hence, it follows the total running time is dominated by the

final binary search step, which takes timeO(
ρ2

α∗

δ2 log n · Me).

V. ORACLE FOR THELOVÁSZ ϑ-FUNCTION

Specifications for theORACLE with width ρα

Input: A matrix W � 0 and a candidate valueα.
Output: Returns either

1. a primal feasible solution̂X with objective value at
leastα, or

2. a dual solution(z,Y :=
∑

{i,j}∈E yijEij) with
objective value at mostα such that
(z I + Y − J) • W ≥ 0 and‖z I + Y − J‖2 ≤ ρα.

Theorem V.1 (ORACLE for the Primal-Dual Method)
There exists such anORACLE with access timeO(n2), and
for candidate valueα, it has widthρα = O(αn).

We first describe the ORACLE, and then show that it meets
the above specifications.

8In Arora and Kale’s paper [AK07], matrix exponentiation is approximated
by using ideas from the Johnson-Lindenstrauss Lemma. However, their matrix
exponentiation approximation takes time proportional to thewidth ρ of the
ORACLE times the time for matrix multiplication. Since the width in our case
is ρ = Ω(n) and the matrices involved are dense, it would be better to com-
pute matrix exponentiation directly, which takes timeMe = O(n3) [GvL96].

Implementation for the ORACLE

Input: A matrix W � 0 and a candidate valueα.
If W = 0, returns(z = α,Y := 0); otherwise, compute
X := W

Tr(W) andσ := J • X − α.
1. If σ ≤ 0, returns dual solution(z := α,Y := 0).
2. Let XE be the matrix such that its(i, j)-th entry is
the same as that ofX if {i, j} ∈ E, and otherwise 0.

3. If ‖XE‖F ≥ σ
αn , returns dual solution(z := α,Y :=

σ
‖XE‖2

F

· XE).

4. Otherwise, computẽX := X−XE + σ
αnI, and returns

primal solutionX̂ := X̃

Tr(X̃)
.

From the description of the ORACLE, it always terminates
with either a dual solution(z,Y) or a primal solutionX̂.
Moreover, the ORACLE runs in timeO(n2), since the Frobe-
nius norm can be computed in quadratic time. Hence, it
suffices to show that the solutions returned by the ORACLE

satisfy the specifications.

Lemma V.2 (Dual Solution) Suppose theORACLE returns a
dual solution(z,Y).

Then,(z I+Y−J)•W ≥ 0 and‖z I+Y−J‖2 = O(nα).

Proof: We first consider the case when the dual solution
returned is of the form(z := α,Y := 0). In this case, since
‖J‖2 = n, the norm clearly satisfies‖z I+Y−J‖2 ≤ ‖αI‖2+
‖J‖2 ≤ α + n ≤ O(αn).

For the trivial case whereW = 0, we have(z I+Y−J) •
W = 0. Otherwise, we haveX := W

Tr(W) andσ := J•X−α.
Since Y := 0 is returned, it must be the case thatσ ≤ 0.
Hence, observing thatI•X = Tr(X) = 1, we have(zI+Y−
J)•W = Tr(W)·(αI•X+0•X−J•X) = −σ Tr(W) ≥ 0.
We next consider the case in which a non-trivial dual solution
is returned. The diagonal and non-edge entries of the matrix
X are dropped to form the matrixXE . The dual solution
Y := σ

‖XE‖2
F

·XE returned is a scalar multiple ofXE . Hence,
in the matrixY, only the(i, j)-th entry for which{i, j} ∈ E
can be non-zero, and soY has the correct form.

Observing thatY • X = Y • XE , we have (zI +
Y − J) • W = Tr(W) · (Y • XE − σ) = Tr(W) ·(

σ
‖XE‖2

F

· (XE • XE) − σ
)

= 0.
Finally, we need to show that the width of the ORACLE is

small. In this case,‖XE‖F ≥ σ
αn , and hence it follows that

‖Y‖F = σ
‖XE‖F

≤ αn. Observing that‖Y‖2 ≤ ‖Y‖F , it
follows that‖zI + Y − J‖2 ≤ α + αn + n = O(αn).

Lemma V.3 (Primal Solution) Suppose theORACLE returns
a primal solutionX̂. Then,X̂ is primal feasible and has value
J • X̂ at leastα.

Proof: In this case, we haveσ := J • X − α > 0 and
‖XE‖F < σ

αn . The solution returned is of the form̂X :=
X̃

Tr(X̃)
, whereX̃ := X − XE + σ

αnI.

Notice that in the matrixX̃, all the (i, j)-th entries, for
which {i, j} ∈ E, are dropped. Hence, for all{i, j} ∈ E,



X̂ij = 0. Moreover, since‖XE‖2 ≤ ‖XE‖F ≤ σ
αn , the

additive term σ
αnI makes sure that̃X � 0. Finally, the

rescaling ensures thatI • X̂ = Tr(X̂) = 1. Hence,X̂ is
primal feasible.

Next, we check the value of the primal solution. By the
Cauchy-Schwarz Inequality,XE • J ≤ ‖XE‖F · ‖J‖F ≤ σ

α ,
observing that‖J‖F = n. Hence, it follows thatJ • X̃ ≥
J•X− σ

n + σ
αn J•I = σ+α. Finally, observing thatTr(X̃) =

1 + σ
α , it follows thatJ • X̂ ≥ α, as required.

Theorem V.1now follows from Lemmas V.2and V.3.
Together with Theorem IV.1, we have our main result in
Theorem I.1.

VI. EXTENSION TO THEWEIGHTED LOVÁSZ ϑ-FUNCTION

Definition VI.1 (Weighted Lovász ϑ-Function) Given a
graph G = (V,E) and a non-negative weight function
w : V → R+, the weighted Lov́aszϑ-function ϑ(G) is the
optimal value of the following semidefinite program, together
with its dual.

(P) max Jw • X

I • X = 1
∀{i, j} ∈ E : Eij • X = 0

X � 0

(D) min z
z I +

∑
{i,j}∈E yijEij � Jw

z, yij ∈ R

Here, the notation is the same as that inDefinition II.1,
except thatJw is now the matrix whose(i, j)-th entry is√

wi · wj .

Note that the definition is exactly the same as before, except
that the matrixJ is now replaced byJw. An advantage of this
formulation of ϑw is that the algorithm inSection III and
the arguments inSection V remain valid. In fact, we have
not used any property specific toJ except in the proofs of
Lemmas V.2and V.3, where we need a bound on‖J‖2. Let
W :=

∑
i∈V wi. Observe that in this case,W = ‖Jw‖2 =

‖Jw‖F = Tr(Jw).
Modifications to the proof of Lemma V.3 (Primal Solution).
The same argument still goes through. The only place where
the matrixJw plays a part is the evaluation of the objective
value. Recall that we haveσ := Jw•X−α > 0 and‖XE‖F <
σ

αn . The solution returned is of the form̂X := X̃

Tr(X̃)
, where

X̃ := X − XE + σ
αnI. By the Cauchy-Schwarz Inequality,

XE • Jw ≤ ‖XE‖F · ‖Jw‖F ≤ σW
αn . Hence, it follows that

Jw • X̃ ≥ Jw • X − σW
αn + σ

αn Tr(Jw) = σ + α. Finally,
observing thatTr(X̃) = 1 + σ

α , it follows that Jw • X̂ ≥ α,
just like before.
Modifications to the proof of Lemma V.2 (Dual Solution).
Here the matrixJw plays a role when we bound the norm
‖z I + Y − Jw‖2 ≤ ‖αI‖2 + ‖Y‖2 + ‖Jw‖2 ≤ α + αn + W .
At first this appears to be a problem, because the width of the
oracle is nowρα = O(αn+W ), which is worse than before if
W ≥ αn. However, if this is indeed the case, then there exists

a vertexvi ∈ V such that its weight satisfieswi ≥ W
n ≥ α.

Sinceϑw(G) is at least the maximum independent set weight,
it follows there exists a primal feasible solution whose value
is at least that of the weight of the singleton{vi}, which is
trivially an independent set. Therefore, it is unnecessaryto
run the primal-dual algorithm in this case. Hence, our result
generalizes to the weighted Lovászϑ-function inCorollary I.2.
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