Probability Review

Random Variable

Random Variables

In many cases, we associate a *numeric value* with each outcome of an experiment.

For instance,

consider the experiment of flipping a coin 10 times, each outcome can be associated with

- the number of heads,
- the difference between heads & tails, etc.

Each quantity above is called a *random variable*; note that its value depends on the outcome of the experiment and is not fixed in advance.

Formally speaking

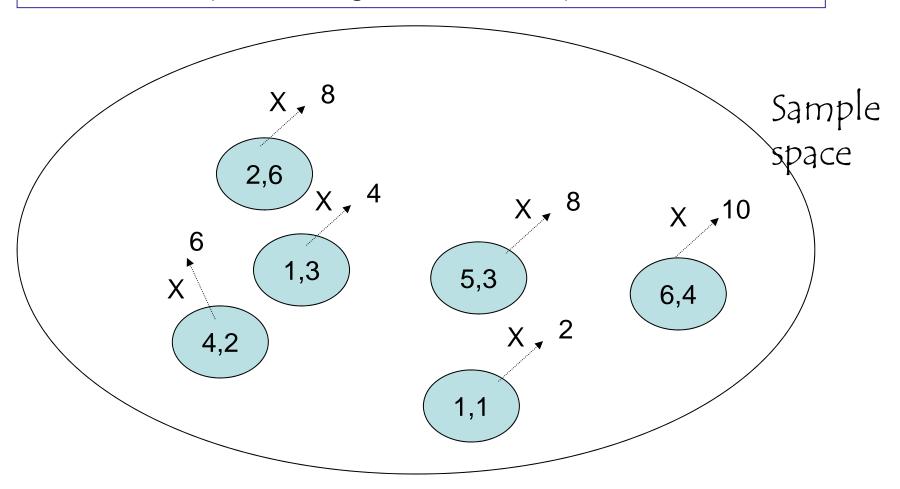
With respect to an experiment, a random variable is a *function*

- from the set of possible outcomes Ω
- to the set of real numbers.

NB. A random variable is characterised by the sample space of an experiment.

Example: Let X be the sum of the numbers obtained by rolling a pair of fair dice.

There are 36 possible outcomes, each defines a value of X (in the range from 2 to 12).



Random variables and events

A more intuitive way to look at the random variable X is to examine the probability of each possible value of X.

E.g., consider the previous example:

- Let p(X=3) be the <u>probability of the event</u> that the sum of the two dice is 3.
 - This event comprises two outcomes, (1,2) and (2,1).
- p(X=3) = 2/36.

Random variables and events

```
In general, for any random variable X, p(X = i) = the sum of the probability of all the outcomes <math>y such that X(y) = i. \sum_{i \in the range of X} p(X = i) = 1
```

Expected value

In the previous example, what is the expected value (average value) of X?

```
Out of the 36 outcomes,
(1,1): X=2
(1,2), (2,1): X=3
(1,3), (2,2), (3,1): X=4
(1,4), (2,3), (3,2), (4,1): X=5
(1,5), (2,4), (3,3), (4,2), (5,1): X=6
(1,6), (2,5), (3,4), (4,3), (5,2), (6,1):
   X=7
(2,6), (3,5), (4,4), (5,3), (6,2): X=8
(3,6), (4,5), (5,4), (6,3): X=9
(4,6), (5,5), (6,4): X=10
(5,6), (6,5): X=11
(6,6): X=12
```

```
Expected value of X =

(2 + 3x2 + 4x3 + 5x4
+ 6x5 + 7x6 + 8x5 + 9x4
+ 10x3 + 11x2 + 12) / 36
```

= 7

Definition

Consider an experiment with a sample space **S**. For any outcome y in **S**, let p(y) be the probability y occurs

Let X be an integer random variable over S. That is, every outcome y in S defines a value of X, denoted by X(y).

We define the expected value of X to be

$$\sum_{y \in S} p(y) X(y)$$

or equivalently,

$$\sum_{i \in Z} p(X = i) i$$

Example

What is the <u>expected number of heads</u> in flipping a fair coin four times?

Prob [# of heads = 1]
1
$$\times$$
 C(4,1) 1/2 (1/2)³
+ 2 \times C(4,2) (1/2)² (1/2)²
+ 3 \times C(4,3) (1/2)³ 1/2
+ 4 \times (1/2)⁴
= 4/16 + 2 \times 6/16 + 3 \times 4/16 + 4 \times 1/16
= 2

Example: Network Protocol

```
Repeat
flip a fair coin twice;
if "head + head" then send a packet to the network;
until "sent"
```

What is the expected number of iterations used by the protocol?

Example

Let p be the probability of success within each trial. Let q be the probability of failure within each trial.

$$\sum_{i=1 \text{ to } \infty} \text{ (prob of sending the packet in the i-th trial) i}$$

$$= \sum_{i=1 \text{ to } \infty} (q^{i-1}p) i$$

$$= p \sum_{i=1 \text{ to } \infty} (q^{i-1}) i$$

$$= p / (1 - q)^2$$

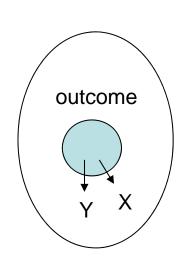
$$= 1 / p$$

Useful rules for deriving expected values

Let X and Y be random variables on a space S, then

- X + Y is also a random variable on S, and
- E(X + Y) = E(X) + E(Y).

Proof.



Example

- Use the "sum rule" to derive the expected value of the sum of the numbers when we roll a pair of fair dice (denoted by X).
- Suppose the dice are colored red & blue.
- Let X₁ be the number on the red dice when we roll a pair of red & blue dice, and similarly X₂ for the blue dice.

$$E(X_1) = E(X_2) = ?$$

• Obviously, $X = X_1 + X_2$. Thus, $E(X) = E(X_1) + E(X_2) = .$

What about product?

Let X and Y be two random variables of a space S.

Is
$$E(XY) = E(X) E(Y)$$
?

What about product?

Let X and Y be two random variables of a space S. Is E(XY) = E(X) E(Y)?

Example 1: Consider tossing a coin twice.
Associate "head" with 2 and "tail" with 1.
What is the expected value of the product of the numbers obtained in tossing a coin twice.

- $(1,1) \rightarrow 1$; $(1,2) \rightarrow 2$; $(2,1) \rightarrow 2$; $(2,2) \rightarrow 4$
- Expected product = (1+2+2+4)/4 = 2.25
- Expected value of 1st flip: (1+2)/2 = 1.5
- Expected value of 2nd flip: (1+2)/2 = 1.5

Note that $2.25 = 1.5 \times 1.5!$

Counter Example

Consider the previous experiment again. Define a random variable X as follows:

X=(the first number) x (the sum of the two numbers)

- $(1,1) \rightarrow 1 \times 2 = 2$
- $(1,2) \rightarrow 1 \times 3 = 3$
- $(2,1) \rightarrow 2 \times 3 = 6$
- $(2,2) \rightarrow 2 \times 4 = 8$

Expected value = 4.75

- Expected value of 1st number = 1.5
- Expected sum = (2 + 3 + 3 + 4)/4 = 3

 $4.75 \neq 1.5 \times 3$

Why! Because the first # & the sum are not independent.

Counter Example

Consider the experiment of flipping a fair coin twice.

Expected (number of) heads = 1

Expected tails = 1

Expected heads \times expected tails = 1

Expected (heads \times tails) = 2 / 4 = 0.5

Independent random variables

Two random variables X and Y over a sample space S are independent if

for all real numbers r_1 and r_2 , the events " $\mathbf{X} = \mathbf{r_1}$ " and " $\mathbf{Y} = \mathbf{r_2}$ " are independent,

i.e.,
$$p(X = r_1 \text{ and } Y = r_2) = p(X = r_1) \times p(Y = r_2)$$
.

Product rule.

If X and Y are independent random variables on a space S, then E(XY) = E(X) E(Y).