

Background

- Problem of scale is a key issue for SE
- For small scale, understand and specifying requirements is easy
- For large problem very hard; probably the hardest, most problematic and error prone
- Input : user needs in minds of people
- Output: precise statement of what the future system will do

Requirements

Background..

- Identifying and specifying requirement necessarily involves people interaction
- Cannot be automated
- Req. phase ends with a software requirements specification (SRS) document
- SRS specifies what the proposed system should do

equirements

Background..

- Requirements understanding is hard
 - Visualizing a future system is difficult
 - Capability of the future system not clear, hence needs not clear
 - Requirements change with time
 - **.** ...
- Essential to do a proper analysis and specification of requirements

irements

Need for SRS

- SRS establishes basis of agreement between the user and the supplier.
 - Users needs have to be satisfied, but user may not understand software
 - Developers will develop the system, but may not know about problem domain
 - SRS is the medium to bridge the commn. gap and specify user needs in a manner both can understand

nuirements

Need for SRS...

- Helps user understand his needs.
 - users do not always know their needs
 - must analyze and understand the potential
 - the goal is not just to automate a manual system, but also to add value through IT
 - The req process helps clarify needs
- SRS provides a reference for validation of the final product
 - Clear understanding about what is expected.
 - Validation " SW satisfies the SRS "

Requirements

6

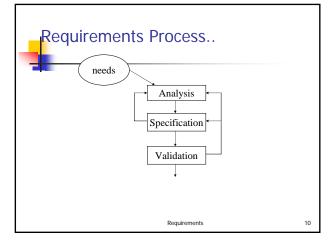
Need for SRS...

- Good SRS reduces the development cost
 - SRS errors are expensive to fix later
 - Requirement changes can cost a lot (up to 40%)
 - Good SRS can minimize changes and errors
 - Substantial savings; extra effort spent during req. saves multiple times that effort
- An Example
 - Cost of fixing errors in requirement, design, coding, acceptance testing and operation are 2, 5, 15, 50, 150 person-months

Requirements

Need for SRS...

Example ...


- After req. phase 65% requirement errors detected in design , 2% in coding, 30% in Acceptance testing, 3% during operation
- If 50 requirement errors are not removed in the req. phase, the total cost 32.5 *5 + 1*15 + 15*50 + 1.5*150 = 1152 hrs
- If 100 person-hours invested additionally in requirement to catch these 50 defects, then development cost could be reduced by 1152 person-hours.
- Net reduction in cost is 1052 person-hours

Requirements

Requirements Process

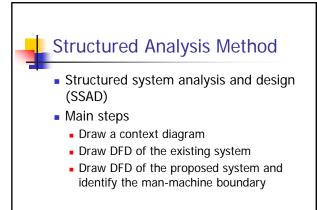
- Sequence of steps that need to be performed to convert user needs into SRS
- Process has to elicit needs and requirements and clearly specifies it
- Basic activities
 - problem or requirement analysis
 - requirement specification
 - validation
- Analysis involves elicitation and is the hardest

Requirements

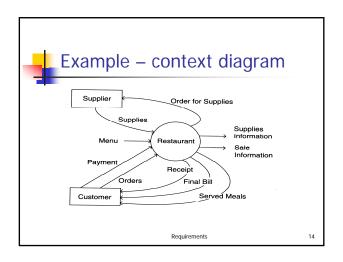
Problem Analysis

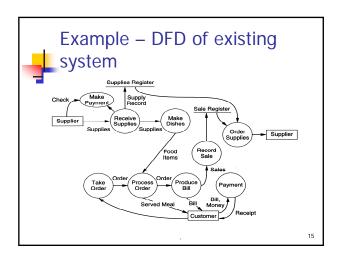
- Aim: to gain an understanding of the needs, requirements, and constraints on the software
- Analysis involves
 - interviewing client and users
 - reading manuals
 - studying current systems
 - helping client/users understand new possibilities
 - Like becoming a consultant
- Must understand the working of the organization , client and users

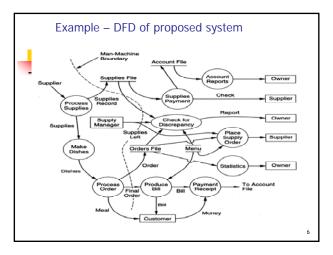
ISCIS ements


Problem Analysis...

Some issues


- Obtaining the necessary information
- Brainstorming: interacting with clients to establish desired properties
- Information organization, as large amount of info. gets collected
- Ensuring completeness
- Ensuring consistency
- Avoiding internal design


Requirements


rements 12


Requirements

Requirements Specification Final output of requirements task is the SRS Transition from analysis to specification is not straight forward knowledge about the system acquired in analysis used in specification

Characteristics...

Correctness

- Each requirement accurately represents some desired feature in the final system
- Completeness
 - All desired features/characteristics specified
 - Hardest to satisfy
 - Completeness and correctness strongly related
- Unambiguous
 - Each requirement has exactly one meaning
 - Without this errors will creep in
 - Important as natural languages often used

Requirements

19

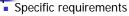
Characteristics...

- Verifiability
 - There must exist a cost effective way of checking if sw satisfies requirements
- Consistent
 - two requirements don't contradict each other
- Traceable
 - The origin of the req, and how the req relates to software elements can be determined
- Ranked for importance/stability
 - Needed for prioritizing in construction
 - To reduce risks due to changing requirements

Requirements

20

Components of an SRS


- An SRS must specify requirements on
 - Functionality
 - Performance
 - Design constraints
 - External interfaces

Structure of an SRS

Introduction

- Purpose , the basic objective of the system
- Scope of what the system is to do , not to do
- Overview
- Overall description
 - Product perspective
 - Product functions
 - User characteristics
 - Assumptions
 - Constraints

Structure of an SRS...

- External interfaces
- Functional requirements
- Performance requirements
- Design constraints
- Acceptable criteria
 - desirable to specify this up front.
- This standardization of the SRS was done by IEEE.

Requirements

Summary

- Having a good quality SRS is essential for Q&P
- The req. phase has 3 major sub phases
 - analysis , specification and validation
- Analysis
 - for problem understanding and modeling
 - Methods used: SSAD, OOA, Prototyping
- Key properties of an SRS: correctness, completeness, consistency, traceablity, unambiguousness

Summary..

- Specification
 - must contain functionality , performance , interfaces and design constraints
 - Mostly natural languages used

Requirements

25