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Abstract—The Lovasz 9-function [Lov79] on a graph G = -function of a general graph; this approximation algorithm

(V, E) can be defined as the maximum of the sum of the entries will then be sufficient for exact computation of the maximum
of a positive semidefinite matrix X, whose traceTr(X) equals

1, and X;; = 0 whenever {3, j} € E. This function appears as
a subroutine for many algorithms for graph problems such as
maximum independent set and maximum clique. We apply Arora
and Kale's primal-dual method for SDP to design an approximate
algorithm for the o-function with an additive error of ¢ > 0,
which runs in time O(“z;lz logn - M.), where o = 9(G) and
M. = O(n?) is the time for a matrix exponentiation operation.
Moreover, our techniques generalize to theweighted Lovasz 9-
function, and both the maximum independent set weight and the
maximum cliqgue weight for vertex weighted perfect graphs can

independent set size(G) of a perfect graph. For the range
a(G) < o(n?/*), our algorithm is the fastest among existing
methods to approximate the weighted Bsz¥-function with
constant additive error. The main theorem we prove in this
paper is as follows.

Theorem I.1 Approximating the Lovasz ¥-Function Sup-
pose the Lo@szv-function on a given grapld: is « = J(G).
Then, the value)(G) can be approximated within an additive

be approximated within a factor of (1+¢) in time O(e~2n°logn).  error of 6 > 0 in time O(% -M.), whereM, = O(n?®)

is the time to perform a matrix exponentiation. Setting- g

a multiplicative(1+ ¢)-approximation can be obtained in time

I. INTRODUCTION n?logn

O(T . Me).
The Lovasz ¥-function [Lov79] on a graphG = (V, E) ) _ . i

can be defined as the maximum of the sum of the ep-OUl techniques generalize to theeighted Lovasz v-

tries of ann x n positive semidefinite matri®X, such that Function as well. Hence, we can obtain approximation algo-
Tr(X) = 1 and X;; = 0 for {i,5} € V, wheren = |V rithms for the weighted versions of maximum independent set
= i = , , =

andm = |E|. The 9-function is a fundamental concept jn@"d maximum clique.
graph theory that was first defined by la®z Lov79] in 1979
to compute theéShannon capacitpf the pentagon graptys.
When the input graph iperfect the J-function coincides with
the maximum independent set sizéG) of G. Grotschel,
Lovasz, and Schrijver showed in 1988 that thidunction
can be computed in polynomial time using the ellipsoi
method [GLS87, thereby obtaining polynomial time algo-
rithms for computing maximum independent sets, maximu@ur Techniques. Out of the various formulationsGLS87
cligues and minimum colorings of perfect graphs. In patéicu of the Lowasz J-function, we utilize the one for which
the weighted version of Ldsz 9J-function is an important Arora and Kale’s primal-dual methodKO07] for semidefinite
subroutine in computing minimum colorings of perfect grphprogramming can be readily applied. The main technical
Despite years of research on perfect graphs and the resolutiifficulty here is to design an RacLE with small width that,
of the strong perfect graph conjectu@RST08, the algorithm given some “candidate” primal solutioK (feasible or not),
of Grotschel, Lowasz, and Schrijver (via the computation of thelecides whether to improw& and return an appropriate primal
¥-function) is the only algorithm known to compute maximunfieasible solution, or to return a dual solution that can bedus
independent sets of perfect graphs. The algorithm’s redianto improve X. Thus, given candidate primal solutidg, our
on semidefinite program solvers implies a prohibitive ragni ORACLE checks how far it is from feasible by inspecting an
time: a central open question in the theory of perfect graptexror” matrix Xz. The magnitude of the error is measured
is therefore the development of fast algorithms to compuby the Frobenius normiXg| #, and if it is less than some
maximum independent sets and minimum colorings of perfetireshold, then the RACLE performs a rounding procedure
graphs Sey04. on X to return a feasible primal solutioK. Otherwise, the

In this paper, we use the primal-dual framework of Aror®RACLE returns a dual solutiofY, which is a scaled version
and Kale PKO7] to give fast algorithms to approximate theof Xg.

Corollary 1.2 Approximating the Weighted Lovasz 9-
Function Given a non-negative weight functian: V' — R
on the vertices of a perfect graphl = (V, E'), the maximum
independent set weight and the maximum clique weight can
e approximated within a multiplicative factor ¢f + ¢) in
me O(e~2nlogn).



A. History of thed-Function and Perfect Graphs A few studies have generalized the above primal-dual tech-
The Shannon capacity of a grapBHas§, is defined as nigues to solving semidefinite programs. Klein and KL[LSBG]
lim,_.eo $/a(G"), whereG™ is thestrong producif G with showed that the framework fronPET9] can be app.lled to
itself n times, and o(G) denotes the size of a maximumSOIVe SDP relaxations of Max Cut anq Veptor C'olorlng fgster
independent set i, In general, than general SDP solvers based on mterlor_ point algorithms
Arora, Hazan and KaleAAHK04] suggested primal-dual algo-
lim {/a(G") > a(G). (1) rithms for solving SDPs related to sparsest cut, and lateraAr
nee and Kale PK07] presented a framework for solving general
For general graphs, there are no known algorithms (ev8DPs, on which our algorithm is based.
exponential time) to compute the Shannon capacity. In Approximating the Lovasz 9¥-Function. As noted by Klein
breakthrough paperpv79], Lovasz computed the Shannorand Lu [KL96], the straightforward approagho solve the
capacity ofCs exactly by introducing the)-function. Thed- SDP takes timeD(y/nm?), which can beO(n%%) for dense
function of a graph is an upper bound on the Shannon capaciyaphs. In the same papeKL[96], they used the frame-
but is exact foiCs. Further, thej-function can be computed inwork [PST9] by Plotkin et al. to approximate the Vec-
polynomial time via semi-definite programming (See Knuth'sr Coloring SDP, whose optimal solution is coincides with
paper Knu94 for a deeper discussion on th&function). the Lovasz¥-function on the complement graph in the case
Shannon observed that the class of graphs for which equaliiiiere graph is perfect. To obtain a multiplicative error of
holds in (1) are exactly those graphs for whieti/7) = x(H) (1 +¢) for the ¥-function on perfect graphs, the running time
holds for all induced subgraph$ of GG. whereG denotes the using their algorithm i€ (e ~°a’nm),® wherea = 9¥(G) and
complement graph of7, and x(G) is its chromatic number. 77 is the number of edges in the complement graph. lyengar

While bothx (G) anda(G) are inapproximable, it was shownet al. |PS has improved the time to approximate the Vector
by Lovasz thatn(G) < J(G) < x(G). Coloring SDP toO (¢~ n?m).

Recently, the recognition problem of perfect graphs was|t would seem that for perfect graphs, it would be better
shown to be polynomial time solvableCCL*"05]. Despite to consider the Vector Coloring SDP than the Bexw ¥-
this progress on the understanding of the structural aspefeinction. However, in applications like finding the optimal
of perfect graphs, no method faster than that obt&rhel, coloring of perfect graphsgLS87, the weighted version of
Lovasz, and Schrijver is known for computing maximunthe ¥-function is used. Unfortunately, there is no straight-
independent sets or optimal colorings of perfect graphs. f8rward method to generalize the Vector Coloring SDP to
central open question in the theory of perfect graphs is tige weighted version. Hence, to approximate the weighted
development of fast algorithms for such computatid®ey0§. Lovasz ¥-function, our algorithm performs better than the

straightforward approach when= o(n3/4).

B. Related work lyengar et al. [P considered subgradient methods for
Primal-Dual Algorithms for Solving Mathematical Pro- approximating thed-function SDP, which runs in time
gramming Problems. Many primal-dual algorithms for ap- O(¢~2log®(¢~!)n*logn) in the worst case. However, their
proximately solving linear programs have appeared in tmeethods can only give nearly feasible solutions due to the
algorithms literature (see the survey pap€aZ93 by Vazi- equality trace constraint, and hence their result does not
rani). For certain types of linear programs, these primatompare directly with ours.
dual algorithms can be faster than general-purpose LP rsolve
based on the ellipsoid or interior point methoédi95]. Some Il. NOTATION AND PRELIMINARIES

of these algorithms are loosely based on the muItipIicative(_;iVen an undirected grapl¥ — (V,E) of vertex size

update algorithm associated with the weighted majority)algn — |V], let o(G) denote its maximum independent set

rithm [AHK]. Plotkin, Shmoys and Tardo®$5T9] gave the size, andx(G) := y(G) denote the chromatic number of

first such approximation algorithm for linear programming1ts complement graph. All the matrices in this paper are
The running time of this algorithm depends upon a quantity,,etric and have dimensionscn.. The sum of the diagonal
known as the width, which is a property of the specific pmble%\tries of a square matriX is denoted by the trac®r(X).

at hand. For problems with sufficiently small width, theibiven two matricesX andY,, let X oY := Tr(X”Y), where
framework can be an improvement over general LP SOIVeﬁ'T is the transpose dX. We index the rows and the columns
For the important special case of packing and covering |Iine(:51f a matrix with the verticed” of the graphG. The Lovasz

programs, Garg and giemann §K98] gave fast apprqxima— Y-function [Lov79 can be formulated as the solution to a
tion algorithms that were later improved by KO“fog'annak'§emidefinite program.

and Young KYO07].

1For graphs3, H, the strong product grapfi' x H is defined as follows.
Its vertex set is the cartesian product of the vertex set& afnd H. The 2In Alizadeh's paper Ali95], it is stated that the interior point method
edges{(u,a), (v,b)} € E(G x H) are all edges such thdu,v} € E(G) for SDP takesO(y/n) iterations; and Nayakkankuppam and OvertbiOP6]
and{a,b} € E(H), oru = v and{a,b} € E(H), or {u,v} € BE(G) and explicitly analyzed the running time of each iteration to@ém?).
a=1b 3 We use the notatio)(-) to suppress logarithmic factors.



Definition 11.1 (Lov asz ¢-Function) Given a graphG = ORACLE with width p. Arora and Kale's method requires an
(V, E), the Lowdaszv-functiond(G) on G is the optimal value auxiliary algorithm known as the ®xCLE, whose specifica-
of the following semidefinite program, together with its duation in our case is as follows. GiveWw = Of the ORACLE
either (1) produces a primal feasible soluti¥nwith value at

(P) maIX .J)Z X _ leastc; or (2) produces a dual solutigr, Y) (not necessarily
Wi} € B EyeX B 0 feasible) such thaW e (:1+Y —J) >0, andz = a.% The
) X. Y ; 0 ORACLE is said to havewidth p if any dual solution(z,Y)
- that it produces satisfiegz I +Y — J||» < p. The widthp
. depends on the current tested vatyeand we sometimes use
(D) min z . ; . .
A4, 0 yEy = J the subscripp,, to make this dependence explicit. The details
{i.gyel 1370 c R of the ORACLE are given inSection \/
Zy Yij

Here, the identity matrix is denoted byandJ is the matrix . . . .
in which every entry is 1. For each eddé,j} € E, Ej; Primal-Dual Algorithm for the Lov asz4J-Function SDP

. o . : — 9 — —
is the matrix in which both théi, j)-th and (j, i)-th entries SthW(U =L lete:= g, ¢ = —-In(l-¢)andT :=
are 1, and every other entry is 0. For ease of notation, V\é”(;ién".

sometimes writeY := Z{m‘}eE yi; Eij. We say thatX is |Fort from 1 to T, do:

a primal solution, and(z,Y) is a dual solution, though not 1. Run the ®RACLE with W®

necessarily feasible. 2. If the ORACLE returns a primal feasible solutioX,
outputX and terminate.

3. Otherwise, leftY ") := 37/, 1 p yVE;; be the dua)
solution returned by the RACLE.

There are alternative formulations fé(G); for example, it
is equivalent to the strict vector chromatic numbkKMS98]
of the graph’s complemeirdt. It is well-known that the Lo&isz

¥-function satisfies the Sandwich Property(G) < 9(G) < 4. LetM® := (T + Y — J + pI)/2p. A

~((1)- i : it 5. Compute WU+ .= (1 — g)l= M7
X(G); in the case wheré& is a perfect graph, both equalitieg F/’ A )

hold. Recall that a grapld’ is perfectif for all its induced exp(—¢' >, M), o .
subgraphs, o(H) = Y(H). Return the dual solutiofz = o +6,Y := £ >,_, Y®).

Given a matrixX, we denote its operator norm ByX||2,
which is also the largest eigenvalue Xf in absolute value.

We denote its Frobenius norm byX||r := /Zij ng — Proposition 1ll.1 (Arora and Kale’s Primal-Dual

s . . i Method [AKO7, Theorem 1]) Suppose in the Primal-
Xe X The following prqposVuon states some well knOWr’bual algorithm, theORACLE with width p has not returned
properties about the mentioned norms.

a primal feasible solutiorX after T := SPZ# iterations.
Then, (z = a +4,Y := L3, Y®) is a feasible dual

Proposition 1.2 SupposeX andY are square matrices. solution with objective value + 6.

(a) Cauchy-Schwarz Inequality. We haveX e Y <
IX|| 7Y ]|F. If there existsx > 0 such thatY = X,
then equality holds. IV. ANALYZING THE RUNNING TIME
(b) We havel|X||; < [|X]|r.
If we run the binary search step fg)r candidate valuwith
I1l. A RORA AND KALE’S PRIMAL -DUAL METHOD additive errord,, it takesT,, = O(% logn) iterations’ In
We describe how we apply Arora and Kale's frame€ach iteration of the binary step, theR@CLE is accessed once

work? [AKO7] to approximate the SDP statedDrefinition I1.1 and one matrix exponentiation is perforrr;ed. As we shall see
with arbitrarily small additive erros > 0. The algorithm uses |ater, €ach @®ACLE access takes tim@(n*) and hence the
binary search, and given a candidate valu@ach binary step time for each iteration is dominated by ttime for one matrix
either produces a primal feasible soluti¥nwith value at least

a (thereby PrOducmg a lower bound for the optmal value) or s\, arora and Kale's description, it is su%gested that thRAOLE is run
a dual feasible solutiof, Y := Z{ij}GE yi;E;;) with value  with a “candidate” primal solutionX := Tr(w) but this is not entirely
at mosta+9 (and hence giving an upper bound for the optimalecessary, and we incorporate this rescaling operatioharnORACLE itself

; ; ; . simplify the description. Moreover, in their descriptiohthe ORACLE, the
value). We next describe how this step is performed for a fIX% imal solution returned is alwayX itself. However, in their applications,

. the ORACLE can also return a slightly modified version X, in a manner
which is more in accordance with our description.
4Arora and Kale described a framework that works for the typ&@Ps  SAccording to Arora and Kale’s framework, it is sufficient tovea < ov.
in which the primal has inequality constraints, and the daal hon-negative However, in our case, it is to our advantage for thrRAOLE to produce a
variables. However, it is straight forward to apply the samgument and dual solution withz = a.
technique to an SDP in which the primal has equality congsaamd the “We remind the reader here that the width of the ORACLE depends on
dual has unrestricted variables. the candidate value: currently being tested.



exponentiationwhich we denote by//,. 8

Implementation for the ORACLE
Input: A matrix W = 0 and a candidate value.
If W = 0 returns(z = «,Y := 0); otherwise, compute
X:: Tr(w) ando :=JeX —qa.
. If ¢ <0, returns dual solutioriz := o, Y :=0).
2. Let Xz be the matrix such that it&, j)-th entry is
the same as that &X if {i,j} € E, and otherwise 0.
f ||XE||F > 2, returns dual solutiofz := o, Y :=
ez X5):
Proof: We describe how the binary search can be per- 4 otherwise, computK X —~Xp+ 21, and returng
formed carefully to avoid an e>.<tra factor Oj(lo.g Og*.) (the primal solutionX :— _
number of binary search steps) in the total running timehén t T*<X)

first phase, we double the value @funtil we obtain an upper  From the description of the RACLE, it always terminates
bounda@ for .. In this phase, we use additive er@r = 1. jith either a dual solutior(z,Y) or a prlmal solutionX.
Observe thaty < 2a. and as we shall see iBection \V/ the pjoregver, the @ACLE runs in timeO(n?), since the Frobe-
width of the CRACLE is po = O(na). Hence, the running pjys norm can be computed in quadratic time. Hence, it
time in this phase is dominated iz = O(pZlogn) = suffices to show that the solutions returned by theAOLE
O(p3. logn). satisfy the specifications.

In the second phase, we gradually decrease the additive erro
J. in each step of the binary search. Observe that if the lendtemma V.2 (Dual Solution) Suppose th©RACLE returns a
of the active intervalin binary search is currently, then it dual solution(z,Y).
is enough to set the additive errér:= £ in order for the  Then,(zI+Y —J)eW >0 and|zI+Y —J||; = O(na).

active interval to decrease geometrically after each piatep. Proof: We first consider the case when the dual solution
Hence, it follows the total running time is domlnated by the . )
Feturned is of the forn{z := «,Y := 0). In this case, since

final binary search step, which takes tn@é”“* logn - M,). |13]|2 = n, the norm clearly satlsfquZ I+Y —J5 < [lad]o+
B 3|2 <a+n<O(an).
For the trivial case wher®V = 0, we have(z:I+Y —J)e
) W = 0. Otherwise, we havX := ,H(W) ando :=JeX —au.
V. ORACLE FOR THELOVASZ 1J-FUNCTION SinceY := 0 is returned, it must be the case that< 0.
Hence, observing thdte X = Tr(X) = 1, we have(zI+Y —
J)eW = Tr(W)-(cleX+0eX-Jo X) = —0c Tr(W) > 0.

Theorem IV.1 Suppose the L&sz J-function on a given
graph G is a.. Then, the value}(G) can be approximated

within an additive error ofé > 0 in time O(p“* logn - M.),
where M, is the time for matrix exponentiation andg,, is the
width of theORACLE applied with candidate value....

|

Specifications for the ORACLE with width p,, We next consider the case in which a non-trivial dual sotutio
Input: A matrix W > 0 and a candidate value. is returned. The diagonal and non-edge entries of the matrix
Output: Returns either X are dropped to form the matriXz. The dual solution
1. a primal feasible solutioX with objective value at Y = %2 Xz X returned is a scalar multiple o€ ;. Hence,
leasta, or in the matrixY, only the (7, j)-th entry for which{i, j} € E
2. a dual solution(z,Y := > . 1cpyi;Ei) with| can be non-zero, and $6 has the correct form.
objective value at most such that Observing thatY ¢ X = Y e Xjp, we have (I +
I+Y -J)eW >0and|2I+Y —J|2 < pa. —J)eW = Tr(W) - (Y e Xg —0) = Tr(W) .

(HX i (XoeXp) —0) =0
FmaTIy, we need to show that the width of ther@CLE is

Theorem V.1 (ORACLE for the Primal-Dual Method) small. In this case||Xg|r > 2, and hence it follows that
There exists such a@RACLE with access time)(n?), and [[Y||r = xZ— < an. Observing that|Y|> < [[Y|, it
for candidate valuey, it has widthp, = O(an). follows that||zI+Y — J|j2 < o+ an +n = O(an). [ |

Lemma V.3 (Primal Solution) Suppose th©RACLE returns

We first descf'_be t_he @ACLE, and then show that it meets, primal solutionX. Then,X is primal feasible and has value
the above specifications. J e X at leasta

. Proof: In this case, we have := Je X —a > 0 and
In Arora and Kale's paperjK07], matrix exponentiation is approximated o
by using ideas from the Johnson-Lindenstrauss Lemma. Howtbedr matrix ” Cx HF < an The solution returned is of the foer
exponentiation approximation takes time proportional to héth p of the (X , WhereX := X — Xg+ 2L
ORACLE times the time for matrix multiplication. Since the width in owse N t that th t XX Il th th tri f
is p — Q(n) and the matrices involved are dense, it would be better to com- Notice that in the matri all the (i, j)-th entries, for

pute matrix exponentiation directly, which takes tim& = O(n3) [GvL96. which {i,j} € FE, are dropped. Hence, for afli,j} € F,



)A(ij = 0. Moreover, since|Xgll: < [|[Xgllr < Z, the a vertexv; € V such that its weight satisfies; > % > .

additive term 2-1 makes sure thalX = 0. Finally, the
1. Hence, X is

rescaling ensures thdte X =
primal feasible.

Tr(X) =

Cauchy-Schwarz Inequalit ; e J < || Xg||r - |J]|r < 2,

observing that/|J||r = n. Hence, it follows that] ¢ X

JeX—2+-2 JeI = o +a. Finally, observing thallr(X)

1+ 2, it follows thatJ ¢ X > «, as required.
«

>

Theorem V.1now follows from Lemmas V.2and V.3.

Together with Theorem IV.1 we have our main result in

Theorem 1.1

VI.

Definition VI.1 (Weighted Lovasz ¥-Function) Given
graph G =

EXTENSION TO THEWEIGHTED LOVASZ ¥-FUNCTION

a
(V,E) and a non-negative weight function
w : V — R4, the weighted Lowasz ¥-function 9(G) is the

Sinced,,

(G) is at least the maximum independent set weight,

it follows there exists a primal feasible solution whoseueal
is at least that of the weight of the singletdn; }, which is
Next, we check the value of the primal solution. By th&lvially an independent set. Therefore, it is unnecesdary
run the primal-dual algorithm in this case. Hence, our itesul
generalizes to the weighted Laszd-function inCorollary 1.2

[AHK]

[AHKO4]

[AKO7]

optimal value of the following semidefinite program, togeth [Ali95]

with its dual.

(P) max J,, ¢ X
TeX = 1
V{i,jleE: B eX = 0
X = 0

(D) min 2z

ZI+Z{1’,J’}EE yijBi; = Ju
2, Yij € R

Here, the notation is the same as that Drefinition 1.1,

except thatJ,, is now the matrix whoséi,j)-th entry is

Wi s Wy

Note that the definition is exactly the same as before, exc
that the matrixJ is now replaced by,,. An advantage of this
formulation of ¢,, is that the algorithm inSection Il and
the arguments irBection Vremain valid. In fact, we have
not used any property specific th except in the proofs o

Lemmas V.2and V.3, where we need a bound giJ||,. Let
W := > ,cy w;. Observe that in this casél = ||J, |2 =

HJwHF = Tr(']w)-

Modifications to the proof of Lemma V.3 (Primal Solution).
The same argument still goes through. The only place where

the matrixJ,, plays a part is the evaluation of the objectiviowg]
value. Recall that we have:= J,,eX—a > 0 and||Xz||r <

< The solution returned is of the foriX :=

Tr(X)’

X = X - Xp + Z-I. By the Cauchy-Schwarz Inequality,
XpoJy < [Xgllr - [Jullr < Z%. Hence, it follows that
an Tr(Jy) = o+ a. Finally, [psTo1]

Jw.XZJw.X_ﬂ‘F

an

where

observing that[‘r(X) =1+ Z, it follows thatJ, ¢ X > a,

just like before.

Modifications to the proof of Lemma V.2 (Dual Solution).

Here the matrixJ,, plays a role when we bound the nor

[zI4+Y = Jull2 < |laXllz + Y2 + [|[Juwllz < a+an+ W.
At first this appears to be a problem, because the width of tjvez9s]

oracle is nowp, = O(an+ W), which is worse than before if

[cCL+05]

[CRSTO6]

[GK98]

[GLS87]

[GvL96]

[IPS]

loey

¢ [KMS98]

[Knu94]

[KY07]

[NO96]

[Sey06]

Mshase

W > an. However, if this is indeed the case, then there exists
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