
3D Reconstruction Using Silhouettes from

Unordered Viewpoints

Chen Liang ∗ Kwan-Yee K. Wong

Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong SAR, China

Abstract

In this paper, we present a novel approach for reconstructing an object surface from
its silhouettes. The proposed approach directly estimates the differential structure
of the surface, and results in a higher accuracy than existing volumetric approaches
for object reconstruction. Compared with other existing differential approaches, our
approach produces relatively complete 3D models similar to volumetric approaches,
with the topology conforming to what is observed from the silhouettes. In addi-
tion, the method neither assumes nor depends on the spatial order of viewpoints.
Experimental results on both synthetic and real world data are presented, and com-
parison is made with other existing approaches to demonstrate the superiority of
the proposed approach.
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1 Introduction

Silhouettes are the outlines of real world objects appearing on the images.
They provide rich information for digitizing these objects into high quality 3D
models. Reconstruction algorithms based on silhouette information are often
capable of producing relatively complete 3D models. They can be classified
into two main schools according to the metaphor they assume about the ob-
ject. One school, namely the volumetric school, is characterized by treating
objects as solid volumes. This concept first appeared in Martin and Aggarwal
[15] where the space is rasterized into parallelogram structure. In a subsequent
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work, Chien and Aggarwal [5] adopted octree as a more generic representa-
tion for the object volume. Potmesil [17] extended the volumetric method to
perspective projection with arbitrary viewpoints. The object volume is recon-
structed by computing the intersection between the visual cones associated
with all viewpoints, resulting in what is often termed the visual hull [12]. How-
ever, the proposed method needs to create one octree for each viewpoint.
Szeliski [18] proposed an efficient method that hierarchically builds up and
maintains a single octree. In [9], Garćıa and Brunet addressed the problem of
weakly calibrated cameras and constructed an octree up to a projective trans-
formation of the scene. In recent works including [7,11], extra information,
such as shading information, is also adopted for further refining the initial
volumetric visual hull. A major advantage of using a volumetric description is
its robustness regarding object with complex topology. However, the accuracy
of the reconstruction is limited by the chosen size of the voxel cells. Smaller
cells lead to higher accuracy, but at the same time, they also cause the model
complexity to increase cubically.

The other school, namely the differential school, treats the object surface as
an infinitesimally thin shell. It tends to directly recover the differential proper-
ties of the object surface by estimating the contour generators (a.k.a. extremal
boundaries or rims). Related work was pioneered by Giblin and Weiss [10] un-
der orthogonal projections and was extended to perspective projections by
Cipolla and Blake [6]. A parallel attempt by Vaillant in [19] showed that cur-
vature and depth along a contour generator can be computed given a triplet
of continuous viewpoints. Later in [2], Boyer and Berger gave a closed-form
solution for estimating the global shape of the object. Their method no longer
requires reconstruction planes as in [6] and [19]. However, these methods gen-
erally do not take into account objects with non-zero genus. Recently in [4],
Brand et al. introduced a very simple algebraic solution based on the principle
of duality for directly recovering points on the object surface from the dual
space points sampled from the silhouettes. A key step of their method is to
obtain reliable tangent bases in the dual space. However, their method relies
on exhausting the dual space directly, which is often perplexed by singularities
caused by bi-tangents on the object surface. Consequently, it is rather difficult
for their method to deal with more complicated surfaces. In our previous work
[14], we tackled this problem by integrating the epipolar parameterization [6]
for identifying tangent bases reliably, and avoided any direct search in the
dual space. This allows the reconstruction of objects with more complicated
shapes and non-zero genus.

There are also hybrid methods that exploit the advantages of both schools. In
[13], Lazebnik et al. proposed a rim mesh to represent the topology of contour
generators. The order of the viewpoints is considered explicitly in the form of
rim ordering criterion, allowing the input viewpoints in an arbitrary order. In
[3,8], the authors proposed a method (EPVH) to locally join carved visual ray
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segments to form a water tight surface. The method has significantly improved
over octree based approach in accurately reconstructing the visual hull. How-
ever, the reconstructed points are only guaranteed to lie on the visual hull at
best, and the visual hull is different from the real object surface. In addition,
the difficulty of joining visual ray segments scales fast with the number of
views and the complexity of the object.

Generally speaking, differential methods champion volumetric ones in terms
of accuracy. However, they lack the robustness of volumetric methods in deal-
ing with variance in object shape and topology. As a result, the reconstructed
models are often incomplete and corrupted. In addition, for differential meth-
ods, there is often an implicit assumption on the smoothness of the viewer
motion, as this is essential for approximating the first and second order differ-
ential properties of the object surface. Very few existing works have explicitly
considered a more general configuration consisting of unordered viewpoints.

The main contributions of this paper are in two aspects. First we recast the
concept of duality appeared in [14] into a general setting consisting of discrete
viewpoints with arbitrary spatial order, and introduce a solution for estimating
surface points using the information offered by all nearby viewpoints. Another
main contribution of this paper is a generic and robust algorithm for generating
relatively complete surface meshes from the earlier estimated surface points.
This algorithm is extremely useful for objects with unknown and complicated
topology. Throughout this paper, we will show the results of both synthetic
and real world data, as well as comparison with other existing methods.

This paper is organized as follows. In Section 2, we review the background the-
ories of the dual space method for reconstruction from silhouettes. In Section
3, we introduce our solution for extending the dual space method to handle
image sequences of unordered viewpoints. Section 4 proposes a surface extrac-
tion algorithm for producing a surface mesh maximally complying with the
topology suggested by the silhouettes. Experiment results on both synthetic
and real world image sequences are shown in Section 5, and conclusion is given
in Section 6.

2 Theoretical Background

This section introduces the existing dual space method for estimating object
surface directly from the dual manifold sampled from the silhouettes. Ty-
pographically we denote vectors and matrices in bold fonts (e.g., r and P)
and scalar values in italic fonts (e.g., k). A tilde sign over a vector (e.g., r̃)
represents the homogeneous version of the vector.
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Fig. 1. Geometry of the surface. (a) Single viewpoint; (b) Epipolar parameterization
and contour generators

Without loss of generality, we consider a set of pin-hole cameras with known
projection matrices Pt, observing an object bounded by a smooth surface S .
The camera center, or the viewpoint Ot, is given by Pt

⊥. A silhouette on the
image consists of one or more closed curves delimiting the inside/outside of
the object being seen in the image. The back-projection of tangent lines along
the silhouette are planes passing through Ot and tangent to the object surface.
The locus of the tangent points on the object surface is the contour generator
for the viewpoint Ot (see Fig. 1(a)). Often the contour generator consists of
one or more spatial curves. As the viewpoint moves over time t, it gives rise
to a space of tangent planes in R3. The envelope of this tangent plane space
is the original object surface.

Brand et al. [4] showed that the unknown original object surface can be recov-
ered from the tangent plane space sampled from the silhouettes by the virtue
of the principle of duality. Under the homogeneous coordinate system, both
planes and points are denoted by 4-vectors. Following this track, the tangent
plane space of the original surface S can also be treated as a surface in the
dual space, denoted as S ∗. A surface point r̃ and the tangent plane at that
point, denoted as r̃∗, form a dual pair that satisfies the following symmetric
relationship:

r̃>r̃∗ = r̃∗>r̃ = 0 (1)

By the virtue of this symmetry, the duality principle states that we can inter-
change the roles played by points and planes in many theorems of projective
geometry. This leads to the following proposition for computing surface points
from tangent planes, which is exactly the dual to the theorem for computing
tangent planes from surface points (as for now, we assume that a local para-
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metric form for S is available as S
.
= r̃(s, t)):

r̃(s, t) ∝ [
∂r̃∗(s, t)

∂s
,
∂r̃∗(s, t)

∂t
, r̃∗(s, t)]⊥, (2)

where r̃(s, t) is a point on S , r̃∗(s, t) is the tangent plane at r̃(s, t) and also a
point on S ∗. The 2D equivalence of equation (2) has been formally proved in
[4]. The proof for the 3D case, i.e., equation (2), is similar to that of the 2D
case, except that the vector cross product for 3-vector is replaced by general-
ized vector cross product for 4-vector. A geometric interpretation is given in
Fig.2.

Fig. 2. The dual space theory illustrated. (a) To compute the position of an unknown
point r̃(s, t) on the original surface S , the tangent planes at r̃(s, t) and its neighbors
are collected. (b) The collected tangent planes are equivalent to points on the dual
surface S ∗, allowing a tangent plane at r̃∗(s, t) to be estimated. (c) The estimated
tangent plane at r̃∗(s, t) on the dual surface is equivalent to r̃(s, t) on the original
surface.

In practice, however, the dual surface is sampled from a discrete set of view-
points, and no well-defined local parametric form for the surface is available.
The key challenge involved is therefore how to obtain a reliable tangent ba-

sis, in particular
∂r̃∗(s, t)

∂t
, in the dual space. Spatial proximity in the dual

space was exploited in [4] to qualify neighbor points required for estimating
r̃∗t (s, t). They also sought nearby dual space points only among those sampled
from successive views to reduce the risk of picking bad neighbors. However,
the reliance on spatial proximity makes it difficult to extend the dual space
approach to more complicated shapes in practice. One major reason is that
points sharing the same tangent plane (bi-tangent points), as often seen in
complicated shapes, are mapped to a single point in the dual space, and the
dual surface crosses itself at these singularities. Furthermore, the dual space
has a different distance metric than the original space, hence tangent sam-
pled at evenly distributed points in the original space may correspond to ill
distributed points in the dual space. As a result, simply using the spatial prox-
imity in the sense of Euclidean distance does not give a correct set of neighbor
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points in the dual space.

In our previous work [14], we proposed using epipolar parameterization for
obtaining the neighbor information in the dual space. Under this parame-
terization, the neighbor point along t direction of a contour generator point
r̃(s, t), is defined as the intersection between the neighbor contour generator
and the epipolar plane (spanned by visual ray of r̃(s, t) and baseline of the
two viewpoints). Although the 3D position of this intersection is unknown, its
projection on the image can be easily located on the corresponding silhouette.
Hence, the dual space point of this point can be computed by back-projecting
the tangent line at the projection. The dual space points computed in this

way are then used to estimate
∂r̃∗(s, t)

∂t
, and eventually r̃(s, t), using equation

(2).

We illustrate this process in an example given in Fig. 1(b): view Ot and
Ot+δt corresponding to two successive images. The epipolar correspondence
of w(s, t), i.e. w(s, t+ δt) in the figure, is located by intersecting the epipolar
line with the silhouette at time t + δt. The tangent planes at w(s, t) and
w(s, t + δt), which are r̃∗(s, t) and r̃∗(s, t + δt) respectively, are neighbors in

the dual space. Once r̃∗(s, t± δt) is known,
∂r̃∗(s, t)

∂t
can be estimated, hence

r̃(s, t) with equation (2).

However, a key assumption made in [14] is that the viewpoint undergoes a
continuously motion, so the images next to each other in the sequence actually
correspond to viewpoints that are spatially adjacent to each other. This implies
the contour generators corresponding to successive viewpoints are actually
close to each other, and thus the dual space neighbors given by the epipolar
parameterization on consecutive views would lead to a good approximation of
∂r̃∗(s, t)

∂t
. In the next section, we introduce our proposed method to handle

more generic situations when viewpoints are randomly distributed and do not
follow a specific order.

3 Estimation of Surface Point from Unordered Viewpoints

The assumption about smooth viewpoint motion made by [14] may not be
valid in many cases. An example would be a set of viewpoints generated by
multiple moving cameras, or a set of viewpoints with no temporal relation.
We generalize all these situations as if we are given a set of silhouettes from
unordered viewpoints.

Consider a set of n viewpoints with no temporal relation. Accordingly, we drop
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the time parameter t and assign to each viewpoint an index i. The contour
generator on S corresponding to the viewpoint i is denoted by r̃i(s), and its
dual on S ∗ by r̃∗i (s).

The geometric interpretation of the right hand side of equation (2) is the
tangent plane at r̃∗(s, t) on the dual surface S ∗. Hence, the estimation of
surface point r̃i(s) is equivalent to the estimation of the tangent plane at r̃∗i (s).
To estimate tangent plane at r̃∗i (s) in a general configuration of unordered
views, equation (2) is no longer usable due to the lack of well-defined tangent
basis. Alternatively, we approximate the tangent plane from a set of the dual
space neighbors of r̃∗i (s) on S ∗, which is very much similar to the estimation
of tangent planes on a mesh.

To obtain a set of dual space neighbors, we first need to identify the adjacent
viewpoints. The adjacency of viewpoints, however, is not entirely captured by
how far they are from each other, but rather by how close their corresponding
contour generators are on the object surface. The reason is rather intuitive:
we suppose the observed object is bounded tightly by a sphere. The change of
contour generator on the surface is more drastic when orbiting the viewpoint
around the sphere than moving the viewpoint towards or away from the sphere.
An example is given in Fig. 3(a), where d12 and d13 are the Euclidean distances
between the viewpoints O1 and O2, and O1 and O3 respectively. Although
d12 > d13, the contour generator changes less drastically when switching from
viewpoint O1 to O2 than from O1 to O3. As a result, a more comprehensive
measurement is needed for defining the meaning of ‘nearby’ viewpoints.

Fig. 3. A general configuration consists of multiple unordered viewpoints. (a) The
relative Euclidean distances between the viewpoints do not truly characterize the
relative differences between contour generators. (b) The distance between two view-
points is measured in terms of geodesic arc-length. (c) In the case of more viewpoints,
nearby viewpoints are qualified by geodesic arc-lengths.

Let us first consider the case when the viewpoints are relatively far from the
object. The ratio between the size of the object and the distance to the view-
point is very small, and the system is similar to an orthogonal projection. In
this case, only orbiting the viewpoint around the object leads to the change of
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the contour generator. The adjacency of two contour generators is completely
characterized by the directions of their correspondent viewpoints with respect
to the object. To measure the directional difference between two viewpoints,
it is natural to use arc-length: we conjure a virtual unit sphere at the center
of the object and map the viewpoints onto this sphere. The arc-length be-
tween two viewpoints i and j is the spherical distance between the mapped
viewpoints (see Fig. 3(b)), which is given by:

dij = arccos

(
(Oj −C)>(Oi −C)

|Oj −C| |Oi −C|

)
(3)

where C is the center of the object. Since we are able to compute the frontier
points from the silhouettes [20] which are true feature points on the object,
we can approximate C, as well as obtain an approximate size of the object.
With the above adjacency measurement, we are able to identify the adjacent
viewpoints for any given viewpoint by simply setting a thresholding value θ0

for the arc-length distance between two viewpoints (see Fig. 3(c)).

Once the adjacent views are identified for each viewpoint, we can proceed to
estimate surface points. Each surface point is estimated independently. Let
r̃i(s0) be the point to be estimated. For each adjacent viewpoint j, we locate
the epipolar correspondence of r̃i(s0) on the silhouette j, which is the projec-
tion of r̃j(s0). This gives rise to a tangent plane r̃∗j(s0), which is a neighbor
point of r̃∗i (s0) in the dual space. We can now recast equation (2), which is
essentially tangent plane estimation on the dual surface, into a discrete version
of weighted tangent plane computation maximally spanning all the neighbor
points r̃∗j(s0):

r̃i(s0) = argmin
x

∑
j∈{j|j 6=i,dij<θ0}

wji (r̃∗j(s0)− r̃∗i (s0))
>x

|r̃∗j(s0)− r̃∗i (s0)|

2

(4)

wji =
1

1 + dij
(5)

It should be noted that under perspective projection, moving a viewpoint to-
wards or away from the object will also cause subtle change to the contour
generator. We can characterize the extent of this change using the surface nor-
mal at the contour generator points. As shown in Fig.4, moving the viewpoint
orbitally has a linear relationship to the change of the normal. Changing the
distance to the object, on the other hand, does not result in a linear change
of the normal. The extent of the change also depends on the normal of the
tangent plane, as well as the size of the object.
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Fig. 4. Change of contour generator on a sphere due to different type of viewpoint
motion under perspective projection. (a) Viewpoint moves orbitally, and the change
of the contour generator is linear to the angle O1CO2. (b) Viewpoint moves towards
or away from C, the change of the contour generator is not linear with respect to
the change of distance to C.

To account for the effect brought by non-orbital viewpoint motion under per-
spective projection, we tune the weighting wji in equation (5) by introducing
a term that penalizes such viewpoint motion:

wji =
1

1 + λ1dij + λ2

∣∣∣arccos( h
|Oj−C|)− arccos(

h
|Oi−C|)

∣∣∣ (6)

where λ1 and λ2 are constants, h is half of the approximated diameter of the
object. We choose to use arccos( h

|Oj−C|) here, because it reflects the extent of

the change of the tangent plane to the object’s bounding sphere with respect to
the change of the distance between the viewpoint and the object. In practice,
we can safely assume that h < |Oi − C|, because the viewpoints are always
placed outside the bounding volume of the object.

To summarize, our proposed algorithm first identifies a set of adjacent view-
points for each viewpoint using arc-length. To estimate a point on a contour
generator, we collect the tangent plane at the “epipolar correspondence” of
this point from each adjacent viewpoint. The collected tangent planes, or
equivalently, the dual space points, are used to compute the position of the
contour generator point we wanted to estimate, by applying equation (4) with
proper weightings described in equation (6). In this way, we recover all the
contour generators, together with the surface normal at each point (directly
inferred from the tangent plane at that point). The algorithm is summarized
in Algorithm 1.
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Algorithm 1 Estimation of Surface Points
1: Initialize viewpoint adjacency matrix d and weighting matrix w
2: Approximate object center C and diameter h
3: for ith viewpoint do
4: for jth viewpoint (j > i) do
5: compute d(i, j) using eqt. (3)
6: compute w(i, j) using eqt. (6)
7: end for
8: end for
9: Initialize 2D storage r̃(s, t) for storing surface points

10: for ith silhouette wi(s) do
11: for nth point wi(sn) on the silhouette do
12: for jth viewpoint d(i, j) < θ0 do
13: locate epipolar match wj(sn)
14: compute r̃∗j (sn)
15: end for
16: Estimate surface point r̃i(sn) using

{
r̃∗j (sn)

}
and w(i, j)

17: end for
18: end for

4 Extraction of Surface Mesh

Our next goal is to extract a surface mesh from the contour generators com-
puted in the previous section. Each viewpoint produces a contour generator in
the form of one or several spatial curves. The spatial curves produced in this
way from all viewpoints form a web on the original object. The number of spa-
tial curves produced by each viewpoint depends on two factors: the topology
(or formally, the aspect) of the corresponding silhouette and self-occlusions.
Self-occlusions on the surface may lead to wrong epipolar matching, making
the tangent estimation mentioned in Section 3 unreliable. Although it usually
accounts for only a small portion of all the points estimated, it may still lead
to discontinuities along the recovered contour generators. Besides, as we make
no assumption on the topology of the object surface, it is a great challenge
to directly triangulate the recovered surface points while conforming to the
topology suggested by the silhouettes.

Boyer and Franco [3] proposed to apply directly the 3D Delaunay triangula-
tion and refine the topology of the resulting triangulation by carving away
those tetrahedrons projecting outside any silhouette. However, setting aside
the difficulty of 3D Delaunay triangulation (as compared with the 2D version),
the resulting triangulation may be over-carved if the sampling density along
each silhouette is not carefully chosen.

In our approach, we keep the idea of carving for its robustness, but on 2D
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Fig. 5. From contour generators to surface mesh. (a) One of the input silhouettes
from “Girl and Teddy Bear” sequence. (b) The contour generators computed using
the process introduced in Section 3. (c) 2D polygons on the slicing planes before
being pruned by the input silhouettes. (d) 2D polygons on the slicing planes after
being pruned by the input silhouettes. (e) The resulting surface mesh, containing
4 779 triangles.

Delaunay triangulation instead of 3D. This approach is motivated by a ro-
bust algorithm for surface extraction from cross-sectional contours of arbitrary
topology [1] and one of its implementation - NUAGES.

Firstly, our problem is reduced from 3D to 2D: we resample the web of con-
tour generators by parallel slicing planes, similar to what have been done in
[14]. Vaguely, the resampling process is to use parallel slicing planes to cut
the web of contour generators. This results in a number of isolated points (the
intersection between the contour generators and the slicing plane) on each of
the 2D slicing planes. Now for each slicing plane, we triangulate the isolated
points with 2D Delaunay triangulation. Each node (i.e., each triangle) in the
2D Delaunay triangulation is validated against all silhouettes, and those pro-
jecting outside any silhouette are marked for deletion. We repeat this process
for all slicing planes and finally obtain a stack of triangulations on the slicing
planes all conforming to the topology suggested by the silhouettes (see the
example given in Fig. 5).

To obtain the object surface, we transfer the 2D Delaunay triangulation of
every two adjacent slicing planes to 3D tetrahedrons. This process has been
introduced in [1] and we will omit the details. An example is given in Fig.6.
Briefly speaking, each node on either slicing plane gives birth to a type 1 tetra-
hedron (with a facet on either slicing plane), and a pair of intersecting Voronoi
edges (one from each slicing plane) produces a type 2 tetrahedron (without any
facet on either slicing plane) which is joint with type 1 tetrahedrons sharing a
facet. Instead of going through the post-processing step as suggested in [1], we
mark all type 1 tetrahedrons for deletion if it is constructed from a node on
either slicing plane which is marked for deletion previously. Finally, the object
surface can be extracted as the visible facets of both types of tetrahedrons.
“Visible” here means a facet on an unmarked tetrahedrons and satisfying: 1)
it is not shared with another unmarked tetrahedron, or 2) it is shared with
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Fig. 6. Extracting surface from two adjacent slicing planes. (a) 2D Delaunay trian-
gulation. (b) 2D Delaunay triangulation with its topology corrected. (c) An example
of type 1 tetrahedron. (d) An example of type 2 tetrahedron. (e) All the type 1 and
2 tetrahedrons constructed. (f) The surface extracted from “visible” tetrahedrons.

another tetrahedron which has been marked for deletion. A detailed outline
of the algorithm is given in Algorithm 2.

Algorithm 2 Extracting the object surface mesh

1: resample the contour generators by parallel slicing planes
2: for each slicing plane do
3: form 2D Delaunay triangulation for this slicing plane
4: for each node in the 2D Delaunay triangulation do
5: mark the node for deletion if it projects outside any silhouette
6: end for
7: for each node in this and the previous slicing plane do
8: form type 1 tetrahedrons
9: if this node is marked for deletion then

10: mark the tetrahedron for deletion
11: end if
12: end for
13: form type 2 tetrahedrons and connect with neighbor type 1 ones
14: mark all non-solid1 tetrahedrons for deletion
15: for each type 1 and type 2 unmarked tetrahedrons do
16: for each face of the tetrahedron do
17: if the face is “visible” then
18: store the face as the part of final surface mesh
19: end if
20: end for
21: end for
22: end for

The example given in Fig. 5 shows the intermediate steps of the surface ex-
tracting process and the final surface mesh. The input is a sequence of silhou-

1 Solid tetrahedrons are those sharing a facet with a type 1 tetrahedron or another
solid tetrahedron not marked for deletion. A type 1 tetrahedron is solid by itself.
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ettes from 20 calibrated viewpoints. From the experiments in Section 5, we
can see that the proposed surface extraction algorithm robustly handles rather
complicated object surface. As the topology correction and surface extraction
are independently done between two adjacent slices, the overall computational
time increases only linearly with the number of slicing planes.

Compared with [3], the 2D Delaunay triangulation is easier to construct
and yields better-shaped tetrahedrons (due to the resampling), hence better-
shaped mesh triangles. Compared with [14], we take advantage of 2D Delaunay
triangulation and carving for determine the topology, which in theory is robust
to any topology.

A note to be taken is that in order to reconstruct a relative completely and
topologically correct model, the proposed surface extraction method requires
a reasonably sufficient number of contour generators to be recovered. Too
few recovered contour generators may lead to very large tetrahedrons that lie
partially outside of the visual hull, and hence can potentially be marked for
deletion mistakenly. This problem can be remedied by subdividing the large
tetrahedrons and repeating the projection test for the subdivided tetrahe-
drons. However, this is usually not necessary in practice, because the surface
point estimation algorithm we have adopted is essentially a differential ap-
proach, which requires a reasonably dense and well-distributed image sequence
in the first place.

5 Experiments

In this section, we show both the quantitative and qualitative results of our
approach tested with synthetic data and real world image sequences.

5.1 Synthetic Data

The synthetic experiments are used to evaluate the accuracy of surface point
estimation and the stability of surface extraction algorithm. In [14], it has
been demonstrated that using a dual space approach gives more accurate
surface point estimation than octree and EPVH. The work has given detailed
quantitatively analysis on this subject as well. The quantitative result here is
an extension to the analysis of [14], which demonstrates that the dual space
method extended non-linear sequences gives equally accurate, if not better,
estimation of the contour generator points.

A set of 3D models (see Fig. 7) with varying complexity and topology are
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used, including venus, vase (surface of revolution), torus (surface with non-
zero genus), bunny (surface with fairly complicated shape), and knot (surface
with very complicated topology). We compute the error of reconstruction as
the average point-to-surface distance with respect to the ground truth surface.
We normalize the error against the size of the object, which is the diameter
of the minimum bounding sphere. Hence, 1% of error represents an average
distance of 0.01 if the object size is 1.

Fig. 7. The set of synthetic models used for the evaluation of reconstruction error.
From left to right: venus, vase, torus, bunny and knot.

We compare the results of our approach with a standard octree based volu-
metric approach used in [18,20], as well as EPVH 1 [8], which aims to produce
exact polyhedral representation of the visual hull. To be fair, the three algo-
rithms are tuned to generate similar number of triangles.

As shown in Table 1, EPVH improves over octree for not relying on spatial
discretization. The resulting estimations are guaranteed to lie on the visual
ray touching the object surface. A limitation here is that these points, however
carefully computed, are only guaranteed to lie on the visual hull encapsulating
the real surface. It has already been shown in [14] that the dual space approach
gives more accurate estimation than the octree and EPVH approaches. The
approach in this paper has addressed a main drawback of [14] to handle se-
quences of unordered viewpoints. Conveniently, our estimation is no longer
bound to using two adjacent viewpoints along the camera motion path, but
rather all adjacent viewpoints identified. Hence it comes as no surprise that
our approach is more accurate in estimating the real surface points than both
octree and EPVH.

Recon. Err. Knot95 Venus Bunny Torus Vase

Octree 0.525% 1.532% 0.949% 3.671% 1.153%

EPVH 0.379% 0.831% 0.498% 3.275% 0.652%

Our Approch 0.302% 0.729% 0.430% 2.341% 0.130%
Table 1
Comparison of the reconstruction error between our approach, octree approach and
EPVH approach. 1% error here is equivalent to 1 centimeter if the minimum bound-
ing sphere has the diameter of 1 meter.

1 The implementation of the EPVH is obtained from
http://perception.inrialpes.fr/ Franco/EPVH/
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Fig. 8. “Stanford Bunny” sequence and “Knot 95”1 sequence. (top) The viewpoints
used for the bunny sequence (39 in total) and for the knot sequence (34 in total).
(middle) The polygons on slicing planes2 and the reconstructed mesh for the bunny
sequence. (bottom) The polygons on slicing planes2 and the reconstructed mesh for
the knot sequence.

Two example reconstruction results of our proposed approach are shown in
Fig. 8. On top, the viewpoints of the input image sequences are shown. The
bunny sequence shows that our algorithm works with a non-linear set of ran-
dom viewpoints, provided that they are reasonable well distributed around
the object. The viewpoints for the knot sequence, given the fact that they
are more regularly distributed in a ring around the object, are shuffled before
input into our algorithm to eliminate any implicit order information. The ac-
curacy of the reconstructions of these two objects has been demonstrated in
Table 1. The middle and bottom of Fig. 8 have also shown that the topology
of the original object is also retained.

1 The original model can be found at http://www.pims.math.ca/knotplot/zoo/
2 Only half of all slices are shown for clarity of display
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5.2 Real World Data

Our proposed algorithm has also been tested with real world image sequences
(see Fig. 9). The input images are calibrated and their order is scrambled
to ensure that no temporal order information of the images is available. The
silhouettes of the object in the images are extracted using active B-Spline [6],
which allows tangent planes on the silhouettes to be computed conveniently,
as well as the intersection between epipolar lines and the silhouettes to be
computed with a closed form solution.

Fig. 9. A few original images for the “Hannover Dinosaur” sequence, the “Girl and
Teddy Bear” sequence, and the “Porcelain Lady” sequence.

The “Hannover Dinosaur” sequence (courtesy of University of Hannover) con-
sists of 36 images. The results are shown in Fig. 10 for octree, EPVH and our
approach. To extract the surface mesh from the octree, mid-point [16] inter-
polation is adopted due to the binary nature of the occupancy information
embedded in the octree. We did not impose any additional smoothing to the
resulting mesh, which trades high frequency information for perceived visual
appeal. We also tuned all approach to produce around 30 000 triangles in
this example. The octree approach, without mesh smoothing, generated very
bumpy surface. Compared with octree, both EPVH and our approach retain
good shape details of the original object, such as the shape of spine. This
is expected because of the way they honor the information provided by each
silhouettes. However the mesh resulting from EPVH is inheritably jagged, due
to the irregularity of the shape and size of the triangles formed from joining
the visual ray segments. In addition, the complicacy involved in joining these
segments could lead to cracks like the one shown in Fig. 10(c), near the inner
side of the tail of the dinosaur model. Our proposed method is based on well
established delaunay triangulation to guarantee the water-tightness on each
slicing plane. Although the slicing planes adopted are almost parallel to the
arms of the dinosaur model and the initial 2D triangulation can be very wrong
on the slicing planes, the volumetric nature of pruning the unwanted volume
trunks, in this case, the delaunay cells, results in topologically correct mesh.
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Fig. 10. The “Hannover Dinosaur” sequence. (a-b) Two novel views of the surface
mesh produced by octree. (c-d) Two novel views of the surface mesh produced by
EPVH. (e-f) Two novel views of the surface mesh produced by our proposed method.
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Fig. 11. The results from “Girl and Teddy” sequence. (a)(d) Two novel views of
the surface mesh produced by octree. (b)(e) Two novel views of the surface mesh
produced by EPVH. (c)(f) Two novel views of the surface mesh produced by our
proposed method.

Two more real world sequences are shown below, including a “Girl and Teddy
Bear” sequence consisting of 20 images (see Fig. 11), and a “Porcelain Lady”
sequence consisting of 36 images (see Fig. 12, courtesy of University of Cam-
bridge). The reconstructed mesh for the former contains around 8 000 tri-
angles, and the later 10 000 triangles. Similar to the dinosaur sequence, the
meshes produced by octree bear clearly the sign of spatial discretization. Those
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by EPVH and our approach, with almost the same amount of triangles, are
able to capture the shape observed from silhouettes very well. However, the
visual hull mesh, no matter how accurate, does not represent the true object
surface. Furthermore, the triangles formed by joining visual ray segments have
a great variance on shape and size. These explain why in the EPVH’s result
shown above, the shading is jagged on the surface areas which are supposed
to be smooth, such as the back of the girl in Fig. 11(e), and the lower part of
the robe in Fig. 12(b). On the other hand, our approach produces a mesh with
vertices consisting of hypothetic real surface points, and as a bonus, the true
surface normal at these vertices as well. In this way, the local surface prop-
erties are much better preserved. Reflected in the results, the surface meshes
produced by our approach are free of the artifacts appearing on polyhedral
visual hull meshes.

6 Conclusion and Discussion

We have introduced a novel differential method for reconstructing surface from
silhouettes. The proposed method is capable of producing highly accurate es-
timation of the surface points, yet requires no prior knowledge concerning
the order of the viewpoints. A surface extraction algorithm is also proposed
to deal with objects with unknown topology. Unlike many other differential
approaches, our approach is robust to object with non-zero genus and com-
plicated topology as most of volumetric approach. We verified our approach
with both synthetic and real world data, and we also compare the result with
existing widely used methods.

The 3D reconstruction produced by the current method, although complies to
the silhouette constraint, does not reflect the concavities on the original object
surface. To tackle this problem, photo-consistency or shading information must
be incorporated. Since we do have the exact position of contour generators,
local refinement becomes possible, which leads to possible further extension
of the current work.
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Fig. 12. The results from “Porcelain” sequence. (a)(d) Two novel views of the surface
mesh produced by octree. (b)(e) Two novel views of the surface mesh produced
by EPVH. (c)(f) Two novel views of the surface mesh produced by our proposed
method.
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