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Abstract

The performance of face photo-sketch translation has improved a lot thanks to deep neural networks. GAN based
methods trained on paired images can produce high-quality results under laboratory settings. Such paired datasets are,
however, often very small and lack diversity. Meanwhile, Cycle-GANs trained with unpaired photo-sketch datasets
suffer from the steganography phenomenon, which makes them not effective to face photos in the wild. In this
paper, we introduce a semi-supervised approach with a noise-injection strategy, named Semi-Cycle-GAN (SCG),
to tackle these problems. For the first problem, we propose a pseudo sketch feature representation for each input
photo composed from a small reference set of photo-sketch pairs, and use the resulting pseudo pairs to supervise a
photo-to-sketch generator Gp2s. The outputs of Gp2s can in turn help to train a sketch-to-photo generator Gs2p in a self-
supervised manner. This allows us to train Gp2s and Gs2p using a small reference set of photo-sketch pairs together
with a large face photo dataset (without ground-truth sketches). For the second problem, we show that the simple
noise-injection strategy works well to alleviate the steganography effect in SCG and helps to produce more reasonable
sketch-to-photo results with less overfitting than fully supervised approaches. Experiments show that SCG achieves
competitive performance on public benchmarks and superior results on photos in the wild.

1. Introduction

Face photo-sketch translation can be considered as a
specific type of image translation between an input face
photo and sketch. It has a wide range of applications. For
example, police officers often have to identify criminals
from sketch images, sketch images are also widely used
in social media.

There are lots of works on face photo-sketch transla-
tion. Traditional methods are based on patch matching.
They usually divide an input photo into small patches and
find corresponding sketch patches in a reference dataset
composed of well-aligned photo-sketch pairs. In this way,
they (Song et al., 2014; Zhou et al., 2012; Zhu et al.,
2017b; Wang and Tang, 2009) achieved pleasant results
without explicitly modeling the mapping between pho-
tos and sketches, which is highly non-linear and diffi-
cult. However, sketches generated by these methods are

often over-smoothed and lack subtle contents, such as
ears in Fig. 1(a)(ii). Moreover, these methods are usu-
ally very slow due to the time-consuming patch match-
ing and optimization process. Recent methods based on
Convolutional Neural Networks (CNNs) try to directly
learn the translation between photos and sketches. How-
ever, results produced by simple CNNs are usually blurry
(see Fig. 1(a)(iii)), and Generative Adversary Networks
(GAN) (Goodfellow et al., 2014) often generate unpleas-
ant artifacts (see Fig. 1(a)(iv)). Finally, due to the lack of
large training datasets, these learning-based approaches
cannot generalize well to photos in the wild.

Latest works (Yu et al., 2020; Wang et al., 2017a; Fang
et al., 2020) utilize Cycle-GAN (Zhu et al., 2017a) to
learn the translation between photos and sketches. Cycle-
GAN is designed for unpaired translation between dif-
ferent domains. Styles are translated with a discrimi-
nator loss and content consistency is guaranteed with a
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(i) Photo (ii) RSLCR (iii) FCN (iv) Pix2Pix (v) Ours
(a) Example results of different methods on the public benchmarks.
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Figure 1: Example results comparison and the proposed pseudo
sketch feature.

cycle-consistency loss. However, the cycle-consistency
loss used to constrain content is weak, and therefore these
methods still require paired data to calculate an MSE
(mean squared error) loss between the prediction and
ground truth. In experiments, we observed that models
directly using unpaired Cycle-GAN fail to preserve facial
content (see Fig. 2). This is because Cycle-GAN learns to
“hide” information of the input photos in the generated
sketches as invisible high-frequency noise, also called
steganography (Chu et al., 2017; Bashkirova et al., 2019).
It makes it difficult to learn face photo-sketch translation
with Cycle-GAN in an unpaired setting. Please refer to
Sec. 3.1 for a detailed discussion.

In this paper, we propose a semi-supervised learning
framework based on Cycle-GAN, named Semi-Cycle-
GAN (SCG), for face photo-sketch translation. To ensure
content consistency, we introduce a novel pseudo sketch
feature (PSF) to supervise the training of the photo-to-
sketch generator Gp2s. Figure 1(b) shows the pipeline
to construct PSF for an input photo without ground
truth sketch. Suppose we have a small reference set of
photo-sketch pairs and a large face photo dataset without
ground-truth sketches. Similar to the exemplar-based ap-
proach, we first subdivide an input photo and its VGG-19
(Simonyan and Zisserman, 2014) feature maps into over-
lapping patches. We then match (in the feature space)
these photo patches with the photo patches in the refer-
ence set and compose a PSF from the VGG-19 features
of the corresponding sketch patches in the reference set.
We next supervise the training of Gp2s using the MSE be-
tween the feature maps of the generated sketch and the

PSF of the input photo. The motivation for PSF is that
styles of sketches are consistent for facial components
with similar shapes. To find corresponding sketch patches
for an input photo, we only need to match the facial com-
ponents with similar shapes in the reference set. Since
the shapes of facial components are limited, a small refer-
ence set with a few hundreds of photo-sketch pairs is often
sufficient for this purpose. However, the same approach
cannot be used for training the sketch-to-photo genera-
tor Gs2p because sketch patches with the same shape may
give rise to photo patches of many different styles. In-
stead, we follow Cycle-GAN and use sketches generated
by Gp2s to train Gs2p in a self-supervised manner. Al-
though the proposed PSF helps to constrain the contents
of the output sketches from Gp2s, we find steganography
still exists and is quite harmful to the training of Gs2p be-
cause it learns to cheat. To solve this problem, we employ
a simple noise-injection strategy to disrupt the invisible
steganography and force Gs2p to learn better translation
from sketches to photos. Although the inputs of Gs2p are
noisy during training, we observed that Gs2p can handle
clean sketches quite well during testing due to the intrin-
sic image prior of CNNs (Ulyanov et al., 2017). Exper-
iments demonstrated that the noise-injection strategy can
largely benefit the training of Gs2p.

In summary, our main contributions are:
• We propose a semi-supervised learning framework

based on Cycle-GAN, named Semi-Cycle-GAN, for
face photo-sketch translation.
• The proposed pseudo sketch feature (PSF) allows us

to train Gp2s using a small reference set of photo-
sketch pairs together with a large face photo dataset
without ground-truth sketches. This enables our net-
works to generalize well to face photos in the wild.
• We introduce a self-supervised approach to train the

sketch-to-photo generator Gs2p without using real
sketches through cycle-consistency. In particular,
we find that cycle-consistency loss suffers greatly
from invisible steganography, and the simple noise-
injection strategy helps a lot to improve it.

A preliminary version of this work appeared in Chen
et al. (2018a). We extend it in five aspects: (1) we
combine our previously proposed semi-supervised learn-
ing framework with cycle-consistency to conduct both
photo-to-sketch and sketch-to-photo translations; (2) we
find that cycle-consistency loss suffers greatly from invis-
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ible steganography, and the simple noise-injection strat-
egy helps a lot to improve it; (3) we add a Gram ma-
trix loss based on PSF which provides second-order style
supervision; (4) we provide more comparisons with re-
cently proposed methods such as PS2MAN (Wang et al.,
2017a), SCA-GAN (Yu et al., 2020), Knowledge Transfer
(Zhu et al., 2019) (denoted as KT), GENRE (Li et al.,
2021) and PANet (Nie et al., 2022); (5) we adopt re-
cent perceptual oriented metrics (i.e., LPIPS (Zhang et al.,
2018a), DISTS (Ding et al., 2020), and FID (Heusel et al.,
2017)) for performance evaluation. In particular, our ex-
tended framework shows better performance than Chen
et al. (2018a).

2. Related Works

Exemplar-Based Methods Since photos and sketches are
in two different modalities, it is not straightforward to
learn a direct mapping between them. Tang and Wang
(2003) introduced eigentransformation to perform exem-
plar matching between photos and sketches by assuming a
linear transformation between them. Liu et al. (2005) no-
ticed that the linear assumption holds better locally, and
proposed the patch-based local linear embedding (LLE).
Wang and Tang (2009) introduced a multi-scale markov
random fields (MRF) model to resolve inconsistency be-
tween adjacent patches. Zhang et al. (2010) extended
MRF with shape priors and SIFT features. Zhou et al.
(2012) proposed the markov weight fields (MWF) model
to synthesize new sketch patches that are not present in the
training dataset. Gao et al. (2012) proposed to adaptively
determine the number of candidate patches by sparse rep-
resentation. Wang et al. (2013) proposed a transductive
model which optimizes the MRF-based photo-to-sketch
and sketch-to-photo models simultaneously. A few works
such as Song et al. (2014)and Wang et al. (2017b) tried
to improve the efficiency of the sketch generation proce-
dure. Recent methods Zhu et al. (2017b) and Chen et al.
(2018b) used features from a pretrained CNN network as
the patch feature to replace unrobust traditional features.

Learning-Based Methods In recent years, CNN based
methods have become the mainstream. Zhang et al.
(2015) proposed to directly translate the input photo to
sketch with a fully convolution network (FCN). Zhang
et al. (2017) introduced a branched fully convolutional

Photo → Sketch → Photo Sketch → Photo → Sketch

Photo→ Sketch→ Photo Sketch→ Photo→ Sketch

Figure 2: Illustration of steganography when training Cycle-
GAN with unpaired data.

network (BFCN) which is composed of a content branch
and a texture branch with different losses. Wang et al.
(2017d) improved the vanilla GAN with multi-scale struc-
ture for face photo-sketch translation. Wang et al.
(2017a) introduced multi-scale discriminators to Cycle-
GAN. Zhang et al. (2018b) proposed multi-domain ad-
versarial learning in the latent feature space of faces and
sketches. Fang et al. (2020) introduced VGG-based fea-
ture identity loss to better preserve identity information.
Yu et al. (2020) extended Cycle-GAN (Zhu et al., 2017a)
with facial parsing map and proposed the SCA-GAN.
Some recent popular works (Yi et al., 2019, 2020b,a;
Huang et al., 2021; Li et al., 2020) consider a different
kind of portrait style with simple thick lines and achieve
pleasant results. However, it is out of the scope of this pa-
per and hence we do not compare with them in this work.

3. Semi-Cycle-GAN with noise-injection

3.1. Steganography in Cycle-GAN

In this section, we first give a brief review of the
unpaired Cycle-GAN for face photo-sketch translation.
We then show how Cycle-GAN cheats with invisible
steganography. Given a photo set P and a sketch set S ,
Cycle-GAN learns two generators: a photo-to-sketch gen-
erator Gp2s that maps photo p ∈ P to sketch s ∈ S ,
and a symmetric sketch-to-photo generator Gs2p that maps
sketch s ∈ S to photo p ∈ P (see Fig. 3(a)). Two discrim-
inators Ds and Dp are used to minimize the style differ-
ences between the generated and real sketches (i.e., ŝ and
s) and between generated and real photos (i.e., p̂ and p).
Cycle-consistency losses are used to constrain content in-
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formation in photo-sketch translation and are given by:

Lcycp = E[∥Gs2p(Gp2s(p)) − p∥],
Lcycs = E[∥Gp2s(Gs2p(s)) − s∥].

(1)

Note that Eq. (1) does not impose a direct constraint over
Gp2s(p) and Gs2p(s), and this leads to a large solution
space. Chu et al. (2017) pointed out that Cycle-GAN
tends to hide invisible steganography in the outputs to sat-
isfy the cycle-consistency constraint when two domains
have different complexity. Specifically, in face photo-
sketch translation, the photo domain P is much more
complex than the sketch domain S , which makes learn-
ing of Gs2p much more difficult than Gp2s. As a con-
sequence, when we train Gs2p and Gp2s in an unpaired
manner with cycle-consistency, the networks tend to learn
a trivial solution by cheating with steganography rather
than learning the desired translation networks. Figure 4
provides a theoretical illustration of steganography ef-
fect and how noise-injection helps to solve this problem.
Given that the high-dimensional photo domain P contains
a more extensive range of information in comparison to
the low-dimensional sketch domain S , it poses a consid-
erable challenge for the Gs2p network to reconstruct the
missing information (e.g., hair color) from grayscale in-
put sketches. The networks tend to learn to conceal the
extra information in a low-amplitude signal (i.e., the red
curve) to facilitate seamless reconstruction of the high-
dimensional signal while retaining the appearance of the
sketch signal. Since steganography needs to be low-
amplitude signals, it is vulnerable to disruption through
the application of random noise. In addition, Gs2p with
random noise will act as a normal GAN to complement
missing information in the low-dimensional sketch do-
main.

Figure 2 shows some example results when training
Cycle-GAN with unpaired dataset. We can observe from
the left half of Fig. 2 (photo→sketch→photo) that the lost
letter in the generated sketch was recovered in the recon-
structed photo, and extra glasses in the sketch were re-
moved. A similar phenomenon also appears in the right
half (sketch→photo→sketch). Closely related works in-
cluding Chu et al. (2017) and Bashkirova et al. (2019)
focus on how to avoid adversarial attack that is usually in-
visible in the images. We, on the other hand, are the first
to study the visual effects brought by such steganography

p ŝ̂s pGp2sGp2s
Gs2pGs2p

Cycle-Consistency
Loss

s p̂̂p s
Cycle-Consistency

Loss

DsDs
DpDp

Gp2sGp2sGs2pGs2p

(a) Unpaired CycleGAN architecture

Cycle-Consistency
Loss

Dp

ŝp

Ds

Gs2pGp2s p

PSF Loss z1

(b) Our Semi-Cycle-GAN architec-
ture

Figure 3: Framework of unpaired Cycle-GAN and our Semi-
Cycle-GAN for face-sketch translation.
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Figure 4: Theoretical illustration of how noise-injection works.

in face photo-sketch translation, which have been ignored
by previous works based on Cycle-GAN (Yu et al., 2020;
Wang et al., 2017a).

To solve this problem, we propose the Semi-Cycle-
GAN framework for face photo-sketch translation. As
shown in Fig. 3(b), our framework is composed of four
networks, namely Gp2s, Gs2p, Ds, and Dp. Unlike Cycle-
GAN, we do not use the bidirectional cycle-consistency
loss as a content constraint. We use PSF loss (see Sec. 3.2
for details) to supervise the training of Gp2s, and cycle-
consistency loss with noise-injection to supervise the
training of Gs2p. In this manner, we can train our Semi-
Cycle-GAN using a small paired photo-sketch dataset to-
gether with a large face dataset.

3.2. Pseudo Sketch Feature

Given a test photo p, our target is to construct a pseudo
sketch feature Φ′(p) as the supervision using the refer-
ence set R{(pRi , s

R
i )}Ni=1, where pRi and pRi are photos and

sketches in R. We first use a pretrained VGG-19 network
to extract a feature map for p at the l-th layer, denoted
as Φl(p). Similarly, we can get the feature maps for pho-
tos and sketches in the reference dataset, i.e., {Φl(pRi )}Ni=1
and {Φl(sRi )}Ni=1. The feature maps are then subdivided
into k × k patches for the following feature patch match-
ing process. For simplicity, we denote a vectorized rep-
resentation of a k × k patch centered at a point j of
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Φl(p) as Ψ j

(
Φl(p)

)
, and the same definition applies to

Ψ j

(
Φl(pRi )

)
and Ψ j(Φl

(
sRi )
)
. For each patch Ψ j

(
Φl(p)

)
,

where j = 1, 2, . . . ,ml and ml = (Hl − k+ 1)× (W l − k+ 1)
with Hl and W l being the height and width of Φl(p), we
find its best match Ψ j′

(
Φl(pRi′ )

)
in the reference set based

on cosine distance, i.e.,

(i′, j′) = arg max
i∗=1∼N
j∗=1∼ml

Ψ j

(
Φl(p)

)
· Ψ j∗

(
Φl(pRi∗ )

)
∥∥∥Ψ j
(
Φl(p)

)∥∥∥
2

∥∥∥∥Ψ j∗
(
Φl(pRi∗ )

)∥∥∥∥
2

. (2)

Since photos and their corresponding sketches in R are
well aligned, the indices of the best matching result (i′, j′)
can be used directly to find the corresponding sketch fea-
ture patch, i.e., Ψ j′

(
Φl(sRi′ )

)
which serves as the pseudo

sketch feature patch Ψ′j
(
Φl(p)

)
. Finally, we obtain the

pseudo sketch feature representation (at layer l) for p as
{Ψ′j

(
Φl(p)

)
}m

l

j=1. We provide an intuitive visualization of
PSF in supplementary material.

3.3. Loss Functions

We train generators (Gp2s, Gs2p) and discriminators
(Ds, Dp) alternatively with the following loss functions

Ltotal
G = λpLp + λstyLsty + λcycLcyc + λadv(LGp2s + LGs2p ),

(3)

Ltotal
D = LDp2s + LDs2p (4)

where λp, λsty, λcyc, and λadv are trade-offweights for each
loss term respectively. We describe details of each term as
below.

Pseudo Sketch Feature Loss The pseudo sketch feature
loss is formulated as

Lp(p, ŝ) =
5∑

l=3

ml∑
j=1

∥∥∥∥Ψ j

(
Φl(ŝ)

)
− Ψ′j

(
Φl(p)

)∥∥∥∥2
2
, (5)

where l = 3, 4, 5 are relu3 1, relu4 1, and relu5 1 in
VGG-19, and ŝ is the predicted sketch from Gp2s.

Style Loss Inspired by recent style transfer methods, we
include Gram Matrix loss (Gatys et al., 2016) as a second-
order feature loss to provide better style supervision. We
first average pool features in each k × k patch for both
Ψ j

(
Φl(ŝ)

)
and Ψ′j

(
Φl(p)

)
, resulting in features ψl and ψ′l

of size ml×cl, where cl is the channel number in l-th layer.
We then calculate the Gram Matrix loss as

Lsty(p, ŝ) =
5∑

l=3

1
(clml)2 ∥ψ

T
l ψl − ψ

′T
l ψ
′
l∥

2
2, (6)

Cycle-Consistency with Noise-injection We use the
cycle-consistency loss with noise-injection as supervi-
sion, which is formulated as

Lcyc(p) = ∥Gs2p

(
Gp2s(p) + σz1

)
− p∥22, (7)

where z1 is randomly sampled from a normal distribution
with the same dimensions as Gp2s(p), and σ is a hyperpa-
rameter that controls the noise level.
GAN Loss We use the hinge loss to make the training
process more stable. The objective functions of hinge loss
are given by

LG = −E[D(G(x))], (8)
LD = E[max(0, 1 − D(y))] + E[max(0, 1 + D(G(x)))],

(9)

where x, y,D refer to p, s,Ds when G is Gp2s, and s, p,Dp

when G is Gs2p.

4. Experiments

4.1. Datasets and Metrics

Datasets To compare with previous works, we eval-
uate our model on two public benchmark datasets,
namely the CUFS dataset (combination of CUHK (Tang
and Wang, 2003), AR (Martinez and benavente., 1998)
and XM2VTS (Messer et al., 1999)), and the CUFSF
dataset (Zhang et al., 2011b). For semi-supervised
learning, we use extra face photos from VGG-Face
dataset (Parkhi et al., 2015). We randomly select 1,244
photos from VGG-Face to test model performance on nat-
ural images. More details are provided in supplementary
material.
Training Details We set all the trade-off weights λp, λsty,
λcyc, and λadv to 1 for simplicity. We use Adam (Kingma
and Ba, 2014) with learning rates 0.001 for generators and
0.004 for discriminators, and set β1 = 0.9, β2 = 0.999.
The learning rates are linearly decayed to 0 after the first
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(a) Photo (b) MWF (c) SSD (d) RSLCR (e) DGFL (f) Pix2Pix (g) PS2MAN (h)
SCA-GAN

(i) KT (j) FSW (k) SCG
(ours)

(l) GT Sketch

Figure 5: Examples of synthesized face sketches on the CUFS dataset and the CUFSF dataset. See more examples in supplementary
material.

10 epochs. The training batch size is 2, and models are
trained on Nvidia 1080Ti GPUs.

Metrics For test sets with ground truth, we use
FSIM (Zhang et al., 2011a), LPIPS (Zhang et al., 2018a)
and DISTS Ding et al. (2020) to measure the texture qual-
ity, and NLDA score to measure the identity similarity
following Wang et al. (2017b). For the evaluation of
face-sketch translation in the wild, there are no ground
truth sketches to calculate FSIM, LPIPS, and DISTS. We
therefore exploit FID (Heusel et al., 2017) to measure
the feature statistic distance between the generated sketch
datasets and real sketch datasets. We explain details of
these metrics in supplementary material.

4.2. Comparison on Public Benchmarks

We evaluate our model on both photo-to-sketch and
sketch-to-photo translations on CUFS and CUFSF, which
were captured under laboratory settings. We compare
our results both qualitatively and quantitatively with four
exemplar-based methods, namely MWF (Zhou et al.,
2012), SSD (Song et al., 2014), RSLCR (Wang et al.,
2017b), and DGFL (Zhu et al., 2017b), and five GAN-
based methods, namely Pix2Pix-GAN (Isola et al., 2017),
PS2MAN (Wang et al., 2017a), MDAL (Zhang et al.,
2018b), KT (Zhu et al., 2019) and SCA-GAN (Yu et al.,
2020). We obtain the results of MWF, SSD, RSLCR, and
DGFL from Wang et al. (2017b), the results of SCA-GAN
and KT from the respective authors, and use the public
codes of Cycle-GAN and PS2MAN to produce the results.
We also compare the photo-to-sketch translation results
with our previous work FSW (Chen et al., 2018a). All the

models are trained on the CUFS and CUFSF datasets with
the same train/test partition.

4.2.1. Photo-to-Sketch Translation
Figure 5 shows some photo-to-sketch results on CUFS

and CUFSF. Exemplar-based methods (Fig. 5(b,c,d,e))
in general perform worse than learning-based methods
(Fig. 5(f,g,h,i,j,k)). Their results are over-smoothed and
do not show hair textures. They also fail to preserve con-
tents well, such as hairpins in the first row and glasses
in the last row. GAN-based methods can generate bet-
ter textures, but they usually produce artifacts because of
the unstable training. For example, Pix2Pix produces lots
of artifacts in the hair and eyes (Fig. 5(f)), and PS2MAN
generates lots of artifacts when the facial parts of inputs
are not clear or with a strong reflection of light (see the last
two rows of Fig. 5(g)). Although the results of SCA-GAN
look great, it suffers from incorrect parsing map guidance,
such as hairpins in the first row, hairlines in the second
row of Fig. 5(h). Referring to Fig. 5(j,k), we have im-
proved our previous results of FSW by introducing Lsty

and the photo reconstruction branch.
The quantitative results with different metrics in Tab. 1

support our observations. It can be observed that
exemplar-based methods perform much worse in terms of
all metrics including FSIM, LPIPS, DISTS and NLDA.
KT shows the best FSIM score but poor perceptual scores
compared with SCG. We can see from Fig. 5(i) that the
textures, especially hair textures, generated by KT are
much worse than SCG. SCA-GAN generates better tex-
tures but the generated images might be different from
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Table 1: Quantitative results for photo-to-sketch translation.
SCA-GAN∗ needs a parsing map as guidance.

Method
FSIM ↑ LPIPS ↓ DISTS ↓ NLDA↑

CUFS CUFSF CUFS CUFSF CUFS CUFSF CUFS CUFSF

MWF 0.7144 0.7029 0.3671 0.4090 0.2533 0.2825 92.3 73.8

SSD 0.6957 0.6824 0.4033 0.4283 0.2536 0.2608 91.1 70.6

RSLCR 0.6965 0.6650 0.4042 0.4521 0.2556 0.2896 98.0 75.9

DGFL 0.7078 0.6957 0.3655 0.3972 0.2410 0.2480 98.2 78.8

Pix2Pix-GAN 0.7153 0.7060 0.3600 0.3868 0.2151 0.2025 93.8 71.7

PS2MAN 0.7157 0.7219 0.3794 0.4155 0.2430 0.2471 97.6 77.0

SCA-GAN∗ 0.7160 0.7268 0.3608 0.4169 0.2005 0.2168 — —

MDAL 0.7275 0.7076 0.3319 0.3841 0.2037 0.2096 96.6 66.7

KT 0.7369 0.7311 0.3485 0.3743 0.2116 0.2039 98.0 80.4

FSW 0.7274 0.7103 0.3262 0.3787 0.2063 0.2111 98.0 78.04

SCG (ours) 0.7343 0.7261 0.3232 0.3489 0.1967 0.184 98.6 78.1

Table 2: Quantitative results for sketch-to-photo translation.
SCA-GAN∗ needs a parsing map as guidance.

Method
FSIM ↑ LPIPS ↓ DISTS ↓ NLDA↑

CUFS CUFSF CUFS CUFSF CUFS CUFSF CUFS CUFSF

Pix2Pix-GAN 0.7598 0.7877 0.3977 0.4025 0.2421 0.2481 87.1 51.4
PS2MAN 0.7645 0.7807 0.3668 0.4267 0.2254 0.2706 84.7 42.2

SCA-GAN∗ 0.7633 0.8304 0.3251 0.3198 0.1794 0.1829 — —
KT 0.7794 0.7932 0.3233 0.3758 0.1821 0.2379 93.8 65.9

SCG (ours) 0.7652 0.7777 0.3374 0.3527 0.1710 0.2082 90.0 49.7

the original images (e.g., missing components) due to in-
correct parsing map, which also leads to poor LPIPS and
DISTS scores. In contrast, our SCG presents the second
best results in terms of FSIM and the best results in terms
of LPIPS and DISTS. As for sketch recognition, SCG also
demonstrates best NLDA score on CUFS and competitive
results on CUFSF, which clearly demonstrate its superior-
ity.

4.3. Sketch-to-Photo Translation
Figure 6 shows some example sketch-to-photo re-

sults. Same as photo-to-sketch translation, the results of
Pix2Pix and PS2MAN contain many undesired artifacts.
SCA-GAN produces results with the best visual quality,
which is consistent with the quantitative results shown
in Tab. 2. However, it still generates results with miss-
ing components under incorrect parsing map predictions,
such as the missing eyes and glasses in the last row of
Fig. 6(d). Without any GAN losses, KT suffers from un-
realistic textures. For instance, results in Fig. 6(e) are
grainy. Although SCG is trained in a self-supervised man-
ner without seeing any real input sketches, it still shows
competitive performance. Referring to Tab. 2, SCG shows

(a) Sketch (b) Pix2Pix (c) PS2MAN (d) SCA-GAN (e) KT (f) SCG (ours) (g) Photo

Figure 6: Examples of synthesized face photos on the CUFS
dataset and the CUFSF dataset.

(a) Photo (c) Pix2Pix(d) Fast-RSLCR (f) FSW (g) Ours-SCG(b) SSD (d) PS2MAN (e) Cycle-GAN

(a) Photo (b) SSD (c) RSLCR (d) Pix2Pix (e) PS2MAN (f)
Cycle-GAN

(g) FSW (h) SCG
(ours)

Figure 7: Comparison for images in the wild. Benefiting from
the additional training data, SCG can deal with various photos.

the best or second results in 5 out of 8 columns. The
biggest problem of SCG is that the synthesized colors are
quite different from the ground truth. This is legitimate
because the model is not suppose to recover exact color
as ground truth unless overfitting.

4.4. Photo-to-Sketch Translation in the Wild

In this section, we will focus on photo-to-sketch trans-
lation in the wild. Since there are too many sketch styles
in the wild, sketch-to-photo translation in the wild is be-
yond the scope of this paper, and we will leave it for fu-
ture work. We compare SCG with other methods which
provide codes, including SSD, RSLCR, Pix2Pix-GAN,
PS2MAN, Cycle-GAN. Figure 7 shows some photos sam-
pled from our VGG-Face test dataset and the sketches
generated by different methods. It can be observed that
these photos may show very different lightings and poses
etc. Among the results of other methods, exemplar-based
methods (see Fig. 7(b,c)) fail to deal with pose changes
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Table 3: Quantitative results and user study for photo-to-sketch
translation in the wild.

Method FID↓
SSD 94.6

Fast-RSLCR 144.0
Pix2Pix-GAN 86.7

PS2MAN 90.8
Cycle-GAN 87.8

FSW 81.3
SCG (ours) 67.9

RSLCR Pix2Pix Cycle-GAN PS2MAN FSW SCG
0

1

2

3

4

5

6

1.24

2.17

3.39

4.02

5.47

5.97
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Table 4: Quantitative comparison on WildSketch dataset.

Method Cycle-GAN GENRE CA-GAN PANet Ours

FSIM↑ 0.6654 0.6902 0.6960 0.6950 0.7010

(a) Photo (b) Cycle-GAN (c) (S)CA-GAN (d) PANet (e) Ours (f) GT

Figure 8: Example comparison with WildSketch dataset.

and different hairstyles. Although GANs can generate
some sketch-like textures, none of them can well preserve
the contents. The face shapes are distorted and the key fa-
cial parts are lost. It can be seen from Fig. 7(g,h) that only
FSW and SCG can handle photos in the wild well and
generate pleasant results. Compared with FSW, SCG can
generate more realistic shadows and textures. The same
conclusion can also be drawn from the quantitative results
shown in Tab. 3. We also conduct user study to better
evaluate their subjective performance, as shown in Tab. 3
right part. We notice that our methods (FSW and SCG)
are much preferred over previous methods. By introduc-
ing the Gs2p branch and cycle-consistency, SCG further
improves the performance of our previous work FSW. De-
tails of user study are in supplementary material.

We have also included comparison on the latest in-the-
wild benchmark WildSketch Nie et al. (2022), as shown
in Tab. 4 and Fig. 8. Our findings indicate that when in-
corporating additional, diverse photos from the VGG face

Table 5: Ablation study of Semi-Cycle-GAN. σ: noise level, k:
feature patch size, Lsty: use second-order style loss or not.

Configuration A B C D E F G
σ 0 10 20 30 20 20 20
k 1 1 1 1 3 5 3

Lsty ✗ ✗ ✗ ✗ ✗ ✗ ✓

LPIPS↓(P2S) 0.3260 0.3273 0.3277 0.3287 0.3257 0.3273 0.3235
LPIPS↓(S2P) 0.4273 0.3454 0.3435 0.3461 0.3433 0.3447 0.3374

(a) Input (b) (c) (d) GT Photo� = 0 � = 20(a) Input (b) σ = 0 (c) σ = 20 (d) GT
Photo

Figure 9: Effect of noise-injection.

Photo w/o Lsty w/ Lsty Photo w/o Lsty w/ Lsty

Figure 10: Examples of improvement on Gp2s brought by style
loss.

Photo
More extra photos

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 11: Effectiveness of additional training photos.

dataset, our method achieves SoTA performance. Fig-
ure 8 also supports our claim that the inclusion of extra
training photos improves generalization abilities of our
model. For instance, ours demonstrates greater robustness
towards hair color variations in the first row and shows
better result with the presence of a hat in the second row.
These results underscore the effectiveness of our proposed
semi-supervised approach.

4.5. Ablation Study

To study the effectiveness of different components of
the proposed method, we gradually modify the baseline
Semi-Cycle-GAN and compare their results. Table 5
shows the results of all model variations. We discuss the
results below.
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Noise injection. We show an example result with and
without noise-injection in Fig. 9. It can be observed that
Fig. 9(c) with σ = 20 is much better than Fig. 9(b) with
σ = 0. This demonstrates that noise-injection can greatly
improve the performance of Gs2p. This is because the pro-
posed noise-injection strategy breaks the steganography
in the outputs of Gp2s, and increases the generalization
ability of Gs2p. We explore models with different levels
of noise-injection, and the results are shown in columns
A, B, C, and D of Tab. 5. We can see that adding more
noise is not helpful to the performance of Gs2p but de-
grades the performance of Gp2s. This is likely because the
backward gradients from Gs2p are corrupted when noise-
injection level is too high. We empirically find σ = 20
strikes a good balance between the performance of Gp2s

and Gs2p.
Patch size. We present the results with patch size 1, 3,
and 5 in columns C, E, and F of Tab. 5 respectively. We
can observe that k = 3 gives the best performance, while
k = 5 is worse than k = 3. This may be caused by the fact
that a large patch in the feature space represents a much
larger patch in the pixel space and this leads to undesired
extra contents in the pseudo sketch feature. We therefore
set k = 3 in our experiments.
Second-order style loss. Comparing the results in
columns E and G of Tab. 5, we can notice that model with
Lsty shows better performance for both Gp2s and Gs2p.
This is because Lsty provides better style supervision for
Gp2s, which can in turn benefit the training of Gs2p. Fig-
ure 10 shows some examples of improvement on Gp2s

brought by style loss.
Extra training photos Introducing more training photos
from VGG-Face dataset is the key to improve the general-
ization ability of our model. As demonstrated in Fig. 11,
as we add more photos to the training set, the results im-
prove significantly, see the eyes region.

5. Conclusion

In this paper, we propose a semi-supervised Cycle-
GAN, named Semi-Cycle-GAN (SCG), for face photo-
sketch translation. Instead of supervising our network us-
ing ground-truth sketches, we construct a novel pseudo
sketch feature representation for each input photo based
on feature space patch matching with a small reference

set of photo-sketch pairs. This allows us to train our
model using a large face photo dataset (without ground-
truth sketches) with the help of a small reference set of
photo-sketch pairs. Since directly training Gs2p in a self-
supervised manner as Cycle-GAN suffers from steganog-
raphy, we exploit a noise-injection strategy to improve
the robustness. Experiments show that our method can
produce sketches comparable to (if not better than) those
produced by other state-of-the-art methods on four pub-
lic benchmarks, and outperforms them on photo-to-sketch
translation in the wild.
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Appendix A. More Methodology Details

Appendix A.1. Visualization of Pseudo Sketch Features

Figure A.13 visualizes examples of the pseudo sketch
feature. It can be seen that the pseudo sketch feature pro-
vides a good approximation of the real sketch feature (see
first two columns of Fig. A.13). We also show naı̈ve re-
construction obtained by directly using the matching in-
dex to index the pixel values in the reference sketches.
We can see such a naı̈ve reconstruction does roughly re-
semble the real sketch, which also justifies the effective-
ness of the pseudo sketch feature. Note that we only need
alignment between photos and sketches in R. Since we
perform a dense patch matching between the input photo
and the reference photos, we can also generate reasonable
pseudo sketch features for input face photos under differ-
ent poses (see last row of Fig. A.13).

Appendix A.2. Hyper-parameters of Pseudo Sketch Fea-
ture Loss

For the pseudo sketch feature loss Lp, we set l = 3, 4, 5
to relu3 1, relu4 1, and relu5 1 in VGG-19. We choose
these 3 layers mainly for two reasons: 1) better texture
representation; 2) computation efficiency. Li et al. Li
and Wand (2016) pointed out that compared with features
from shallow layers, deep features after relu3 1 are more
robust to appearance changes and geometric transforms.
We conduct a simple experiment to verify this, and the re-
sults are presented in Fig. A.12. It can be observed that
the model cannot synthesize sketch textures using shallow
features from relu1 1 and relu2 1, and can generate better
textures with high-level features, such as relu5 1. How-
ever, with only high-level features, the model also gen-
erates artifacts (e.g., eyes of the sketches in Fig. A.12).
Besides, shallow feature maps have higher spatial resolu-
tions, and it requires lots of GPU memory to calculate Lp.
Based on the above analysis, we set l = 3, 4, 5 to strike a
balance between performance and computation cost.

Appendix B. More Dataset and Implementation De-
tails

Photo-Sketch Pairs. We use four public datasets,
namely the CUHK dataset Tang and Wang (2003),
the AR dataset Martinez and benavente. (1998), the

Table B.6: Details of benchmark datasets. (Align: whether the
sketches are well aligned with photos. Var: whether the photos
have lighting variations.)

Dataset Total Pairs TrainTest AlignVar

CUFS
CUHK 188 88 100 ✓ ✗

AR 123 80 43 ✓ ✗

XM2VTS 295 100 195 ✗ ✗

CUFSF 1194 250 944 ✗ ✓

XM2VTS dataset Messer et al. (1999), and the CUFSF
dataset Zhang et al. (2011b), to evaluate our model. In
Wang et al. (2017b); Zhu et al. (2017b), the first three
datasets were combined to form the CUFS dataset. Note
that the CUFSF dataset used in Zhu et al. (2017b); Wang
et al. (2017a); Yu et al. (2020) contains only grayscale
photos. In order to train a universal model for all datasets,
we collect a color version of the CUFSF dataset1 contain-
ing 986 photo-sketch pairs. Details are summarized in
Table B.6, and Fig. B.14 shows some examples of photo-
sketch pairs from them.

Face Photos. VGG-Face dataset Parkhi et al. (2015) is a
popular dataset containing face photos in the wild. We
use a subset of it in this work. VGG-Face has 2,622
subjects with 1,000 photos for each subject. We ran-
domly select N photos of 2,000 subjects for training.
The resulting dataset are named as VGG-FaceN , where
N = 01, 02, . . . , 10. The VGG-FaceN datasets are used
to validate the performance relationship with increasing
training photos. For the test dataset, 2 photos are ran-
domly selected for each subject in the test split (no iden-
tity overlap with training dataset), which results in a VGG
test set of 1,244 photos. Some examples from training and
testing datasets are presented in Fig. B.15.

Preprocessing. For the reference datasets, we need the
photo-sketch pairs to be well aligned. We perform align-
ment with similarity transformation based on 68 face
landmarks detected using dlib2. The output faces and
sketches are aligned with two eyes located at (75, 125)

1Downloaded from https://www.nist.gov/itl/iad/

image-group/color-feret-database
2http://dlib.net/

12

https://www.nist.gov/itl/iad/image-group/color-feret-database
https://www.nist.gov/itl/iad/image-group/color-feret-database
http://dlib.net/


Photo & Sketch relu1 1 relu2 1 relu3 1 relu4 1 relu5 1

Figure A.12: Results of using different layers in pseudo sketch feature loss.

and (125, 125) respectively. The output size is set to
250×200 in order to perform a fair comparison with previ-
ous works. For photos/sketches whose landmarks cannot
be detected, we simply discard them.

Appendix B.1. Implementation Details of Patch Match-
ing

Although the patch matching only happens in train-
ing stage, it is still time-consuming. We accelerate
patch matching in the following three ways. First, fea-
ture patches for the photos and sketches in the reference
dataset are precomputed and stored in hard disk for fast
query. Second, we use a coarse-to-fine strategy to search
for the best matching feature patch. We find the best-
matched n reference photos (we set n = 3 in the whole
training process) for the input photo based on the similar-
ity of their relu5 1 feature maps, which can be calculated
fast. Fine-scale patch matching is then performed on these
n reference photos. Third, we use the convolution opera-
tor to implement Eq. (2) which can be greatly accelerated
with GPU.

Appendix C. More Experiment Details

Appendix C.1. Metric analysis

Previous works Wang et al. (2017b); Yu et al. (2020);
Zhu et al. (2017b) usually adopted structural similarity
(SSIM) Karacan et al. (2013) to evaluate the performance
of sketch generation for test datasets with ground-truth
sketches (e.g., CUFS and CUFSF). However, many works
Ledig et al. (2016); Wang et al. (2017c,a)) pointed out
that SSIM is not always consistent with the perceptual
quality because SSIM favors slightly blurry images and
fails to evaluate images with rich textures. To verify this,
we show some sketches generated using different meth-
ods together with their SSIM scores in Fig. C.17. We

can observe that although the results of Pix2Pix-GAN and
our model have better textures, the result of RSLCR still
has a better SSIM score because it is smoother. When
we smooth all sketches with a bilateral filter, we notice
that SSIM score for RSLCR remains almost unchanged,
while the SSIM scores for Pix2Pix-GAN and our model
improve by more than 1.5%.

Due to the drawbacks of SSIM, we choose FSIM Zhang
et al. (2011a) as one of our image quality assessment met-
rics. FSIM takes local structure into account and gives
lower scores to smooth results without textures, see Fig.
C.17 for reference. Considering that metrics based on
VGG feature space demonstrate better consistency with
human perception, we also include two recent VGG-
based metrics, namely LPIPS and DISTS. We use the
PyTorch codes provided by Chen et al.3 to calculate these
metrics. For the evaluation of face-sketch translation in
the wild, there are no ground truth sketches to calculate
FSIM, LPIPS, and DISTS. We therefore exploit FID score
to measure the feature statistic distance between the gen-
erated sketch datasets and real sketch datasets.

Appendix C.2. Face Recognition Details
Following the practice of Wang et al. (2017b), we

employed the null-space linear discriminant analysis
(NLDA) Chen et al. (2000) to perform the recognition ex-
periments. For CUFS, we randomly selected 150 synthe-
sized sketches and their ground-truth sketches from the
test set (338 test photos) to train a classifier and used the
rest 188 for testing. For CUFSF(gray, crop), we randomly
selected 300 synthesized sketches and their ground-truth
sketches from the test set (944 test photos) to train a clas-
sifier and used the rest 644 for testing. Each experiment
was repeated 20 times. We do not include SCA-GAN in

3https://github.com/chaofengc/IQA-PyTorch
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GT

Photo PSF Pixel
Projection

Figure A.13: Examples of PSF in the relu3 1 layer and the pixel
level projection of the patch matching result. First row: ground
truth feature and sketch with the photo in second row as input.
Second row: results of laboratory images. Third row: results of
natural images. (Note that the pixel level results are for visual-
ization only, and they are not actually being computed or used
in training.)

this comparison because it uses an extra face parsing map
as guidance, and adopts a slightly different training/test
split.

Figure C.16 shows the recognition accuracy of differ-
ent methods on these two datasets. The results for photo-
to-sketch translation are shown in Fig. C.16(a,b). We can
see that the proposed SCG achieves the best NLDA scores
with different feature dimensions on CUFS and compet-
itive results on CUFSF. We notice that the recognition
rate on CUFSF is similar to FSW and slightly worse than
KT. This is mainly because the ground truth sketches in
CUFSF are deformed too much compared with the input
photos. We believe the NLDA scores on CUFSF cannot
represent the quality of generated sketches. In fact, we
observe that the result of SCG is clearer and without extra
shadows or artifacts.

The results for sketch-to-photo translation are given in

(a) CUHK Student (b) AR (c) XM2VTS (d) CUFSF

Figure B.14: Example photo-sketch pairs from existing datasets.
It can be observed that (a)(b) and (c)(d) have different sketch
styles (e.g., facial muscles and hair).

(a) Training photos (b) Test photos

Figure B.15: Example training photos from the VGG-Face01
dataset and example test photos from the VGG test set.

Fig. C.16(c,d). As mentioned in main text, it is expected
that SCG cannot give the best performance because we do
not use any ground-truth sketches to train Gs2p, and the
colors of the results are quite different from the ground-
truth photos. Nonetheless, SCG still performs better than
PS2MAN on both datasets, and better than Pix2Pix on
CUFS. According to the visual examples in main paper,
we can observe that SCG preserves the facial components
better than these two methods, and produces fewer arti-
facts. This explains why our results are better despite
color inconsistency.

Appendix C.3. User Study Details

We also conduct a user study for sketch synthesis
in the wild. The methods considered include RSLCR,
Pix2Pix-GAN, PS2MAN, Cycle-GAN, FSW (our previ-
ous method), and SCG (proposed). Different from our
previous project which asked the subjects to rank results
of different methods, we adopt a more comprehensive
strategy to do the subjective study on an online human
crowdsourcing platform. To be specific, we employed a
two-alternative forced choice (2AFC) method. The crowd
workers were shown two generated sketches at one time,
and were asked to choose the sketch with better quality.
An example photo-sketch pair was shown as a reference.
We randomly select 30 images from VGG-Test dataset,
generate sketches with the above methods and create 6
different surveys. Each survey contains results for 5 dif-
ferent images and

(
2
6

)
× 5 = 75 questions in total for the

6 compared methods. Each worker was asked to do one
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(a) NLDA scores on CUFS sketches (b) NLDA scores on CUFSF
sketches

(c) NLDA scores on CUFS photos (d) NLDA scores on CUFSF photos

Figure C.16: Recognition rates of using synthesized face sketches (a,b) and synthesized face photos (c,d), respectively, against
feature dimensions on CUFS and CUFSF.

(a) RSLCR
SSIM: 0.5970/0.5903.
FSIM: 0.7488/0.7362.

(b) GAN
SSIM: 0.5648/0.5953.
FSIM: 0.7559/0.7506.

(c) Ours.
SSIM: 0.5814/0.6055.
FSIM: 0.7692/0.7557.

Figure C.17: SSIM and FSIM scores of some generated sketches
(left) and their smoothed counterparts (right).

of these surveys. We collected 60 survey results from dif-
ferent crowd workers in total. We used the well-known
Bradley–Terry model Bradley and Terry (1952) to con-
vert the paired comparison results to global ranking. Give
method i and j, the probability that i is better than j is
defined as

P(i > j) =
eβi

eβi + eβ j
(C.1)

where eβi indicates the ranking score of the method i. We
estimate β = β1, . . . , β6 by minimizing the following neg-
ative log-likelihood using gradient descent

L(β) = −
n∑

i=1

n∑
j=1, j,i

log wi, jP(i > j) (C.2)

where wi, j indicates the total numbers that i is better than
j. The “prefer score” in Tab. 3 of main text refers to eβi .

Appendix D. More Results

In this part, we provide more photo-to-sketch results
for CUFS in Fig. F.18), CUFSF in Fig. F.19) and natural
images of VGGFace in Fig. F.20).

Appendix E. Limitations

Although the proposed model shows good generaliza-
tion ability to images in the wild, it cannot generate un-
known structures which are not included in the small ref-
erence dataset. For example, SCG fails to generate the
teeth in the last row of Fig. F.20. Note that existing meth-
ods cannot even produce pleasant results for these natu-
ral images. The proposed SCG also cannot generalize to
sketches with different styles, such as sketches drawn in
thick lines Yi et al. (2019, 2020b,a). It is quite challenging
to synthesize satisfactory sketches with different styles us-
ing the same model. In a word, the above two problems
are difficult to be solved with current small face sketch
datasets, and we will leave them to future work.

Appendix F. Links to public codes

We also provide links to the public codes used in our
experiments below:
• SSD: http://www.cs.cityu.edu.hk/

~yibisong/eccv14/index.html

• RSLCR: http://www.ihitworld.com/RSLCR.

html

• Pix2Pix-GAN: https://github.com/phillipi/
pix2pix

• Cycle-GAN: https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix

• PS2-MAN: https://github.com/lidan1/

PhotoSketchMAN
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Figure F.20: More qualitative results for photo-to-sketch translation in the wild on VGG test dataset.
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