
Ranking on Arbitrary Graphs: Rematch via Continuous LP with Monotone
and Boundary Condition Constraints

T-H. Hubert Chan∗ Fei Chen∗ Xiaowei Wu∗ Zhichao Zhao∗

Abstract
Motivated by online advertisement and exchange settings,
greedy randomized algorithms for the maximum matching
problem have been studied, in which the algorithm makes
(random) decisions that are essentially oblivious to the input
graph. Any greedy algorithm can achieve performance ratio
0.5, which is the expected number of matched nodes to the
number of nodes in a maximum matching.

Since Aronson, Dyer, Frieze and Suen proved that the
Modified Randomized Greedy algorithm achieves perfor-
mance ratio 0.5+ε (where ε = 1

400000
) on arbitrary graphs in

the mid-nineties, no further attempts in the literature have
been made to improve this theoretical ratio for arbitrary
graphs until two papers were published in FOCS 2012.

In this paper, we revisit the Ranking algorithm using the
LP framework. Special care is given to analyze the structural
properties of the Ranking algorithm in order to derive the LP
constraints, of which one known as the boundary constraint
requires totally new analysis and is crucial to the success of
our LP.

We use continuous LP relaxation to analyze the limiting
behavior as the finite LP grows. Of particular interest are
new duality and complementary slackness characterizations
that can handle the monotone and the boundary constraints
in continuous LP. Our work achieves the currently best the-

oretical performance ratio of 2(5−
√
7)

9
≈ 0.523 on arbitrary

graphs. Moreover, experiments suggest that Ranking cannot
perform better than 0.724 in general.

Keywords
Maximum matching, oblivious algorithms, primal-dual
methods, continuous linear programming

1 Introduction

Maximum matching [12] in undirected graphs is a
classical problem in computer science. However, as
motivated by online advertising [5, 1] and exchange
settings [14], information about the graphs can be
incomplete or unknown. Different online or greedy
versions of the problem [3, 13, 6] can be formulated
by the following problem, in which the algorithm is
essentially oblivious to the input graph.
Oblivious Matching Problem. An adversary commits to a
graph G(V,E) and reveals the nodes V (where n = |V |)
to the (possibly randomized) algorithm, while keeping
the edges E secret. The algorithm returns a list L that
gives a permutation of the set

(
V
2

)
of unordered pairs of

∗Department of Computer Science, the University of Hong
Kong. {hubert,fchen,xwwu,zczhao}@cs.hku.hk

nodes. Each pair of nodes in G is probed according to
the order specified by L to form a matching greedily. In
the round when a pair e = {u, v} is probed, if both
nodes are currently unmatched and the edge e is in
E, then the two nodes will be matched to each other;
otherwise, we skip to the next pair in L until all pairs in
L are probed. The goal is to maximize the performance
ratio of the (expected) number of nodes matched by
the algorithm to the number of nodes in a maximum
matching in G.

Observe that any ordering of the pairs
(
V
2

)
will re-

sult in a maximal matching in G(V,E), giving a trivial
performance ratio at least 0.5. However, for any deter-
ministic algorithm, the adversary can choose a graph
such that ratio 0.5 is attained. The interesting question
is: how much better can randomized algorithms per-
form on arbitrary graphs? (For bipartite graphs, there
are theoretical analysis of randomized algorithms [8, 11]
achieving ratios better than 0.5.)

The Ranking algorithm (an early version appears
in [9]) is simple to describe: a permutation σ on V
is selected uniformly at random, and naturally induces
a lexicographical order on the unordered pairs in

(
V
2

)
used for probing. Although by experiments, the Ranking
algorithm and other randomized algorithms seem to
achieve performance ratios much larger than 0.5, until
very recently, the best theoretical performance ratio
0.5 + ε (where ε = 1

400000) on arbitrary graphs was
proved in the mid-nineties by Aronson et al. [3], who
analyzed the Modified Randomized Greedy algorithm
(MRG), which can be viewed as a modified version of
the Ranking algorithm.

After more than a decade of research, two papers
were published in FOCS 2012 that attempted to give
theoretical ratios significantly better than the 0.5 + ε
bound. Poloczek and Szegedy [13] also analyzed the
MRG algorithm to give ratio 0.5 + 1

256 ≈ 0.5039. Goel
and Tripathi [6] analyzed the Ranking algorithm and
claimed that ratio 0.56 can be achieved, but they later
announced the withdrawal of the paper on arXiv [7] be-
cause of a crucial bug in their proof. Both papers used
a common framework which has been successful for an-
alyzing bipartite graphs: (i) utilize the structural prop-

erties of the matching problem to form a minimization
linear program that gives a lower bound on the perfor-
mance ratio; (ii) analyze the LP theoretically and/or
experimentally to give a lower bound.

In this paper, we revisit the Ranking algorithm us-
ing the same framework: (i) we use novel techniques to
carefully analyze the structural properties of Ranking
for producing new LP constraints; (ii) moreover, we de-
velop new primal-dual techniques for continuous LP to
analyze the limiting behavior as the finite LP grows. Of
particular interest are new duality and complementary
slackness results that can handle monotone constraints
and boundary conditions in continuous LP. Our paper
achieves the currently best theoretical performance ra-

tio of 2(5−
√
7)

9 ≈ 0.523 on arbitrary graphs. As a side
note, our experiments suggest that Ranking cannot per-
form better than 0.724 in general.

1.1 Our Contribution and Techniques

Theorem 1.1. For the Oblivious Matching Problem on
arbitrary graphs, the Ranking algorithm achieves perfor-

mance ratio at least 2(5−
√
7)

9 ≈ 0.523.

Following previous work on the analysis of Rank-
ing [9], we consider a set U of instances, each of which
has the form (σ, u), where σ is a permutation on V and
u is a node in V . An instance (σ, u) is good if the node
u is matched when Ranking is run with σ, and bad oth-
erwise; an event is a subset of instances. As argued
in [13, 6], one can assume that G contains a perfect
matching when analyzing the ratio of Ranking. Hence,
the performance ratio of Ranking is the fraction of good
instances.

(1) Relating Bad and Good Events to Form LP
Constraints. A simple combinatorial argument [9]
is often used to relate bad and good instances. For
example, if each bad instance relates to at least two
good instances, and each good instance is related to
at most one bad instance, then the fraction of good
instances would be at least 2

3 . By considering the
structural properties of Ranking, one can define various
relations between different bad and good events, and
hence can generate various constraints in an LP, whose
optimal value gives a lower bound on the performance
ratio. Despite the simplicity of this combinatorial
argument, the analysis of these relations can be elusive
for arbitrary graphs.

We define and analyze our relations carefully to
derive three type of constraints: monotone constraints,
evolving constraints, and a boundary constraint, the last
of which involves a novel construction of a sophisticated
relation, and is crucial to the success of our LPn.

(2) Developing New Primal-Dual Techniques for
Continuous LP. As in previous works, the optimal
value of LPn decreases as n increases. Hence, to
obtain a theoretical proof, one needs to analyze the
asymptotic behavior of LPn. It could be tedious to
find the optimal solution of LPn and investigate its
limiting behavior. One could also use experiments
(for example using strongly factor-revealing LP [11]) to
give a proof. We instead observe that the LPn has a
continuous LP∞ relaxation (in which normal variables
becomes a function variable). However, the monotone
constraints in LPn require that the function in LP∞
be monotonically decreasing. Moreover, the boundary
constraint has its counterpart in LP∞. To the best
of our knowledge, such continuous LPs have not been
analyzed in the literature.

We describe our formal notation in Section 2. In
Section 3, we relate bad and good events in order to
form LPn. In Section 4, we prove a lower bound on the
performance ratio; in particular, we develop new primal-
dual and complementary slackness characterization for a
general class of continuous LP, and solve the continuous
LP∞ relaxation (and its dual). In Section 5, we
describe a hard instance and our experiments suggest
that Ranking performs no better than 0.724 in general.

1.2 Related Work We describe and compare the
most relevant related work. Please refer to the refer-
ences in [13, 6] for a more comprehensive background of
the problem. We describe Oblivious Matching Problem
general enough so that we can compare different works
that are studied under different names and settings.
Dyer and Frieze [4] showed that picking a permutation
of unordered pairs uniformly at random cannot produce
a constant ratio that is strictly greater than 0.5. On the
other hand, this framework also includes the MRG al-
gorithm, which was analyzed by Aronson et al. [3] to
prove the first non-trivial constant performance ratio
crossing the 0.5 barrier. One can also consider adaptive
algorithms in which the algorithm is allowed to change
the order in the remaining list after seeing the probing
results; although hardness results have been proved for
adaptive algorithms [6], no algorithm in the literature
seems to utilize this feature yet.
On Bipartite Graphs. Running Ranking on bipartite
graphs for the Oblivious Matching Problem is equivalent
to running ranking [9] for the Online Bipartite Matching
problem with random arrival order [8]. From Karande,
Mehta and Tripathi [8], one can conclude that Ranking
achieves ratio 0.653 on bipartite graphs. Moreover, they
constructed a hard instance in which Ranking performs
no better than 0.727; we modify their hard instance
and our experiments suggests that Ranking performs no

better than 0.724.
On a high level, most works on analyzing Ranking

or similar randomized algorithms on matching are based
on variations of the framework by Karp et al. [9]. The
basic idea is to relate different bad and good events to
form constraints in an LP, whose asymptotic behavior
is analyzed when n is large. For Online Bipartite
Matching, Karp et al. [9] showed that ranking achieves
performance ratio 1 − 1

e ; similarly, Aggarwal et al. [1]
also showed that a modified version of Ranking achieves
the same ratio for the node-weighted version of the
problem.

Sometimes very sophisticated mappings are used to
relate different events, and produce LPs whose asymp-
totic behavior is difficult to analyze. Mahdian and
Yan [11] developed the technique of strongly factor-
revealing LP. The idea is to consider another family of
LPs whose optimal values are all below the asymptotic
value of the original LP. Hence, the optimal value of
any LP (usually a large enough instance) in the new
family can be a lower bound on the performance ratio.
The results of [11] imply that for the Oblivious Matching
Problem on bipartite graphs, Ranking achieves perfor-
mance ratio 0.696.
Recent Attempts. No attempts have been made in
the literature to theoretically improve the 0.5 + ε ratio
for arbitrary graphs until two recent papers appeared
in FOCS 2012. Poloczek and Szegedy [13] used a
technique known as contrast analysis to analyze the
MRG algorithm and gave ratio 1

2 + 1
256 ≈ 0.5039.

However, we discover some gaps in their proof; from
personal communication with the authors, we are told
that they are currently bridging those gaps at the time
of writing.

Goel and Tripathi [6] showed a hardness result of
0.7916 for any algorithm and 0.75 for adaptive vertex-
iterative algorithms. They also analyzed the Ranking
algorithm for a better performance ratio, but later
withdrew the paper [7] after Matthias Poloczek, Frans
Schalekamp, and Anke van Zuylen informed them of a
bug in the proof.
Continuous LP. Duality and complementary slackness
properties of continuous LP were investigated by Tyn-
dall [15] and Levinson [10]. Anand et al. [2] used con-
tinuous LP relaxation to analyze online scheduling.

2 Preliminaries

Let [n] := {1, 2, . . . , n}, [a..b] := {a, a + 1, . . . , b} for
1 ≤ a ≤ b, and Ω be the set of all permutations of
the nodes in V , where each permutation is a bijection
σ : V → [n]. The rank of node u in σ is σ(u), where
smaller rank means higher priority.
The Ranking algorithm. For the Oblivious Matching

Problem, the algorithm selects a permutation σ ∈ Ω
uniformly at random, and returns a list L of unordered
pairs according to the lexicographical order induced by
σ. Specifically, given two pairs e1 and e2 (where for each
i, ei = {ui, vi} and σ(ui) < σ(vi)), the pair e1 has higher
priority than e2 if (i) σ(u1) < σ(u2), or (ii) u1 = u2 and
σ(v1) < σ(v2). Each pair of nodes in G(V,E) is probed
according to the order given by L; initially, all nodes are
unmatched. In the round when the pair e = {u, v} is
probed, if both nodes are currently unmatched and the
edge e is in E, then each of u and v is matched, and they
are each other’s partner in σ; moreover, if σ(u) < σ(v)
in this case, we say that u chooses v. Otherwise, if at
least one of u and v is already matched or there is no
edge between them in G, we skip to the next pair in L
until all pairs in L are probed.

After running Ranking with σ (or in general probing
with list L), we denote the resulting matching by M(σ)
(or M(L)), and we say that a node is matched in σ
(or L) if it is matched in M(σ) (or M(L)). Given a
probing list L, let Lu denote the probing list obtained
by removing all occurrences of u in L such that u always
remains unmatched. The following lemma is useful.

Lemma 2.1. (Removing One Node.) The symmet-
ric difference M(L) ⊕ M(Lu) is an alternating path,
which contains at least one edge iff u is matched in L.

Proof. Observe that probing G with Lu is equivalent to
probing Gu with L, where Gu is exactly the same as
G except that the node u is labelled unavailable and
will not be matched in any case. Hence, we will use
the same L to probe G and Gu, and compare what
happens in each round to the corresponding matchings
M = M(L) and Mu = M(Lu). For the sake of
this proof, “unavailable” and “matched” are the same
availability status, while “unmatched” is a different
availability status.

We apply induction on the number of rounds of
probing. Observe that the following invariants hold
initially. (i) There is exactly one node known as the
crucial node (which is initially u) that has different
availability in G and Gu. (ii) The symmetric difference
M(L) ⊕M(Lu) is an alternating path connecting u to
the crucial node; initially, this path is degenerate.

Consider the inductive step. Observe that the
crucial node and M(L) ⊕ M(Lu) do not change in a
round except for the case when the pair being probed is
an edge in G (and Gu) involving the crucial node w with
another currently unmatched node v in G. Observe that
in this case, v is also unmatched in Gu, as the induction
hypothesis states that every other node apart from the
crucial node has the same availability in both graphs.
Hence, this edge is added to exactly one of M and Mu.

Therefore, w is matched in both graphs (so no longer
crucial), and v becomes the new crucial node; moreover,
the edge {w, v} is added to M(L)⊕M(Lu), which now is
a path connecting u to v. This completes the inductive
step.

Observe that u is matched in M in the end, iff in
some round an edge involving u must be added to M
but not to Mu, which is equivalent to the case when
M ⊕Mu contains at least one edge.

The performance ratio r of Ranking on G is the
expected number of nodes matched by the algorithm
to the number of nodes in a maximum matching in
G, where the randomness comes from the random
permutation in Ω. We consider the set U := Ω × V
of instances; an event is a subset of instances. An
instance (σ, u) ∈ U is good if u is matched in σ, and
bad otherwise.

Perfect Matching Assumption. According to
Corollary 2 of [13] (and also implied by our Lemma 2.1),
without loss of generality, we can assume that the graph
G(V,E) has a perfect matching M∗ ⊆ E that matches
all nodes in V . For a node u, we denote by u∗ the
partner of u in M∗ and we call u∗ the perfect partner of
u. From now on, we consider Ranking on such a graph
G without mentioning it explicitly again. Observe that
for all σ ∈ Ω, (σ, σ−1(1)) is always good; moreover, the
performance ratio is the fraction of good instances.

Definition 2.1. (σu, σ
i
u) For a permutation σ, let σu

be the permutation obtained by removing u from σ while
keeping the relative order of other nodes unchanged;
running Ranking with σu means running σ while keeping
u always unavailable (or simply deleting u in G). Let
σiu be the permutation obtained by inserting u into σu
at rank i and keeping the relative order of other nodes
unchanged.

Fact 2.1. (Ranking is Greedy) Suppose Ranking is
run with permutation σ. If u is unmatched in σ, then
each neighbor w of u (in G) is matched to some node v
in σ with σ(v) < σ(u).

Similar to [13, Lemma 3], the following Fact is an
easy corollary of Lemma 2.1, by observing that if (σ, u)
is bad, then M(σ) = M(σu).

Fact 2.2. (Symmetric Difference) Suppose (σ, u)
is bad, and (σiu, u) is good for some i. Then, the
symmetric difference M(σ) ⊕M(σiu) is an alternating
path P with at least one edge, where except for the
endpoints of P (of which u is one), every other node
in G is either matched in both σ and σiu, or unmatched
in both.

Definition 2.2. (Qt, Rt and St) For each t ∈ [n],
let Qt be the good event that the node at rank t
is matched, where Qt := {(σ, u) : σ ∈ Ω, u =
σ−1(t) is matched in σ}; similarly, let Rt be the bad
event that the node at rank t is unmatched, where
Rt := {(σ, u) : σ ∈ Ω, u = σ−1(t) is unmatched in σ}.

Moreover, we define the marginally bad event St at
rank t ∈ [2..n] by St := {(σ, u) ∈ Rt : (σt−1u , u) /∈ Rt−1};
observe that S1 = R1 = ∅.

Given any (σ, u) ∈ U , the marginal position of
u with respect to σ is the (unique) rank t such that
(σtu, u) ∈ St, and is null if no such t exists.

Note that for each t ∈ [n], Qt and Rt are disjoint
and |Qt ∪Rt| = n!.

Definition 2.3. (xt, αt) For each t ∈ [n], let xt =
|Qt|
n! be the probability that a node at rank t is matched,

over the random choice of permutation σ. Similarly, we

let αt = |St|
n! ; observe that 1− xt = |Rt|

n! .

Note that the performance ratio is 1
n

∑n
t=1 xt, which

will be the objective function of our minimization LP.
Observe that all xt’s and αt’s are between 0 and 1, and
x1 = 1 and α1 = 0. We derive constraints for the
variables in the next section.

3 Relating Bad and Good Events to Form LP
Constraints

In this section we define some relations between bad and
good events to form LP constraints. The high level idea
is as follows. Suppose f is a relation between A and B,
where f(a) is the set of elements in B related to a ∈ A,
and f−1(b) is the set of elements in A related to b ∈ B.
The injectivity of f is the minimum integer q such that
for all b ∈ B, |f−1(b)| ≤ q. If f has injectivity q, we have
the inequality

∑
a∈A |f(a)| ≤ q|B|, which follows from

counting the number of edges in the bipartite graph
induced by f on A and B. In our constructions, usually
calculating |f(a)| is straightforward, but sometimes
special attention is required to bound the injectivity.

3.1 Monotone Constraints: xt−1 ≥ xt, t ∈ [2..n].
These constraints follow from Lemma 3.1 as the αt’s are
non-negative.

Lemma 3.1. (Bad-to-Marginally Bad) For all t ∈
[n], we have 1 − xt =

∑t
i=1 αi; this implies that for

t ∈ [2..n], xt−1 − xt = αt.

Proof. Fix t ∈ [n]. From the definitions of xt and αt,
it suffices to provide a bijection f from Rt to ∪ti=1Si.
Suppose (σ, u) ∈ Rt. This means (σ, u) is bad, and
hence u has a marginal position tu ≤ t with respect to
σ. We define f(σ, u) := (σtuu , u) ∈ ∪ti=1Si.

Surjective: for each (ρ, v) ∈ ∪ti=1Si, the marginal
position of v with respect to ρ is some i ≤ t; hence, it
follows that (ρtv, v) ∈ Rt is bad, and we have f(ρtv, v) =
(ρ, v).

Injective: if we have f(σ, u) = (ρ, v), it must be the
case that u = v, σ(u) = t, and ρ = σiu for some i; this
implies that σ must be ρtv.

Hence, |Rt| = | ∪ti=1 Si| =
∑t
i=1 |Si|, which is

equivalent to 1−xt =
∑t
i=1 αi, if we divide the equation

by n! on both sides.

3.2 Evolving Constraints:
(
1− t−1

n

)
xt +

2
n

∑t−1
i=1 xi ≥ 1, t ∈ [2..n]. The monotone con-

straints require that the xt’s do not increase. We next
derive the evolving constraints that prevent the xt’s
from dropping too fast. Fix t ∈ [2..n]. We shall define a
relation f between ∪ti=1Si and ∪t−1i=1Qi such that f has
injectivity 1, and for (σ, u) ∈ Si, |f(σ, u)| = n − i + 1.
This implies Lemma 3.2; from Lemma 3.1, we can
express αi = xi−1 − xi (recall α1 = 0), and rearrange
the terms to obtain the required constraint.

Lemma 3.2. (1-to-(n− i+ 1) Mapping) For all t ∈
[2..n], we have

∑t
i=1(n− i+ 1)αi ≤

∑t−1
i=1 xi.

Proof. We define a relation f between A := ∪ti=1Si
and B := ∪t−1i=1Qi. Let (σ, u) ∈ A be a marginally
bad instance. Then, there exists a unique i ∈ [2..t]
such that (σ, u) ∈ Si. If we move u to any position
j ∈ [i..n], (σju, u) is still bad, because i is the marginal
position of u with respect to σ. Moreover, observe that
M(σu) = M(σ) = M(σju) for all j ∈ [i..n].

Hence, it follows that for all j ∈ [i..n], node u’s
perfect partner u∗ is matched in σju to the same node v
such that σ(v) = σju(v) ≤ i− 1 ≤ t− 1, where the first
inequality follows from Fact 2.1. In this case, we define
f(σ, u) := {(σju, v) : j ∈ [i..n]} ⊂ B, and it is immediate
that |f(σ, u)| = n− i+ 1.
Injectivity. Suppose (ρ, v) ∈ B is related to some
(σ, u) ∈ A. It follows that v must be matched to u∗ in
ρ; hence, u is uniquely determined by (ρ, v). Moreover,
(ρ, u) must be bad, and suppose the marginal position
of u with respect to ρ is i, which is also uniquely
determined. Then, it follows that σ must be ρiu. Hence,
(ρ, v) can be related to at most one element in A.

Observing that S1 = ∅, the result follows from∑t
i=1(n − i + 1)|Si| =

∑
a∈A |f(a)| ≤ |B| =

∑t−1
i=1 |Qi|,

since |Si| = n!αi and |Qi| = n!xi.

3.3 Boundary Constraint: xn + 3
2n

∑n
i=1 xi ≥ 1.

One can check (for instance by experiments) that the
monotone and the evolving constraints alone cannot
give ratio better than 0.5. The boundary constraint is
crucial to the success of our LP, and hence we analyze

our construction carefully. The high level idea is that
we define a relation f between Rn and Q := ∪ni=1Qi.
As we shall see, it will be straightforward to show that
|f(a)| = 2n for each a ∈ Rn, but it will require some
work to show that the injectivity is at most 3. Once we
have established these results, the boundary constraint
follows immediately from

∑
a∈Rn

|f(a)| ≤ 3|Q|, because
|Rn|
n! = 1− xn and |Qi|

n! = xi.
Defining relation f between Rn and Q. Consider
a bad instance (σ, u) ∈ Rn. We define f(σ, u) such
that for each i ∈ [n], (σ, u) produces exactly two good
instances of the form (σiu, ∗).

For each i ∈ [n], we consider σiu:

1. if u is unmatched in σiu: (u and u∗ cannot be

both unmatched)

R(1): produce (σiu, u
∗) and include it in f(σ, u);

R(2): let v be the partner of u∗ in σiu; produce
(σiu, v) and include it in f(σ, u).

2. if u is matched in σiu:

R(3): produce (σiu, u) and include it in f(σ, u);

(a) if u∗ is matched to u in σiu:

R(4): produce (σiu, u
∗) and include it in

f(σ, u);

(b) if u∗ is matched to v 6= u in σiu:

R(5): produce (σiu, v) and include it in f(σ, u);

(c) if u∗ is unmatched in σiu: (all neighbors of

u∗ in G must be matched)

R(6): let vo be the partner of u∗ in σ, produce
(σiu, vo) and include it in f(σ, u).

Observe that for k ∈ [6], applying each rule R(k)
produces exactly one good instance. Moreover, for each
i ∈ [n], when we consider σiu, exactly 2 rules will be
applied: if u is unmatched in σiu, then R(1) and R(2)
will be applied; if u is matched in σiu, then R(3) and one
of {R(4),R(5),R(6)} will be applied.

Observation 3.1. For each (σ, u) ∈ Rn, we have
|f(σ, u)| = 2n.

Observation 3.2. If (ρ, x) ∈ f(σ, u), then σ = ρnu and
exactly one rule can be applied to (σ, u) to produce (ρ, x).

Bounding Injectivity. We first show that different
bad instances in Rn cannot produce the same good
instance using the same rule.

Lemma 3.3. (Rule Injectivity) For each k ∈ [6],
any (ρ, x) ∈ Q can be produced by at most one (σ, u) ∈
Rn using R(k).

Proof. Suppose (ρ, x) ∈ Q is produced using a partic-
ular rule R(k) by some (σ, u) ∈ Rn. We wish to show
that in each case k ∈ [6], we can recover u uniquely, in
which case σ must be ρnu.

The first 5 cases are simple. Let y be the partner
of x in ρ. If k = 1 or k = 4, we know that x = u∗ and
hence we can recover u = x∗; if k = 2 or k = 5, we know
that y = u∗ and hence we can recover u = y∗; if k = 3,
we know that u = x.

For the case when k = 6, we need to do a more
careful analysis. Suppose R(6) is applied to (σ, u) ∈ Rn
to produce (ρ, x). Then, we can conclude the following:
(i) in σ = ρnu, u is unmatched, and u∗ is matched to
x; (ii) in ρ, u is matched, u∗ is unmatched, and x is
matched.

For contradiction’s sake, assume that u is not
unique and there are two u1 6= u2 that satisfy the above
properties. It follows that u∗1 6= u∗2 and according to
property (ii), in ρ, both u1 and u2 are matched, and
both u∗1 and u∗2 are unmatched; hence, all 4 nodes
are distinct. Without loss of generality, we assume
that ρ(u∗1) < ρ(u∗2). Let σ2 := ρnu2

, and observe that
σ2(u∗1) < σ2(u∗2).

Now, suppose we start with σ2, and consider what
happens when u2 is promoted in σ2 resulting in ρ.
Observe that u2 changes from unmatched in σ2 to
matched in ρ, and by property (i), u∗2 changes from
matched in σ2 to unmatched in ρ. From Fact 2.2,
every other node must remain matched or unmatched
in both σ2 and ρ; in particular, u∗1 is unmatched in σ2.
However, x is a neighbor of both u∗1 and u∗2 (in G), and
σ2(u∗1) < σ2(u∗2), but x is matched to u∗2 in σ2; this
contradicts Fact 2.1.

Lemma 3.3 immediately implies that the injectivity
of f is at most 6. However, to show a better bound
of 3, we need to show that some of the rules cannot
be simultaneously applied to produce the same good
instance (ρ, x). We consider two cases for the remaining
analysis.

Case (1): x is matched to x∗ in ρ

Lemma 3.4. For (ρ, x) ∈ Q, if x is matched to x∗ in ρ,
then we have |f−1(ρ, x)| ≤ 3.

Proof. If (ρ, x) is produced using R(1), then x∗ must
be unmatched in ρ; if (ρ, x) is produced by (σ, u) using
R(2), then x must be matched to u∗ (6= x∗) in ρ since
x 6= u; similarly, if (ρ, x) is produced by (σ, u) using
R(5), then x (6= u) must be matched to u∗ (6= x∗) in ρ.

Hence, (ρ, x) cannot be produced by R(1), R(2) or
R(5), and at most three remaining rules can produce it.
It follows from Lemma 3.3 that |f−1(ρ, x)| ≤ 3.

Case (2): x is not matched to x∗ in ρ

Observation 3.3. (Unused Rule) For (ρ, x) ∈ Q, if
x is not matched to x∗ in ρ, then (ρ, x) cannot be
produced by applying R(4).

Out of the remaining 5 rules, we show that (ρ, x) can
be produced from at most one of {R(2),R(5)}, and at
most two of {R(1),R(3),R(6)}. After we show these two
lemmas, we can immediately conclude from Lemma 3.3
that |f−1(ρ, x)| ≤ 3 and complete the case analysis.

Lemma 3.5. (One in {R(2),R(5)}) Each (ρ, x) ∈ Q
cannot be produced from both R(2) and R(5).

Proof. Suppose the opposite is true: (σ1, u1) produces
(ρ, x) according to R(2), and (σ2, u2) produces (ρ, x)
according to R(5). This implies that in ρ, x is matched
to both u∗1 and u∗2, which means u1 = u2. By
Observation 3.2, this means σ1 = σ2, which contradicts
the fact that the same (σ, u) ∈ Rn cannot use two
different rules to produce the same (ρ, x) ∈ Q.

Lemma 3.6. (Two in {R(1),R(3),R(6)}) Each
(ρ, x) ∈ Q cannot be produced from all three of R(1),
R(3) and R(6).

Proof. Assume the opposite is true. Suppose (σ1, u1)
produces (ρ, x) using R(1); then, x = u∗1 (hence, x is a
neighbor of u1 in G) and u1 is unmatched in ρ. Suppose
(σ2, u2) produces (ρ, x) using R(3); then, x = u2 is
unmatched in σ2, and matched in ρ. Suppose (σ3, u3)
produces (ρ, x) using R(6); then, u3 is matched in ρ, u∗3
is unmatched in ρ and x is a neighbor (in G) of u∗3.

By Observation 3.2, all of u1, u2 and u3 are distinct.
In particular, observe that u1 = x∗ = u∗2 6= u∗3; hence,
all of u1, u2 and u∗3 are distinct (since u2 is matched in
ρ, but the other two are not).

Now, suppose we start from σ2 = ρnx and promote
x = u2 resulting in ρ. Observe that u2 changes from
unmatched in σ2 to matched in ρ, and both u1 and u∗3
are unmatched in ρ. By Fact 2.2, at least one of u1 and
u∗3 is unmatched in σ2; however, both u1 and u∗3 are
neighbors of x = u2 (in G), which is unmatched in σ2.
This contradicts that fact that in any permutation, two
unmatched nodes cannot be neighbors in G.

We have finally finished the case analysis, and
can conclude the f has injectivity at most 3, thereby
achieving the boundary constraint.

3.4 Lower Bounding the Performance Ratio
by LP Formulation. Combining all the proved con-
straints, the following LPn gives a lower bound on the
performance ratio when Ranking is run on a graph with

n nodes. It is not surprising that the optimal value of
LPn decreases as n increases (although our proof does
not rely on this). In Section 4, we analyze the continu-
ous relaxation LP∞ in order to give a lower bound for
all finite LPn, thereby proving a lower bound on the
performance ratio of Ranking.

LPn min 1
n

∑n
t=1 xt

s.t. x1 = 1,

xt−1 − xt ≥ 0, t ∈ [2..n](
1− t−1

n

)
xt + 2

n

∑t−1
i=1 xi ≥ 1, t ∈ [2..n]

xn + 3
2n

∑n
t=1 xt ≥ 1,

xt ≥ 0, t ∈ [n].

4 Analyzing LPn via Continuous LP∞
Relaxation

In this section, we analyze the limiting behavior of
LPn by solving its continuous LP∞ relaxation, which
contains both monotone and boundary condition con-
straints. We develop new duality and complementary
slackness characterizations to solve for the optimal value
of LP∞, thereby giving a lower bound on the perfor-
mance ratio of Ranking.

4.1 Continuous LP Relaxation To form a contin-
uous linear program LP∞ from LPn, we replace the vari-
ables xt’s with a function variable z that is continuous
in [0, 1] and differentiable almost everywhere in [0, 1].
The dual LD∞ contains a real variable γ, and function
variables w and y, where y is continuous in [0, 1] and
differentiable almost everywhere in [0, 1]. In the rest of
this paper, we use “∀θ” to denote “for almost all θ”,
which means for all but a measure zero set.

LP∞

min
∫ 1

0
z(θ)dθ

s.t. z(0) = 1

z′(θ) ≤ 0, ∀θ ∈ [0, 1]

(1− θ)z(θ) + 2
∫ θ
0
z(λ)dλ ≥ 1, ∀θ ∈ [0, 1]

z(1) + 3
2

∫ 1

0
z(θ)dθ ≥ 1

z(θ) ≥ 0, ∀θ ∈ [0, 1].

LD∞

max
∫ 1

0
w(θ)dθ + γ − y(0)

s.t. (1− θ)w(θ) + 2
∫ 1

θ
w(λ)dλ

+ 3γ
2 + y′(θ) ≤ 1, ∀θ ∈ [0, 1]

γ − y(1) ≤ 0

γ, y(θ), w(θ) ≥ 0, ∀θ ∈ [0, 1].

Continuity Requirement. In other literature [15, 10]
concerning continuous LP, it is often only required that
the functions concerned are measurable. However, we
require z and y to be continuous everywhere in [0, 1],
which is essential in deriving weak duality for LP∞ and
LD∞.

It is not hard to see that xi corresponds to z(in),
but perhaps it is less obvious how LD∞ is formed. We
remark that one could consider the limiting behavior of
the dual of LPn to conclude that LD∞ is the result-
ing program. We show in Section 4.2 that the pair
(LP∞, LD∞) is actually a special case of a more gen-
eral class of primal-dual continuous LP. First, we show
in Lemma 4.1 that LP∞ is a relaxation of LPn.

Lemma 4.1. (Continuous LP Relaxation) The
optimal value of LPn is at least the optimal value of
LP∞.

Proof. We fix n, and let pn and p∞ be the optimal
values for LPn and LP∞, respectively. For the sake of
contradiction, suppose p∞ = pn + δ for some δ > 0,
which may be dependent on n. Let x be an optimal
solution for LPn. In order to obtain a contradiction,
our goal is to construct a feasible solution z (from x) for
LP∞ that has an objective value smaller than pn + δ.

The rest of the proof proceeds in the following
manner. We first construct a natural step function ẑ in
[0, 1] corresponding to x. Although ẑ is not continuous,
it satisfies the constraints of LP∞ and the objective

function evaluates to
∫ 1

0
ẑ(θ)dθ = pn. Then we modify

ẑ into a feasible solution z for LP∞, increasing the
objective value by less than δ.

Recall that x is an optimal solution for LPn. Define
a step function ẑ in interval [0, 1] as follows: ẑ(0) := 1
and ẑ(θ) := xt for θ ∈

(
t−1
n , tn

]
and t ∈ [n]. It follows

that∫ 1

0
ẑ(θ)dθ =

∑n
t=1

∫ t
n
t−1
n

ẑ(θ)dθ = 1
n

∑n
t=1 xt = pn.

We now prove that ẑ satisfies the constraints of LP∞.
Clearly ẑ(0) = 1 and ẑ′(θ) = 0 for θ ∈ [0, 1] \ { tn : 0 ≤
t ≤ n, t ∈ Z}.

Evolving constraint: For every θ ∈ (0, 1], suppose
θ ∈

(
t−1
n , tn

]
, and we have

(1− θ)ẑ(θ) + 2

∫ θ

0

ẑ(λ)dλ

=(1− θ)xt + 2
∑t−1
i=1

∫ i
n
i−1
n

ẑ(λ)dλ+ 2
∫ θ

t−1
n
ẑ(λ)dλ

=(1− θ)xt + 2
n

∑t−1
i=1 xi + 2

(
θ − t−1

n

)
xt

=(1− t−1
n + (θ − t−1

n))xt + 2
n

∑t−1
i=1 xi

≥
(
1− t−1

n

)
xt + 2

n

∑t−1
i=1 xi

≥1,

where the last inequality follows from the feasibility of
x in LPn. The above inequality holds trivially at θ = 0.
Boundary constraint: Using the fact that∫ 1

0
ẑ(θ)dθ = 1

n

∑n
t=1 xt we have

ẑ(1) + 3
2

∫ 1

0
ẑ(θ)dθ = xn + 3

2n

∑n
t=1 xt ≥ 1,

where the last inequality follows from the feasibility of
x in LPn.
Achieving Continuity. Next we define a continuous
function z as follows. Let ε := min{δ, 1

2n}. The idea is
that for t ∈ [2..n], at the transition point t−1

n , we let the
function drop gradually from xt−1 to xt, as θ increases
from t−1

n to t−1
n + ε.

Formally, let z(θ) := x1 = 1 for θ ∈ [0, 1
n]. For each

t ∈ {2, . . . , n}, let

z(θ) :=

{
xt + xt−1−xt

ε

(
t−1
n + ε− θ

)
, θ ∈

(
t−1
n , t−1n + ε

]
xt, θ ∈

(
t−1
n + ε, tn

]
.

Observe that z is continuous on [0, 1]. Moreover,
it is differentiable almost everywhere, and has non-
positive derivative whenever it is differentiable. To
check that z is feasible, observe that z ≥ ẑ on [0, 1],
and so z also satisfies the evolving and the boundary
constraints.

Finally, observe that for each t ∈ [2..n], when we
let the function z drop gradually at the transition point
t−1
n , the difference in area under the curves z and ẑ

on the interval [t−1n , t−1n + ε] is (xt−1−xt)ε
2 . Hence, the

total difference in area under the curves z and ẑ is∑n
t=2

(xt−1−xt)ε
2 = (x1−xn)ε

2 ≤ ε
2 .

It follows that
∫ 1

0
z(θ)dθ ≤

∫ 1

0
ẑ(θ)dθ+ ε

2 = pn+ ε
2 <

pn + δ, obtaining the desired contradiction.

4.2 Primal-Dual for a General Class of Contin-
uous LP We study a class of continuous linear program
CP that includes LP∞ as a special case. In particular,
CP contains monotone and boundary conditions as con-
straints. Let K,L > 0 be two real constants. Let A, B,

C, F be measurable functions on [0, 1]. Let D be a non-
negative measurable function on [0, 1]2. We describe CP
and its dual CD in Figure 1, and present weak duality
and complementary slackness conditions in Lemma 4.2.
In CP, the variable is a function z that is continuous on
[0, 1] and differentiable almost everywhere in [0, 1]; in
CD, the variables are a real number γ, and measurable
functions w and y, where y is continuous on [0, 1] and
differentiable almost everywhere in [0, 1].

CP

min p(z) =
∫ 1

0
A(θ)z(θ)dθ

s.t. z(0) = K(4.1)

z′(θ) ≤ 0, ∀θ ∈ [0, 1](4.2)

B(θ)z(θ) +
∫ θ
0
D(θ, λ)z(λ)dλ

≥ C(θ), ∀θ ∈ [0, 1](4.3)

z(1) +
∫ 1

0
F (θ)z(θ)dθ ≥ L(4.4)

z(θ) ≥ 0, ∀θ ∈ [0, 1].

CD

max d(w, y, γ) =
∫ 1

0
C(θ)w(θ)dθ + Lγ −Ky(0)

s.t. B(θ)w(θ) +
∫ 1

θ
D(λ, θ)w(λ)dλ

+ F (θ)γ + y′(θ) ≤ A(θ), ∀θ ∈ [0, 1](4.5)

γ − y(1) ≤ 0(4.6)

γ, y(θ), w(θ) ≥ 0, ∀θ ∈ [0, 1].

Figure 1: CP and CD

Lemma 4.2. (Weak Duality) Suppose z and
(w, y, γ) are feasible solutions to CP and CD respec-
tively. Then, d(w, y, γ) ≤ p(z). Moreover, suppose
z and (w, y, γ) satisfy the following complementary
slackness conditions ∀θ ∈ [0, 1]:

z′(θ)y(θ) = 0(4.7)

[B(θ)z(θ) +
∫ θ
0
D(θ, λ)z(λ)dλ− C(θ)]w(θ) = 0(4.8)

[z(1) +
∫ 1

0
F (θ)z(θ)dθ − L]γ = 0(4.9)

[B(θ)w(θ) +
∫ 1

θ
D(λ, θ)w(λ)dλ(4.10)

+F (θ)γ + y′(θ)−A(θ)]z(θ) = 0

(γ − y(1))z(1) = 0.(4.11)

Then, z and (w, y, γ) are optimal for CP and CD,
respectively, and achieve the same optimal value.

Proof. Using the primal and dual constraints, we obtain

d(w, y, γ)

=
∫ 1

0
C(θ)w(θ)dθ + Lγ −Ky(0)

≤
∫ 1

0

[
B(θ)z(θ) +

∫ θ
0
D(θ, λ)z(λ)dλ

]
w(θ)dθ

+ Lγ −Ky(0) by (4.3)

=
∫ 1

0

[
B(θ)w(θ) +

∫ 1

θ
D(λ, θ)w(λ)dλ

]
z(θ)dθ

+ Lγ −Ky(0) (*)

≤
∫ 1

0
[A(θ)− F (θ)γ − y′(θ)] z(θ)dθ

+ Lγ −Ky(0) by (4.5)

=
∫ 1

0
A(θ)z(θ)dθ −

∫ 1

0
y′(θ)z(θ)dθ

+ [L−
∫ 1

0
F (θ)z(θ)dθt]γ −Ky(0)

≤
∫ 1

0
A(θ)z(θ)dθ −

∫ 1

0
y′(θ)z(θ)dθ

+ z(1)γ −Ky(0) by (4.4)

=
∫ 1

0
A(θ)z(θ)dθ − y(1)z(1) + y(0)z(0)

+
∫ 1

0
z′(θ)y(θ)dθ + z(1)γ −Ky(0) (**)

≤
∫ 1

0
A(θ)z(θ)dθ + (γ − y(1))z(1) by (4.1), (4.2)

≤
∫ 1

0
A(θ)z(θ)dθ by (4.6)

=p(z),

where in (*) we change the order of integration by
using Tonelli’s Theorem on non-negative measurable

function g:
∫ 1

0

∫ θ
0
g(θ, λ)dλdθ =

∫ 1

0

∫ 1

θ
g(λ, θ)dλdθ; and

in (**) we use integration by parts and the Fundamental
Theorem of Calculus, as both y and z are continuous
everywhere in [0, 1]. Moreover, if z and (w, y, γ) satisfy
conditions (4.7) – (4.11), then all the inequalities above
hold with equality. Hence, d(w, y, γ) = p(z); so z and
(w, y, γ) are optimal for CP and CD, respectively.

4.3 Lower Bound for the Performance Ratio
The performance ratio of Ranking is lower bounded by
the optimal value of LP∞. We analyze this optimal
value by applying the primal-dual method to LP∞.
In particular, we construct a primal feasible solution
z and a dual feasible solution (w, y, γ) that satisfy
the complementary slackness conditions presented in
Lemma 4.2. Note that LP∞ and LD∞ are achieved from
CP and CD by setting K := 1, L := 1, A(θ) := 1,
B(θ) := 1− θ, C(θ) := 1, D(λ, θ) := 2, F (θ) := 3

2 .
We give some intuition on how z is constructed.

An optimal solution to LP∞ should satisfy the primal
constraints with equality for some θ. Setting the

constraint (1− θ)z(θ) + 2
∫ θ
0
z(λ)dλ ≥ 1 to equality, we

get z(θ) = 1−θ. However this function violates the last

constraint z(1) + 3
2

∫ 1

0
z(θ)dθ ≥ 1. Since z is decreasing,

we need to balance between z(1) and
∫ 1

0
z(θ)dθ.

The intuition is that we set z(θ) := 1 − θ for
θ ∈ [0, µ] and allow z to decrease until θ reaches some
value µ ∈ (0, 1), and then z(θ) := 1 − µ stays constant
for θ ∈ [µ, 1]. To determine the value of µ, note that the

equation z(1)+ 3
2

∫ 1

0
z(θ)dθ = 1 should be satisfied, since

otherwise we could construct a feasible solution with
smaller objective value by decreasing the value of z(θ)

for θ ∈ (µ, 1]. It follows that (1−µ)+ 3
2

(
1− µ+ µ2

2

)
=

1, that is, the value of µ ∈ (0, 1) is determined by the
equation 3µ2 − 10µ+ 6 = 0.

After setting z, we construct (w, y, γ) carefully to fit
the complementary slackness conditions. Formally, we
set z and (w, y, γ) as follows with their plots in Figure 2.

z(θ) =

{
1− θ, 0 ≤ θ ≤ µ
1− µ, µ < θ ≤ 1

w(θ) =

{
2(1−µ)2

(5−3µ)(1−θ)3 , 0 ≤ θ ≤ µ
0, µ < θ ≤ 1

y(θ) =

{
0, 0 ≤ θ ≤ µ
2(θ−µ)
5−3µ , µ < θ ≤ 1

γ = 2(1−µ)
5−3µ ,

where µ = 5−
√
7

3 is a root of the equation

3µ2 − 10µ+ 6 = 0.

0 0.5 1

1

2

3

θ
µ

1− µ
γ

 z(θ)

y(θ)

w(θ)

Figure 2: Optimal z and (w, y, γ)

Lemma 4.3. (Optimality of z and (w, y, γ)) The
solutions z and (w, y, γ) constructed above are optimal
for LP∞ and LD∞, respectively. In particular, the

optimal value of LP∞ is 2(5−
√
7)

9 ≈ 0.523.

Proof. We list the complementary slackness conditions
and check that they are satisfied by z and (w, y, γ).
Then Lemma 4.2 gives the optimality of z and (w, y, γ).

(4.7) z′(θ)y(θ) = 0: we have y(θ) = 0 for θ ∈ [0, µ) and
z′(θ) = 0 for θ ∈ (µ, 1].

(4.8) [(1− θ)z(θ) + 2
∫ θ
0
z(λ)dλ− 1]w(θ) = 0: we have

(1− θ)z(θ) + 2
∫ θ
0
z(λ)dλ− 1

=(1− θ)2 + 2(θ − θ2

2)− 1

=0

for θ ∈ [0, µ) and w(θ) = 0 for θ ∈ (µ, 1].

(4.9) [z(1) + 3
2

∫ 1

0
z(θ)dθ − 1]γ = 0: we have

z(1) + 3
2

∫ 1

0
z(θ)dθ − 1

=(1− µ) + 3
2

(
1− µ+ µ2

2

)
− 1

=0

by the definition of µ.

(4.10) [(1− θ)w(θ) + 2
∫ 1

θ
w(λ)dλ+ 3γ

2 + y′(θ)− 1]z(θ)
= 0: for θ ∈ [0, µ), we have

(1− θ)w(θ) + 2
∫ 1

θ
w(λ)dλ+ 3γ

2 + y′(θ)− 1

= 2(1−µ)2
(5−3µ)(1−θ)2 + 2

∫ µ
θ
w(λ)dλ+ 3(1−µ)

5−3µ + 0− 1

=0,

and for θ ∈ (µ, 1], we have

(1− θ)w(θ) + 2
∫ 1

θ
w(λ)dλ+ 3γ

2 + y′(θ)− 1

= 3γ
2 + y′(θ)− 1 = 3(1−µ)

5−3µ + 2
5−3µ − 1

=0.

(4.11) (γ − y(1))z(1) = 0: we have

γ − y(1) = 2(1−µ)
5−3µ −

2(1−µ)
5−3µ = 0.

Moreover, the optimal value of LP∞ is
∫ 1

0
z(θ)dθ =

1− µ+ µ2

2 = 2(5−
√
7)

9 ≈ 0.523.

Proof of Theorem 1.1: The ratio of Ranking is
lower bounded by the optimal value of LPn. Hence, the
theorem follows from Lemmas 4.1 and 4.3.

Figure 3: Double Bomb Graph

5 Hardness Result

Our experiments suggest that the hardness result in [8]
can be slightly improved by adjusting the parameter of
their hard instance. An example of the graph is shown
in Figure 3. We define the graph as follows:

Let G be a bipartite graph over 2(3 + ε)n vertices
(ui’s and vi’s). Define the edges by adjacency matrix
A. (A[i][j] = 1 if there is an edge between ui and vj .)

A[i][j] =

1 if i = j

1 if i ∈ [1, n], j ∈ (n, (2 + ε)n]

1 if i ∈ (n, (2 + ε)n], j ∈ ((2 + ε)n, (3 + ε)n]

0 otherwise

We run experiments on different n’s and ε’s (each for
100, 000 times) and get the following results.

n 20 50 100 200 500
ε = 0.33 0.7344 0.7297 0.7281 0.7272 0.7267
ε = 0.63 0.7314 0.7267 0.7253 0.7244 0.7240
ε = 0.90 0.7318 0.7274 0.7260 0.7252 0.7248

We observe that when ε ≈ 1 − 1/e the ratio is
minimized for this kind of graph. It is close to 0.724
in this case. We leave as future work to analyze it
theoretically.

References

[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande,
and Aranyak Mehta. Online vertex-weighted bipar-
tite matching and single-bid budgeted allocations.
SODA’11, pages 1253–1264. SIAM, 2011.

[2] S. Anand, Naveen Garg, and Amit Kumar. Resource
augmentation for weighted flow-time explained by dual
fitting. SODA ’12, pages 1228–1241. SIAM, 2012.

[3] Jonathan Aronson, Martin Dyer, Alan Frieze, and
Stephen Suen. Randomized greedy matching. ii. Ran-
dom Struct. Algorithms, 6(1):55–73, January 1995.

[4] Martin E. Dyer and Alan M. Frieze. Randomized
greedy matching. Random Struct. Algorithms, 2(1):29–
46, 1991.

[5] Gagan Goel and Aranyak Mehta. Online budgeted
matching in random input models with applications
to adwords. SODA’08, pages 982–991, Philadelphia,
PA, USA, 2008. Society for Industrial and Applied
Mathematics.

[6] Gagan Goel and Pushkar Tripathi. Matching with our
eyes closed. FOCS’12, pages 718–727, Washington,
DC, USA, 2012. IEEE Computer Society.

[7] Gagan Goel and Pushkar Tripathi. Matching with our
eyes closed. CoRR, abs/1306.2988, 2013.

[8] Chinmay Karande, Aranyak Mehta, and Pushkar Tri-
pathi. Online bipartite matching with unknown dis-
tributions. STOC’11, pages 587–596, New York, NY,
USA, 2011. ACM.

[9] R. M. Karp, U. V. Vazirani, and V. V. Vazirani.
An optimal algorithm for on-line bipartite matching.
STOC’90, pages 352–358, New York, NY, USA, 1990.
ACM.

[10] N. Levinson. A class of continuous linear programming
problems. Journal of Mathematical Analysis and Ap-
plications, 16:73–83, 1966.

[11] Mohammad Mahdian and Qiqi Yan. Online bipartite
matching with random arrivals: an approach based on
strongly factor-revealing lps. STOC’11, pages 597–606,
New York, NY, USA, 2011. ACM.

[12] Silvio Micali and Vijay V. Vazirani. An O(
√
V E)

algorithm for finding maximum matching in general
graphs. In FOCS’80, pages 17–27. IEEE Computer
Society, 1980.

[13] Matthias Poloczek and Mario Szegedy. Randomized
greedy algorithms for the maximum matching problem
with new analysis. 0:708–717, 2012.

[14] Alvin E. Roth, Tayfun Sonmez, and M. Utku Unver.
Pairwise kidney exchange. Working Paper 10698,
National Bureau of Economic Research, August 2004.

[15] William F. Tyndall. A duality theorem for a class
of continuous linear programming problems. Journal
of the Society for Industrial and Applied Mathematics,
13(3):pp. 644–666, 1965.

	Introduction
	Our Contribution and Techniques
	Related Work

	Preliminaries
	Relating Bad and Good Events to Form LP Constraints
	Monotone Constraints: xt-1 xt, t [2..n].
	Evolving Constraints: (1-t-1n) xt + 2n i=1t-1 xi 1, t [2..n].
	Boundary Constraint: xn + 32n i=1n xi 1.
	Lower Bounding the Performance Ratio by LP Formulation.

	Analyzing LPn via Continuous LP Relaxation
	Continuous LP Relaxation
	Primal-Dual for a General Class of Continuous LP
	Lower Bound for the Performance Ratio

	Hardness Result

