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Abstract

Recent video inpainting methods have achieved encour-
aging improvements by leveraging optical flow to guide
pixel propagation from reference frames, either in the im-
age space or feature space. However, they would produce
severe artifacts when the masked area is too large and no
pixel correspondences could be found. Recently, denois-
ing diffusion models have demonstrated impressive perfor-
mance in generating diverse and high-quality images, and
have been exploited in a number of works for image inpaint-
ing. These methods, however, cannot be applied directly to
videos to produce temporal-coherent inpainting results. In
this paper, we propose a training-free framework, named
VipDiff, for conditioning diffusion model on the reverse
diffusion process to produce temporal-coherent inpainting
results without requiring any training data or fine-tuning
the pre-trained models. VipDiff takes optical flow as guid-
ance to extract valid pixels from reference frames to serve
as constraints in optimizing the randomly sampled Gaus-
sian noise, and uses the generated results for further pixel
propagation and conditional generation. VipDiff also al-
lows for generating diverse video inpainting results over
different sampled noise. Experiments demonstrate that our
VipDiff outperforms state-of-the-art methods in terms of
both spatial-temporal coherence and fidelity.

1. Introduction
Video inpainting aims to generate spatial-temporal co-

herent contents for the masked areas in corrupted video
frames. Existing video inpainting methods can be broadly
classified into 1) end-to-end synthesis methods and 2) flow-
based pixel propagation methods.

End-to-end synthesis methods typically adopt 3D convo-
lutions [3, 4, 12], attention modules [17, 18, 41], or multi-
frame transformer-based networks [19, 20, 41, 47]. They
take corrupted frames and their corresponding masks as in-
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put, and train a video completion network to directly out-
put the completed frames. Since they have fixed tempo-
ral receptive windows (i.e., only a fixed length of reference
frames can be fed to the input), severe artifacts and tempo-
ral incoherence often occur when the input frames fail to
provide useful texture and content hints for the frame com-
pletion models (see Fig. 1(b)).

Flow-based pixel propagation methods first conduct op-
tical flow completion and then utilize the completed flows
to guide a pixel propagation step, which warps valid pix-
els from reference frames to a target frame. An additional
synthesis network is trained to fill the remaining masked
pixels. Although these flow-based methods [8, 14, 39, 43]
can achieve better temporal coherence over the generated
frames, their results still show obvious artifacts in the mask
center when the masks are large (see Fig. 1(c)). Undoubt-
edly, there is still a large room for improvement.

Recently, denoising diffusion models [11, 28] have at-
tracted enormous attention due to their impressive perfor-
mance in generating diverse and high-quality images from
Gaussian noise through a series of denoising steps. There
are several methods, like DPS [5] and ReSampling [31],
which adopt pre-trained diffusion model for image inpaint-
ing via sampling posterior distributions. RePaint [21] in-
troduces a time travel strategy to improve spatial coherence
between masked and unmasked areas, and CoPaint [42] pro-
poses optimizing the randomly sampled Gaussian noise us-
ing the unmasked pixels as constraints. Latent Diffusion
Models (LDM) [27] map the input to a low-dimensional
space with an encoder and feed the encoded features for
conditional generation in the latent feature space. These
diffusion-based methods work well for the image inpaint-
ing task. However, they cannot be applied directly to videos
since they do not consider temporal coherence. For in-
stance, we show the inpainting results of LDM on three
frames randomly selected from two videos in Fig. 1(d).
Even though the surrounding patterns are similar, LDM
generates different contents in the masked area in different
frames and fails to maintain temporal coherence.

Inspired by the above diffusion-based image inpainting



(a) Input (b) ProPainter [47] (c) ECFVI [14] (d) LDM [27] (e) Ours-Sample1 (f) Ours-Sample2 (g) Ours-Sample3
Figure 1. Video inpainting results on Davis dataset, we randomly select 3 frames from ’bear’ and ’cows’ videos. LDM generates different
contents, ProPainter and ECFVI contain artifacts in the mask center, while our samples are more sharp and temporal-coherent.

methods, we propose a training-free framework for con-
ditioning pre-trained image-level diffusion models to gen-
erate spatial-temporal coherent and diverse video inpaint-
ing results. Given a corrupted video, we first adopt a flow
completion model to predict all the optical flows between
frames. We then use the completed flows to propagate valid
pixels from reference frames to a target frame. Next, we
carry out the reverse diffusion process, where valid pixels
(i.e., both pixels in the unmasked area and pixels propagated
from other frames) in the target frame serve as constraints
in optimizing the sampled noise through backpropagation.

After optimization, a spatial-temporal coherent frame is
generated. Its pixels can be propagated to other frames
again and the process is repeated for the next target frame.
Note that once we generate one completed frame and prop-
agate its pixels to other frames, the number of remaining
invalid (masked) pixels in most frames, especially those
nearby ones, would become zero. Since we only need to
perform conditional generation on those frames with a non-
zero size mask, our framework is therefore very time effi-
cient. VipDiff can generate both spatial-temporal coherent
results and diverse inpainted videos. In Fig. 1(e), (f) and
(g), we show three different results on two videos. All of
our generated results are coherent with the video motions.

VipDiff has the following advantages. 1) It eliminates
the efforts in collecting large-scale video datasets and train-
ing a large video diffusion model, which may only be pos-
sible to be conducted by large companies or foundations. 2)
It leverages the diverse generation capability of pre-trained

image-level diffusion models and generates results far better
than SOTA methods, while still allows users to choose from
diverse video inpainting results. 3) It just takes several min-
utes to inpaint a video sequence of about 100 to 200 frames
on a single RTX 3090 GPU, demonstrating that it is both
device friendly and time efficient. Hence our method en-
ables users with limited GPU resources to utilize the ability
of pre-trained diffusion models for video inpainting.

We summarize our contributions as follows:

• A training-free framework, named VipDiff, for con-
ditioning pre-trained image-level diffusion model to
generate spatial-temporal coherent video inpainting re-
sults. On large mask cases, it is capable of generating
diverse results for users.

• VipDiff saves the extensive computation and time
costs in specifically training a video denoising diffu-
sion model for video inpainting task.

• To the best of our knowledge, we present the first work
that successfully tames pre-trained image-level diffu-
sion models for video inpainting task.

• Experiments on public datasets demonstrate superior
performance of VipDiff over existing state-of-the-arts.

2. Related Works
In this section, we give a brief review of video inpaint-

ing methods, including recent methods based on diffusion



probabilistic model [28].

2.1. Patch-based Methods

Traditional inpainting methods [1] analyze local struc-
tures and fluid dynamics [2] along the mask boundary,
and exploit spatial-temporal similarities [24, 36] between
patches from undamaged areas to sample patches for fill-
ing the masked regions. To improve the performance
on scenes with occluded objects, additional energy func-
tions [9, 23, 25] and optical-flow constraints [13, 22] have
been proposed to guide the optimization process. Although
these methods can produce plausible results, their lack of
understanding of global semantics results in poor visual
quality for complex scenes. They also require substantial
amount of time for computation, which limits their poten-
tials in practical applications.

2.2. Deep Learning Methods

With the great progress in deep learning, deep neural net-
works for video inpainting have become popular, and large
performance gains have been reported. To capture spatial-
temporal relationships among masked frames, 3D convo-
lutions have been widely adopted to combine temporal in-
formation and local spatial structures [3, 4, 12, 33]. To im-
prove visual coherence over the generated sequences, opti-
cal flows have been utilized to guide the propagation of pix-
els from nearby frames into the masked areas as additional
prior [8,39,43]. To obtain optical flows in the masked areas,
an additional flow completion network is trained to com-
plete the global flows. ECFVI [14] introduces an error cor-
recting model for reducing color discrepancy when propa-
gating pixels from far neighbors. Other methods [17,18,41]
utilize different attention modules for aggregating valid fea-
tures from different frames.

Recently, Transformer [32] and Vision Transformer [7]
have shown great potential in video inpainting. STTN [41]
introduces spatial-temporal transformer to combine multi-
scale information across different frames and fill masked
areas in all input frames simultaneously. FuseFormer [20]
adopts overlapping patch splitting strategy for learn-
ing fine-grained features to enhance inpainting quality.
FAST [40] combines information from the frequency do-
main. E2FGVI [19], FGT [44, 45] and ProPainter [47] in-
corporate optical flows in training the transformer struc-
tures. Although these transformer-based methods improve
the overall visual quality, they still suffer from performance
degradation when facing larger masks or when neighbour-
ing frames fail to provide useful information.

2.3. Diffusion-based Methods

More recently, diffusion-based methods [11,28,29] have
made significant progress in image generation. To generate
coherent inpainted images, DPS [5] and ReSampling [31]

treat the image inpainting problem as a process of sampling
images from the posterior distributions conditioned on the
masked images. RePaint [21] adopts a time travel strategy
which combines the current step t denoising result with the
noise degraded image based on the mask and uses it to gen-
erate the step t + 1 image by a one-step forward process.
CoPaint [42] improves the spatial coherence by taking the
unmasked pixels as constraints and optimizing the noise z
to match the generated image with the masked image. La-
tent Diffusion Models (LDM) [27] utilize an auto-encoder
structure to project the masked image into a latent space
with reduced resolution for conditional generation. These
methods can produce diverse and high-quality inpainted im-
ages. However, they cannot be directly applied to video in-
painting, since they only consider spatial coherence within
an image but not temporal coherence among frames. Other
methods try to train large video diffusion models for video
sequences editing [10, 46], or combining language models
with text prompts [37] to act as agents. Even trained with
large models, they do not explicitly address the temporal
inconsistent issues. Our proposed method combines the ad-
vantages of diffusion-based methods and flow-based meth-
ods, and generates spatial-temporal coherent and diverse re-
sults for video inpainting, which only requires on image-
level pre-trained diffusion models.

3. Proposed Methods

In this section, we first give a brief overview of the De-
noising Diffusion Probabilistic Models (DDPMs) and de-
scribe the notations used in this paper. We then introduce
our training-free framework for conditioning pre-trained
image-level diffusion models to generate spatial-temporal
coherent video inpainting results. We also recommend read-
ers to refer to the original papers [11, 28] of the diffusion
models for details and derivations if needed.

Let X = {xk|k ∈ [1, N ]} denote a corrupted video with
N frames, and M = {mk|k ∈ [1, N ]} be the correspond-
ing per-frame masks with the same spatial dimensions as
X . A video inpainting method takes the image frames X
and the masks M as input, examines the frame core, and
outputs the recovered video Ŷ = {ŷk|k ∈ [1, N ]}, which
should be spatial-temporal coherent.

3.1. Preliminaries

Denoising diffusion probabilistic models (DDPMs) [11]
can be viewed as a type of generative models which are
trained to approximate a data distribution x0 ∼ p(x)
through a series of intermediate variables x1:T that are de-
graded states of x0. These models comprise two processes,
namely the forward diffusion process which defines how the
original image x0 becomes the noise image xT , and the re-
verse diffusion process which recovers the clean image x0.
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Figure 2. Overall framework of our VipDiff. Given a target frame xk
0 , we first adopt a flow completion model to predict the optical flows.

Then the flows are utilized for pixel propagation to extract temporal prior from reference frames to get partially inpainted image x̃k
0 . Next,

x̃k
0 will act as constrains for optimizing the random sampled Gaussian nosie z which is feed for the reverse denoising U-Net. Through

backpropagation, we optimize the noise z at each time step and finally find an optimal z∗ for filling the target frame. Note that all the
model parameters are frozen during the noise optimization process.

Given the k-th masked input frame xk
0 = xk ∗ (1−mk)

from the corrupted video X , the forward diffusion process
defines a Markov chain q of T steps which progressively
adds Gaussian noise to the damaged image xk

0 by a variance
schedule {βt}Tt=1, i.e.,

q(xk
t |xk

t−1) = N (xk
t ;
√
1− βtx

k
t−1, βtI) (1)

where each βt ∈ (0, 1). With a sufficiently large T , the final
state q(xk

T |xk
0) will be close to real Gaussian noise.

For the reverse diffusion process, a diffusion model with
learnable parameters θ is adopted to estimate the amount of
noise at each time step (xk

t ),

pθ(x
k
t−1|xk

t ) = N (xk
t−1;µθ(x

k
t , t),Σθ(x

k
t , t)). (2)

To perform unconditional generation from a sampled
Gaussian noise xk

T , a shared-weight denoising auto-encoder
ϵθ(x

k
t , t) is trained to predict the denoised version of xk

t .
The objective can be formulated as

LDDPM = Exk
0 ,ϵ∼N (0,I),t∼U(1,T )[∥ϵ− ϵθ(x

k
t , t)∥2], (3)

where U(1, T ) is a uniform distribution on {1, 2, ..., T} and
ϵ is the noise level at current time step.

Latent Diffusion Models (LDMs) [27] are variants of
DDPMs which utilize an encoder E to project the input
image xk into low-resolution latent representations and a

decoder D to reconstruct the image. The forward diffu-
sion process and reverse diffusion process are carried out
in the latent space. LDMs allow for conditional genera-
tion by introducing additional prior in the reverse process
pθ(x

k
t−1|xk

t , c), where c denotes the condition which can
be texts, object segmentation mask, or other useful infor-
mation. For inpainting, the condition c would be provided
by the masked input frame xk

0 . The denoising network
ϵθ(x

k
t , t, c) can be trained under conditional reverse process.

Note that conditional LDMs only inpaint a single frame
at a time without enforcing any temporal coherence be-
tween frames. Naı̈vely applying conditional LDMs to
videos will inevitably lead to temporal incoherence in the
generated sequence (see Fig. 1). In this paper, we propose a
training-free framework that successfully tames image-level
diffusion models for generating spatial-temporal coherent
inpainting results, by utilizing optical flow to induce prior
from pixels in nearby frames.

3.2. Optical Flow Guided Pixel Propagation

Since pre-trained models [6] or LDMs [27] have demon-
strated strong capability in producing high-quality inpaint-
ing results from masked input images, we propose to di-
rectly make use of the them in our method without modi-
fying any of its network structure (attention modules, etc.)
or fine-tuning its parameters. Unlike other methods which
train a video diffusion model for specific video generation



Table 1. Quantitative comparison with state-of-the-art video inpainting methods on the YouTube-VOS and DAVIS datasets. ↑ (↓) indicates
the higher (lower) the better. We highlight the best results in bold, and the second best in underline .

YouTube-VOS DAVIS Speed
Methods PSNR↑ SSIM↑ VFID↓ Ewarp ↓ PSNR↑ SSIM↑ VFID↓ Ewarp ↓ s/frame

LGTSM [4] 29.74 0.9504 0.070 0.1859 28.57 0.9409 0.170 0.1640 0.19
VINet [15] 29.20 0.9434 0.072 0.1490 28.96 0.9411 0.199 0.1785 -
DFVI [39] 29.16 0.9429 0.066 0.1509 28.81 0.9404 0.187 0.1608 1.96
CAP [17] 31.58 0.9607 0.071 0.1470 30.28 0.9521 0.182 0.1533 0.27
FGVC [8] 29.67 0.9403 0.064 0.1022 30.80 0.9497 0.165 0.1586 1.75
STTN [41] 32.34 0.9655 0.053 0.0907 30.67 0.9560 0.149 0.1449 0.06

FuseFormer [20] 33.29 0.9681 0.053 0.0900 32.54 0.9700 0.138 0.1362 0.15
E2FGVI [19] 33.71 0.9700 0.046 0.0864 33.01 0.9721 0.116 0.1315 0.13

FGT [44] 33.81 0.9711 0.066 0.0893 33.79 0.9737 0.106 0.1331 0.79
ECFVI [14] 33.77 0.9703 0.053 0.0913 33.52 0.9732 0.105 0.1292 1.34

ProPainter [47] 34.23 0.9764 0.054 0.0971 34.27 0.9731 0.104 0.1312 0.09
Ours 34.21 0.9773 0.041 0.0828 34.23 0.9745 0.102 0.1280 2.73

tasks, we optimize the randomly sampled Gaussian noise
z to maximize the spatial-temporal coherence by leverag-
ing both the unmasked pixels in the target frame and pixels
propagated from reference frames as constraints.

Figure.2 shows the overall generation pipeline of our
VipDiff, the key to making the inpainted frames temporal-
coherent lies in the success of deriving proper prior for the
masked areas from as many valid pixels from nearby frames
as possible. To this end, we adopt a pre-trained RAFT
model [30] as our flow estimator. Pre-trained flow comple-
tion RAFT is capable of predicting complete optical flows
for images with missing areas. The completed flow from
frame k to frame j is denoted as

f̃k→j = F (xk
0 , x

j
0,m

k,mj), (4)

where F (·) is the flow estimator. After obtaining f̃k→j , we
can propagate valid pixels from frame j (referred to as the
reference frame) to frame k (referred to as the target frame)
to provide temporal constraints for the diffusion model.

3.2.1 Pixel Propagation

Let xj
0 be a source frame of xk

0 that contains valid pixel
information for the masked area of xk

0 . We define a back-
ward warping function ω(·) to propagate valid pixels from
the source frame xj

0 to the masked area of the target frame
xk
0 based on the completed flow f̃k→j . Written as

x̃k
0 = xk

0 +mj→k ⊙ ω(xj
0, f̃k→j),

mj→k = mk ⊙ (1− ω(mj , f̃k→j)),
(5)

where mj→k denotes a mask for the propagated valid pixels
falling within the masked area of xk

0 . After pixel propaga-
tion, we update the invalid mask of xk

0 to m̃k = mk −
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Figure 3. Process for propagating constrained generated pixels to
other frames.

mj→k. We repeat the above pixel propagation step for dif-
ferent j, starting from the nearest to the furthest neighbor-
ing frame, until the invalid mask becomes all zeros or all
neighboring frames have been exhausted. As pointed out
in [14], directly propagating pixels from other frames may
result in color discrepancy due to misalignment or bright-
ness inconsistency. The authors introduced an error com-
pensation network to reduce this problem. We adopt the
same error compensation network in our work to reduce the
color discrepancy in pixel propagation.

3.3. Noise Optimized Reverse Diffusion Process

After applying the above optical flow guided pixel prop-
agation, we obtain a (partially) filled frame x̃k

0 which con-
tains fewer invalid pixels compared with xk

0 . We can then
proceed to generate an inpainted frame ŷk for x̃k

0 based on
the reverse diffusion process. The goal is to sample a Gaus-
sian noise z that maximizes the similarity between the gen-
erated image ŷk and x̃k

0 . This can be achieved by optimizing
the noize z through backpropagation with the following ob-
jective



Lcond = ∥ŷk ⊙ (1− m̃k)− x̃k
0 ⊙ (1− m̃k)∥2. (6)

Specifically, ŷk = ϵdθ(z, t, x
k
0) with ϵdθ being the pre-trained

latent diffusion model. In general, our method can work
for unconditional diffusion models with ŷk = ϵdθ(t, x

k
t ).

Following [42], we also add a regularization term R(z) =
∥z − z0∥2 to constrain z with the original sampled noise z0
to follow a Gaussian distribution. Hence, the overall opti-
mization objective can be written as

z∗ = argmin
z

Lcond(ŷ
k, x̃k

0) + γR(z), (7)

where γ is the weight of the regularization term.
With the optimal z∗, we can generate a spatial-temporal

coherent inpainting result for the target frame. The spatial
coherence can be achieved by the valid pixels existing in the
target frame, and the temporal consistency comes from the
constraints of propagated pixels. The pre-trained diffusion
models provide overall coherence for the unconstrained pix-
els. Note that we do not tune any parameters of the pre-
trained diffusion model but only optimize z throughout the
entire process, making our method device friendly and time
efficient. The generation framework is shown in Fig. 2.

3.3.1 Inpaint the Entire Sequence

After obtaining the inpainted frame ŷk, we update its invalid
mask to all zeros. We then proceed to the next frame and,
likewise, carry out optical flow guided pixel propagation.
Note that once we have a completed frame with no invalid
pixels, in most cases, many subsequent frames can already
be completed by pixel propagation alone (see Fig. 3). We
only need to carry out the noise optimized reverse diffu-
sion process for those frames which remain incomplete af-
ter pixel propagation (the number of such frames is usually
relatively small compared to the video length). The whole
process is repeated for each frame in the sequence until all
frames have been completed.

4. Experiments
4.1. Experimental Settings

4.1.1 Dataset

Following common practice, we adopt two widely used
video object segmentation datasets, namely YouTube-
VOS [38] and DAVIS [26], for evaluation. YouTube-VOS
comprises 3471, 474, and 508 video clips for training, val-
idation, and testing respectively. DAVIS consists of 150
video clips, with 60 for training, 30 for validation and 90
for testing. Since we do not need any training data, we fol-
low the same setting as FuseFormer [20] and E2FGVI [19]
to use test sets from YouTube-VOS and DAVIS for quanti-
tative and qualitative evaluations. For the testing masks, we

adopt the same stationery masks as E2FGVI [19] for com-
puting objective metrics and object shape masks for qualita-
tive comparisons. Our code will be made publicly available
at: https://vious.github.io/projects/VipDiff.

4.1.2 Quantitative Metrics

For a fair comparison, we select PSNR, SSIM [35],
VFID [34], and flow warping error Ewarp [16] to evalu-
ate the performance of our method quantitatively with other
state-of-the-art video inpainting methods.

4.1.3 Implementation Details

We adopt the pre-trained image-level diffusion model from
LDMs [27], and the number of reverse optimization steps
is set to 50, with an adaptive learning rate initialized at
η0 = 0.01, and ηt = 0.9ηt−1 for optimizing the noise. We
set the weight for the regularization term to γ = 0.001. We
adopt the pre-trained RAFT provided by [14] as our flow
completion model, and also utilize their error compensa-
tion model for reducing color discrepancy in pixel propaga-
tion. The whole generating process is performed on a sinlge
GTX 3090 GPU. For a corrupted video with 100 frames,
our method takes about 4 to 6 minutes to complete a video,
which is also efficient since our VipDiff does not require
any training time and training data.

To select the first frame xk
0 for constrained generation,

we warp the masks of each corrupted frames using the com-
pleted flows, and then select the frame which holds the most
overlapping mask region as the starting frame.

4.2. Main Comparisons

4.2.1 Quantitative Results

We compute the quantitative results on the YouTube-VOS
and DAVIS datasets, and compare with existing state-
of-the-art methods, including LGTSM [4], VINet [15],
DFVI [39], CAP [17], STTN [41], FGVC [8], Fuse-
Former [20], E2FGVI [19], ProPainter [47], FGT [44] and
ECFVI [14]. Following E2FGVI and ECFVI, we test all the
frames at the resolution of 432 × 240. As shown in Tab. 1,
although our VipDiff does not require any training on those
datasets, it achieved the most highest metric scores com-
pared with other SOTA methods. As for the video related
metrics, we also achieved the highest Ewarp and VFID both
on YouTube-VOS and on DAVIS datasets. This demon-
strates the superior performance of VipDiff.
Inference time. We compared the running time per image
on the DAVIS validation dataset using a single RTX 3090
GPU and Intel 4214R CPU, as shown in Table 1 (last col-
umn). On average, our VipDiff is only about 1.4s slower
than optical-flow guided methods like ECFVI, but provid-
ing better visual quality. Diffusion models themselves are
time-consuming (LDM takes about 4.3s just for inference),
our framework can do object removal for a video sequence

https://vious.github.io/projects/VipDiff


(a) Input (b) ProPainter [47] (c) FGT [44] (d) ECFVI [14] (e) Ours

Figure 4. Qualitative comparisons with SOTA video inpainting methods. Best viewed in PDF with zoom. Please refer to the supplementary
video for a comprehensive comparison.

about 100 frames in about 4 minutes, which is time-efficient
for video inpainting. For inpainting task, users focus more
on visual quality, though feed-forward models like E2FGVI
or Propainter takes less time, they produce severe artifacts.
With the faster modern GPU techniques and better accelera-
tion algorithms of diffusion models in future, our VipDiff is
possible to close the speed gap to those feed-forward mod-
els, while providing sharper and high-detailed results.

4.2.2 Qualitative Results

For qualitative comparisons, we select three recent
SOTA methods, namely ProPainter [47], FGT [44], and
ECFVI [14], to conduct visual comparisons. We select
two videos with object-shaped masks (top 4 rows in Fig. 4)
and two videos with stationery masks (bottom 2 rows in
Fig. 4). One can see that for object-removal task (top 4
rows), our VipDiff can generate both sharp and temporal-
coherent results, while the competing methods fail to gener-
ate temporal-coherent and sharp contents in the mask center.
As for the stationery masks (bottom 2 rows), our VipDiff

largely surpasses the SOTA video inpainting methods since
they cannot find useful contents in the reference frames,
while our training-free framework can generate meaningful
details in the masked region. We refer readers to our video
results in the supplementary material for a better evaluation
of the temporal-coherent performance of our VipDiff.

4.3. Ablation Study

We conduct an ablation study on the DAVIS dataset
with the following variants: (i) direct output of LDM [27]
inpainting model for all corrupted frames, (ii) iteratively
select a corrupted frame to inpaint using LDM and use
completed flows to propagate pixels to other neighbouring
frames, until there is no invalid mask, (iii) without noise
optimization in the reverse diffusion process (i.e., use opti-
cal flow to guide pixel propagation first and then randomly
sample a fixed Gaussian noise for inpainting all the cor-
rupted frames). We denote these three variants as ‘LDM’,
‘LDM+PP’, and ‘w/o Opt’ respectively.

We show the qualitative results of the ablation study in
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Figure 5. Ablation study on different variants. From top row to
the bottom, they are (a) input, (b) output of LDM, (c) LDM com-
bined pixel propagation process, (d) our framework without re-
verse noise optimization, and (e) ours.

Fig. 5, with three consecutive frames randomly selected
from the ‘bear’ video. One can clearly see that when di-
rectly applying LDM inpainting model without consider-
ing any temporal prior, though the generated results are
sharp for every frame, they are not temporal-coherent (see
Fig. 5(b)). For LDM+PP, the inside inpainted contents may
be temporal-coherent, but directly warping large patches
yield severe color discrepancy issues due to the brightness
of different frames. From Fig. 5(d), one can see that remov-
ing the noise optimization step and using fixed Gaussian
noise for all corrupted frames would also generate differ-
ent contents inside the mask center. Our VipDiff, on the
other hand, can generate both sharp and temporal-coherent
contents, demonstrating its effectiveness.

We show the quantitative results of the ablation study in
Tab. 2. One can note that our full framework yielded the
highest quantitative performance over other variants. LDM
achieved the worst results in all metrics since it does not
consider any temporal coherence. LDM+PP improved over
LDM by adopting optical flow for pixel propagation, but
it faces color discrepancy and structure incoherent issues.
Removing the noise optimization step (w/o Opt) largely de-
creased the video-related quantitative performance. Fur-
thermore, we conducted additional experiments by per-
forming noise optimized reverse diffusion process for every
single frame. However, we observed that this approach was
considerably slow and resulted in significant frame flicker-
ing issues. Hence, we omit this result in comparison.
Ablation on γR(z). We conducted experiments on differ-

Table 2. Ablation studies on different variants.
Variant PSNR↑ SSIM↑ VFID↓ Ewarp ↓
LDM 32.64 0.9673 0.206 0.1833

LDM+PP 33.14 0.9701 0.133 0.1379
w/o Opt 32.80 0.9698 0.187 0.1620

Ours 34.23 0.9745 0.102 0.1280

Input γ = 0.1 γ = 0.01 γ = 0.001 γ = 0

Figure 6. Ablation study on regularization weight γ.

ent weights of γ, ranging from 0.1 to 0, as illustrated in
Fig 6. As the weight increases, we observed the blurri-
ness and spatial distortions. This can be attributed to the
heavier burden imposed by large Gaussian constraints on
the later reverse diffusion steps, resulting in a higher mag-
nitude of noise level. On the other hand, setting γ = 0,
implying the absence of Gaussian constraints, may lead to
the occurrence of artifacts. This is likely because the recon-
struction loss induces rapid changes in the noise distribu-
tion during the early denoising steps, where it should still
resemble Gaussian noise. Based on our experiments, we
recommend selecting a slightly small γ ranging from 0.01
to 0.001 (avoiding values that are too large or too small,
such as 0) to achieve satisfactory results.

We refer readers to our supplementary material for vi-
sual comparisons in videos and more ablation study, which
more clearly delineate the strength of our method. Further,
our training-free framework possesses strong generalization
capability. It can be applied to any pre-trained image-level
unconditional denoising diffusion models for video inpaint-
ing task. We provide video results by adopting other diffu-
sion models in the suppl.

5. Conclusion
In this paper, we have proposed the first training-free

framework, named VipDiff, that effectively tames a pre-
trained image-level diffusion model for the video inpainting
task. By introducing an optical flow guided reverse noise
optimization process, our framework successfully gener-
ates sharp and temporally coherent video completion re-
sults. Our VipDiff further allows for providing diverse
video outputs, and it also saves significant amount of efforts
in collecting extensive video data for training a video in-
painting diffusion model. Experiments have shown that our
method achieves the state-of-the-art performance on bench-
mark datasets, and generates superior video completion re-
sults than other competing methods.
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