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Abstract

This paper presents a novel method for reconstructing
complex 3D objects with unknown topology using silhou-
ettes extracted from image sequences. This method exploits
the duality principle governing surface points and their cor-
responding tangent planes, and enables a direct estimation
of points on the contour generators. A major problem in
other related works concerns with the search for a tangent
basis at singularities in the dual tangent space. This prob-
lem is addressed here by utilizing the epipolar parameteri-
zation for identifying a well-defined basis at each point, and
thus avoids any form of search. For the degenerate cases
where epipolar parameterization breaks up, a fast on-the-
fly validation is performed for each computed surface point,
which consequently leads to a significant improvement in
robustness. As the resulting contour generator points are
not suitable for direct triangulation, a topologically correct
surface extracting method based on slicing plane is pre-
sented. Both experiments on synthetic and real world data
show that the proposed method has comparable robustness
as those existing volumetric methods regarding surface of
complex topology, whilst producing more accurate estima-
tion of surface points.

1. Introduction

In an environment of unknown lighting condition, the 3D
shape of a textureless object could hardly be recovered us-
ing point features or shading information. Silhouettes, in
this case, can often be reliably extracted and provide much
richer information for shape estimation. Unlike point fea-
tures, silhouettes are viewpoint dependent, and traditional
stereo vision techniques do not suffice for computing the
depth of the surface points. This urges for the development
of alternative approaches for computing the 3D structure in-
directly.

Each silhouette, if treated as one or several non-
intersecting curves, defines a family of tangent planes of

which the envelope is theviewing cone[4]. The envelope
of tangent planes defined by a set of cameras resembles the
visual hull bounding the object surface with respect to the
set of cameras. In the literature, it has been shown that given
the knowledge of either points or tangents, their dual coun-
terpart could be estimated. This infers that it is possible
to estimate a surface in the original space from the dual tan-
gent space. In practice, in order to estimate the surface from
its discretely sampled tangent planes, it is necessary to iden-
tify a well-defined tangent basis in the dual tangent space.
This is, however, not a trivial task due to the singularities
arising from bi-tangents in the original space.

One important contribution of this paper is that we uti-
lize theepipolar parameterization[7] for selecting a subset
of neighbors in the dual space for the estimation of tangent
basis. This does not require any search in the dual space as
previous methods do. Hence our estimation of the tangent
basis in the dual space is unaffected by aforementioned sin-
gularities and can be done in constant CPU time for each
point. As shown in the experiments, our method is capable
of recovering complex shapes with non-zero genus, which
often imply singularities in the dual space. Our method also
takes into account the extreme cases exhibited in epipolar
parameterization and detects low quality estimations on-
the-fly. These significantly increase the robustness of our
algorithm and naturally extend our method to handle shapes
with sharp edges.

Another contribution of this paper is the introduction of
a topological preserving surface extraction algorithm. As
limited by the number of cameras, the recovered points are
usually unevenly distributed along the two epipolar para-
metric directions. A direct triangulation, in this case, will
produce ill-formed triangles. We present a slice based ap-
proach for surface generation which produces a robust re-
construction.

1.1. Related Works

The dominant approach for reconstruction from silhou-
ettes is the volumetric approach. The concept of using vol-



ume intersection was first proposed by Martin and Aggar-
wal [10], who introducedvolume segmentunder orthogonal
projection. In [8], the volume intersection was conceptu-
alized as thevisual hull, which gives a bounding volume
for model reconstruction from silhouettes. The OcTree [6]
and its variants [11, 13] adopt a regular grid orvoxels, and
provide a more efficient data structure for representing the
visual hull volume. These approaches usually make no as-
sumption on the surface topology and are robust to complex
objects. The quality of the approximation to the visual hull,
however, is limited by the chosen size of the voxels.

In contrast to the volumetric approach, surface-based ap-
proaches often attempt to explicitly compute the points ly-
ing on the surface or visual hull. In [1], Baumgart pointed
out that the visual hull could be computed as the polyhe-
dral intersection of the viewing cones. Later on, Boyer and
Berger [3] showed that depth along the visual ray could be
computed through fitting an osculating quadric to its two
epipolar correspondences. Recently, Lazibnik et al. [9] de-
rived the visual hull as a generalized polyhedron computed
from the epipolar constraints, avoiding both direct poly-
hedral intersections and voxel carving. Both approaches,
however, do not guarantee to work given an object with
non-zero genus. In [4], Boyer and Franco proposed a hy-
brid method that combines the advantages of both volumet-
ric and surface-based approaches. Their approach extended
the idea in [10] to segment the visual rays, and the result-
ing points are tetrahedrized into irregular cells. The final
surface is extracted from those cells having the projections
within all silhouettes. They showed that their method can
handle more complicated objects than the surface-based ap-
proaches, while producing results that are more accurate
than the volumetric approaches. However, the quality of
the final model does not always increase with the number
of cameras/images used.

Brand et al. [5] recently proposed a method comple-
menting the literature of volumetric and surface-based ap-
proaches. They exploited theduality principle exhibited
between the surface and the tangent envelope defined by
the viewing cones, and computed a solution with minimum
algebraic error for each point from a non-singular set of
neighbors in the dual space. Their approach, however, re-
lies on proximity in the dual space. Searching for a non-
degenerate set of neighbors is not trivial, especially when
the surface geometry is complex. They also appear not hav-
ing explicitly stated their method for extracting the surface
from the computed point cloud which, in most cases, has
uneven distribution due to the discrete nature of the image
sequence.

In this paper, we extend the use of duality theory and
present a complete and practical framework for shape re-
covery from silhouettes. This framework aims at robustly
recovering complex shape with non-zero genus.

2. Theoretical Framework

We shall consistently represent scalar values in italic font
k, matrices in uppercase bold fontP, and column vectors
(points, tangent vectors, etc.) in lowercase bold fontr .
The homogeneous counterpart of a vector is written asr̃ ,
and will be used interchangeably with its non-homogeneous
counterpart depending on the context. The dual counterpart
of a vector is represented by appending a superscript aster-
isk r∗.

2.1. Geometry of the Surface

A surface is locally parameterized as vector valued func-
tion r(s, t) and is assumedC2 continuous. The tangent
plane at each surface point is a 4-vector denoted ast(s, t).

Let us consider a calibrated camera. The silhouette in
each image is extracted as one or more non-intersecting pla-
nar curves delimiting the inside and outside of the silhou-
ette. Each silhouette pointw defines a visual ray from the
camera center which is tangent to the surface. The visual
rays of this silhouette collectively form a viewing cone. The
locus of their tangent points is a spatial curve often termed
as thecontour generator[7]. Suppose the silhouette curve
is at leastC1 continuous, each silhouette pointw has a well-
defined tangent line. This tangent line back-projects to a
tangent plane touching the object surface and contains the
visual ray defined byw. Intuitively, the tangent plane en-
velope of the whole silhouette curve is the viewing cone
defined by this silhouette (see Figure 1).

O(t )0

contour generator

silhouette curve

visual ray
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Figure 1. Geometry of the surface

Given a finite number of cameras with distinct view-
points, the tangent planes defined by all the silhouettes form
a non-degenerate tangent plane spaces inR

3. The envelope
of these planes is equivalent to the intersection of all the
viewing cones, i.e., the visual hull. In the next section, we
present an efficient method motivated by the principle of
duality for recovering points along the contour generators.
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2.2. Theory of Duality

In 3D space, a unified treatment for points and planes
is to represent them in homogeneous form as 4-vectors.
Under this homogeneous coordinate system, the principle
of duality suggests that for all theorems governing points
and planes, the roles played by points and planes are inter-
changeable. A surface pointr and the tangent planet at that
point form a dual pair, satisfying the following symmetric
relationship:

r̃⊤t = t⊤r̃ = 0 (1)

As such, the tangent plane vectort is conveniently denoted
as the dual of̃r , i.e., r̃∗ , t. Note that̃r∗ can also be treated
as a ‘point’ in thedual space. In this sense, the dual to
r̃(s, t) is a manifold in the dual spacẽr∗(s, t).

We know that given the parametric representation of a
surface, it is trivial to compute the tangent plane to the sur-
face at a given point. Motivated by the principle of duality,
if the roles played by points and planes are interchanged,
the original surface could also be computed from its tan-
gent planes as well. A mathematical proof of such a dual
relationship in 2D has been derived in [5]. Now we con-
sider the 3D case directly. In 3D case, the normal of the
tangent plane at a point is orthogonal to the tangent vec-
tor along the two parametric directions.r̃∗(s, t) is therefore
computed as:

r̃∗(s, t) ∝ [̃rs(s, t), r̃ t(s, t), r̃(s, t)]⊥ (2)

where rs(s, t) and r t(s, t) are the partial derivatives ofr
with respect tos andt respectively. We now interchange the
roles ofr(s, t) andr∗(s, t). The left hand side of (2) should
become the point on the original surface. This observation
is formally described in the following proposition:

Proposition 1. Assume that the tangent plane at each point
of a C2 continuous surface is known. Points on the surface
could be computed as:

r̃(s, t) ∝ [̃r∗
s
(s, t), r̃∗

t
(s, t), r̃∗(s, t)]⊥ (3)

In practice, the tangent plane space is obtained from a
discrete set of cameras. It is thus impossible to obtain an im-
plicit representation for the dual manifold̃r∗(s, t). The tan-
gent basis for a point on the dual manifold, namelyr∗

s
(s, t)

andr∗
t
(s, t), is often approximated from neighboring points

using finite differences. This implies that the quality of the
estimation strongly depends on how we select those neigh-
boring points. Unfortunately, this task is not at all trivial
and poses a major difficulty in some previous approaches,
for the following reasons:

• Two points r̃1 and r̃2 in the original space sharing a
common tangent plane (bi-tangency) will be mapped

to the same point̃r∗ in the dual space, which implies a
singularity;

• The tangent spacẽr∗ computed by evenly sampling the
silhouettes may still be evil-distributed. It is very diffi-
cult to set a distance threshold by which a nearby point
could be qualified as a proper neighbor.

Hence for discretely sampled dual manifold, it is not re-
liable if we solely use distance measure for selecting neigh-
bors. In [5], the authors tried to limit the search among
the dual space points computed from immediate neighbor-
ing views. Doing this has indeed decreased the chance of
picking bad neighbors. However, it still relied on the dis-
tance measure, which means it may still be puzzled by the
singularities and evil-distribution of the dual space points.

In our approach, we rely on the epipolar structure to lo-
cate the neighbors in the dual space, which in fact does
not require any knowledge about the actual surface. As
we do not search in the dual space, we are unaffected by
the aforementioned evil-distribution and singularities in the
dual space.

2.3. Epipolar Parameterization

Assume the object surface isC2 continuous. Epipolar
parameterization gives a well-defined local neighborhood
for each point on the surface. An elaborated definition of
epipolar parameterization can be found in [7], and here we
recast it into our framework. A pointr on the surface is
given as:

r(s, t) = O(t) + λ(s, t)p(s, t) (4)

wheres is the curve parameter along contour generators,t

is the time parameter,O(t) is the center of the camera at
time t, p(s, t) is the viewing vector fromO(t) to the focal
plane at unit distance for the pointr(s, t), andλ(s, t) is the
depth of the pointr(s, t) along the optical axis fromO(t).

O( + )t Δt

O( )t
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Figure 2. Epipolar parameterization and matching

Fixing thes andt parameters respectively, we result in
two families of curves forming a coordinate grid on the sur-
face, i.e.,r(s, t0) and r(s0, t). The curve represented by
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r(s, t0) can be viewed as the contour generator that corre-
sponds to the viewt0. The curver(s0, t) can be taken as
the locus of points on the surface grazed by a visual ray
from the camera center which is moving over time. In a
discrete sense, this curve is formed by joining the corre-
spondent points, i.e., with sames, on successive contour
generators. To uniquely define such a correspondence, the
matching pointr(s0, t+∆t) of r(s0, t) is found by intersect-
ing the contour generator att + ∆t with the epipolar plane
defined byr(s0, t), O(t) andO(t + ∆t) (see Figure 2(a)).
Reflected on the image plane at timet+∆t, r(s0, t+∆t) is
found along the epipolar line ofr(s0, t) where it intersects
the silhouette curve (see Figure 2(b)).

Under the epipolar parameterization, each point on the
contour generator has a well-defined neighborhood. As we
have been able to map any point on a contour generator to its
dual (see section 2.1), the neighborhood information on the
dual manifold can be directly inferred from the neighbor-
hood information granted by the epipolar parameterization.

Compared with the work of Brand et al. [5], our method
relies on the epipolar structure in the original space for the
desired neighborhood information. Hence it is not affected
by bi-tangency, which only causes singularity in the dual
space. This allows our method to handle much more com-
plicated surface with non-zero genus. In addition, doing
epipolar matching requires simply 2D intersection compu-
tation and does not need to search in the dual space, making
the method more efficient in terms of computational time.

It is noted that the epipolar parameterization may break
up in a few extreme cases [12]. These cases, together with
the countermeasures adopted in our implementations, are
discussed in section 3.1.

3. Estimation of points on the surface

Active B-Snakes [7] are adopted to extract silhouettes
from images. Each silhouette consists of one or more closed
B-Spline curves. The advantages of using B-Spline include
(1) sub-pixel precision, (2) trivial computation of the tan-
gent at each point on the silhouette, and (3) close-formed
solution for epipolar line intersection. Furthermore, we can
make assumption on the sides of a silhouette with respect
to the parametric direction of the B-splines. This lead to a
simple and uniform treatment of silhouettes consisting of an
arbitrary number of B-Splines.

Each surface point is independently estimated from its
dual space neighbors. Conveniently, we could achieve min-
imum memory consumption by collecting only the neces-
sary dual space neighbors per estimation. Letr(s, t) be the
point we want to estimate. This point lies on the contour
generator at timet. We denote the projection of this point
asw(s)t, which should lie on the silhouette curve at time
t. By back-projecting the tangent line atw(s)t, we obtain

the tangent plane, i.e., the dual space pointr∗(s, t). Now
we need to collect the dual space neighborhood along two
parametric directions of the epipolar parameterization. The
computation ofr∗(s ± δs, t) is straight-forward: they are
the back-projections of the tangent lines atw(s± δs)t. The
computation ofr∗(s, t ± δt) is done by epipolar matching
on the neighboring views (t ± δt), operating purely on 2D
image planes: (1) mapw(s)t to the epipolar lines in view
t − δt and viewt + δt, (2) compute the intersections be-
tween the epipolar lines and the silhouette in each of these
views, (3) determine the best epipolar match among the in-
tersections in each view. The tangent planes associated with
these epipolar matches are then taken asr∗(s, t±δt). Since
silhouettes are represented by B-Splines, the intersections
can be accurately computed as close-formed solutions.

Once the dual space neighbors forr∗(s, t) have been col-
lected, we can apply Proposition 1 to computer(s, t), which
is essentially the estimation of a tangent plane from a set
of neighboring points. In our implementation, we simply
rearranged equation (3) in Proposition 1 into a system of
linear equations. This treatment allows us to conveniently
incorporate a visual ray constraint described in 3.1.

Note that while the above process suffices in most cases,
some special care needs to be taken for a few extreme cases
of epipolar parameterization.

3.1. Handling extreme cases

We currently consider two common extreme cases. The
first case concerns with cylindrical surface (see Figure
3 (a)). The contour generator resembles a straight-line,
thus the tangent planes along the contour generator do not
change as parameters changes. Accordingly, the null-
vector of the linear system obtained from equation (3), ide-
ally, also spans along a straight-line. A stronger constraint
is needed in order to fix the estimated position along this
line. A natural choice is to incorporate the visual ray con-
straint, which is given by:

w̃(s)t = Ptr̃
∗∗

(s, t) (5)

wherew̃ is the image position in homogenous form,Pt is
the projection matrix of viewt, and r̃∗∗(s, t) is the con-
tour generator point having the image positionw̃. This
constraint could also be rearranged into two linear equa-
tions. They are directly incorporated into the system of lin-
ear equations mentioned earlier, and impose only a negligi-
ble extra computational cost.

Another extreme case is caused by self-occlusion on
the surface (see Figure 3(c)). A typical indication is the
T − junction (see Figure 3(d)). In such a case, the correct
epipolar match for a point does not lie on the silhouette and
thus the correct match could not be identified. However, in
practice, we may not be able to differentiate this case and
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may pick a wrong epipolar match. Given that we have en-
forced the visual ray constraint, these wrong neighbors, in
the worst case, cause the point to fly-out of the visual hull
in the direction of the visual ray.
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Figure 3. Extreme cases in epipolar parameterization

We introduce an on-the-fly test for detecting this kind of
fly-out points. It is an image consistency test complying
to the visual hull concept: the point must lie on or inside all
the silhouettes. This test could be efficiently carried out:we
rasterize the silhouettes into binary maps of user-specified
resolution. Each estimated point is then projected onto the
integral coordinates of these binary maps. If the binary val-
ues at all projections do not unanimously indicates ‘inside’,
the point is not a good estimation.

The points disqualified by the above test are singled out
and may subject to other estimation methods. In the current
implementation, we simply drop them as they only account
for a very small portion of all the estimations and have little
impact on the model we should have obtained.

4. Extraction of the target surface

The result of the earlier estimation are points lying on
the contour generators, each of which coupled with the tan-
gent plane at that point. This means that the surface normal
at each point is known. Unfortunately, these points are not
distributed uniformly. This is due to the fact that the sam-
pling density along each contour generator can be set arbi-
trarily high, while the density across the contour generators
is limited by the number of distinct viewpoints. Direct tri-
angulation, in this case, results in ill-formed triangles.On
the other hand, unlike unorganized point cloud, we do know
the connectivity of points along the same contour generator
and also the spatial order of the contour generators. We
therefore propose a simple but robust method for extracting

the surface with the connectivity and ordering information
available.

4.1. Slicing the contour generators

The proposed surface extracting method is built on a
slice based re-sampling method, and it targets at producing
more evenly distributed mesh grids. The earlier computed
contour generators are now re-sampled by parallel slicing
planes. Each slicing plane contains the intersections be-
tween the contour generators and the sampled plane. The
normal of each point is interpolated from the normals of the
adjacent points on the same contour generator. For a better
visual effect, these slices are parallel to the plane maximally
spanning all the camera centers.

Once the re-sampled points on each slice are obtained,
we proceed to connect these points and form 2D polygons.
We first link these points according to the spatial order of
the corresponding contour generators. This results in one
polygon on each slice. For complex shapes, this single slice
polygon may not reflect the true topology of the surface. We
need to break this polygon and regroup the points into sev-
eral smaller polygons complying to the topology suggested
by the silhouettes. To do this, we project each edge of this
polygon onto the silhouettes and break the edge if it falls
partially outside of any silhouette. The resulting partially
connected polygonal vertices reform new polygons which
should now project within all the silhouettes. The same
process is repeated for each slice.

Figure 4. 2D polygons on the slicing planes generated from a
David turn-table sequence

Note that the if we link the contour generator points on
each slice directly, we result in a shape generally smaller
than the visual hull volume. To create a better visual ef-
fect, we fit a smooth second order parametric curvex(t) on
the slicing plane replacing long edges of the polygons on
each slice. An example of subdivided and smoothed slices
is given in Figure 4.

4.2. Generating final surface

The final object surface is extracted from the polygons
on each slicing planes using some well-established method.
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We borrow and modify a method described in [2]. The sur-
face normal at each vertex is simply the interpolated normal
from the previous slicing step (see section 4.1).

The overall algorithm outline for extracting the surface
from the contour generator points is given below:

Algorithm 1 Extracting object surface
1: for each contour generatorΓi do
2: for each connected segment alongΓi do
3: if has intersectionp with slicing planeπk then
4: addp to pik along with the interpolated normal
5: end if
6: end for
7: end for
8: for each slicing planeπk do
9: correct topology and do sorting for the points onπk

10: fit smooth curve if user specified
11: generate surface triangles with points onπk−1

12: end for
13: map texture for each triangle

5. Experiments

Our approach has been extensively tested on both syn-
thetic and real world data. Three representative experiments
are shown in this section. The first experiment is based on
20 images of a synthetic cat model. The projection matri-
ces used for rendering are already known (see Figure 5(a)).
The camera centers are purposely set to irregular positions
around the object. An implied requirement by epipolar pa-
rameterization is that each camera is not too far from its
neighboring cameras.

The second experiment (see Figure 7) is performed over
a turntable sequence of 20 images. All the cameras have
been calibrated. We compare the result of a volumetric
approach [13] with that of our algorithm. The surface ex-
tracted from the OcTree using marching cube algorithm has
severe bumpy effect (see Figure 7(c)), even it consists of
more than 1.7k triangles. By smoothing the extracted sur-
face, the bumpy effect could be alleviated, but the details
of the surface are also smoothed out (see Figure 7(d)). The
model (see Figure 7(e)) generated by our approach contains
only 7k triangles. The details and the sharp edges are much
more well-preserved than using the volumetric approach.

The third experiment (see Figure 6) is conducted on an-
other turntable sequence, with fairly complex surface geom-
etry. The experiment shows that our method can robustly
recover the surface with non-zero genus, even when we do
not have any assumption on the topology of the surface.

(a)

(b) (c)

Figure 5. Reconstruction of a Cat model (a) The original model
and the camera positions; (b) Estimated contour generators super-
imposed on the surface (c) Slice polygons super-imposed on the
surface

Figure 6. Reconstruction of a David statuette from a turntable se-
quence (20 images)

6. Discussion

In this paper, we have presented a novel method for re-
covering 3D shape with unknown topology from silhouettes
extracted from 2D image sequence. This method exploits
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(a) (b) (c) (d) (e)

Figure 7. Reconstruction of a Jefferson statuette from a turntable sequence (20 images), compared with the volumetric method; (a) The
target object; (b) Reconstructed OcTree; (c) Surface extracted from the OcTree (1.7k triangles) (d) Smoothed surface by averaging neigh-
boring vertices in (c); (e) Surface obtained with our approach (7k triangles, 60 slices);

the dual relationship between the target surface and the tan-
gent plane space sampled from the silhouettes, and recovers
surface points on the contour generators directly. The use
of epipolar parameterization allows the method to handle
complicated shape robustly. We have also proposed a slice
based approach to produce a topologically correct surface
representation from the surface points recovered.

One limitation of the current approach is that we assume
that a contour generator is a single continuous spatial curve.
However, extreme cases such as self-occlusion may lead to
discontinuities. We are seeking for possible ways that han-
dle these cases explicitly. There are also rooms for improve-
ment in the surface extraction method. Despite its simplic-
ity and robustness, current method re-samples the surface
with even-spaced slices, and sharp features parallel to the
slicing planes may be missed.
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