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Abstract

This paper introduces a novel method for recovering light directions and camera parameters using a single

sphere. Traditional methods for estimating light directions using spheres either assume both the radius and

center of the sphere being known precisely, or they depend on multiple calibrated views to recover these

parameters. In this paper, it will be shown that light directions can be uniquely determined from specular

highlights observed in a single view of a sphere without knowing or recovering the exact radius and center

of the sphere. Besides, given multiple views of the sphere, it will be shown that the focal length and the

relative positions and orientations of the cameras can be determined using the recovered sphere and light

directions. Closed form solutions for estimation of light directions and camera poses are presented, and an

optimization procedure for estimation of the focal length is introduced. Experimental results on synthetic

and real data demonstrates both the accuracy and robustness of the proposed method.

Keywords: Light Estimation, Camera Calibration, Specular Reflection

1. Introduction

The recovery of light directions is crucial in many computer vision and graphics applications. For

instance, light directions can be used to infer the shape of an object using shape-from-shading [1], shape-

from-shadows [2], shape-from-specularities [3] or photometric stereo [4]. Augmented reality and image

based rendering techniques use the precise locations of light sources to render virtual objects into a scene

realistically [5]. In medical applications, light estimates are used for quantification of skin cancer and burn

scars [6]. Other applications use light sources in controlled setups for gaze estimation [7] and recognition

[8]. In humanities, scholars analyze light in realistic paintings to address a number of technical problems in

the history of art [9].

In this paper, we describe how multiple light directions and camera parameters can be recovered from

specular highlights observed on a sphere. The simultaneous calibration of both light and camera parameters

from just a single calibration object results in a simple setup and an efficient solution. Neither the camera
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intrinsics nor the radius and location of the sphere are assumed to be known. In contrast, existing methods

for estimating light directions using spheres either assume both the radii and centers of the spheres being

known precisely, or depend on multiple calibrated views to recover these parameters. It will be shown in this

paper that, for a given focal length, light directions can be uniquely determined from specular highlights

observed in a single view of a sphere without knowing or recovering the exact radius and center of the

sphere. The focal length can then be determined by an optimization procedure that employs a consistency

measure on light directions estimated from images captured from at least two distinct viewpoints. It will be

shown that the relative orientations and positions of the cameras can be recovered using two or more light

directions estimated in each view.

Preliminary results of this research have been published in [10]. This paper further extends [10] in the

following aspects:

• Internal camera parameters are not assumed to be known but estimated using an iterative optimization

procedure.

• Additional theoretical details for the estimation of light direction, camera pose and sphere center are

presented.

• The shape of specular reflection produced by a non-infinitesimal light source is studied. The error

introduced by using the center of a fitted ellipse for estimation of light directions is analyzed.

• New experiments on real and synthetic data are presented. In particular, an augmented reality ap-

plication with a detailed error analysis, an experiment for estimating different focal lengths, and an

experiment for estimating the symmetric transfer error are presented.

Throughout the paper, we make certain assumptions. Firstly, we assume that the outline of the sphere

and the specular highlights can be extracted, and that these features are elliptical. The latter makes the

former trivial as there exists a plethora of work dealing with robust extraction of ellipses [11, 12, 13].

Secondly, we assume that specular highlights can be matched between different views. In practice, we

perform matching using temporal information. Thirdly, since it is difficult or impossible to estimate camera

intrinsics from just a single image of a single sphere, we assume that the camera intrinsics remain constant

for at least two consecutive frames in the image sequence.

The rest of this paper is organized as follows. Sect. 2 discusses previous work on light direction estimation

and camera calibration. Sect. 3 addresses the problem of sphere reconstruction from a single image. It will

be shown that with unknown radius, a one-parameter family of solutions will be obtained with all the sphere

centers lying on the line joining the camera center and the true sphere center. Sect. 4 briefly reviews the

standard technique for recovering light directions from observed highlights on a sphere with known radius

and location. It then proves that any sphere from the family of solutions recovered from a single image
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can be used to estimate the light directions. In Sect. 5.1, an iterative optimization method is proposed for

recovering the camera calibration matrix; and in Sect. 5.2, a method for recovering the relative positions

and orientations of the cameras is presented. In Sect. 6 the shape of specular reflections on a sphere is

studied. Finally, experimental results on both synthetic and real images are presented in Sect. 7, followed

by conclusions in Sect. 8.

2. Literature Review

There exists a relative large number of works dealing with the estimation of light directions from images.

In 1982, Pentland [14] proposed a maximum-likelihood method for the estimation of a single distant light

source and evaluated his method against light direction estimations made by human subjects. In the context

of shape from shading, an iterative algorithm that alternatively estimates the surface shape and the direction

of a single source was proposed by Brooks and Horn [15]. Similarly, Ikeuchi and Sato [16] and Zheng and

Chellappa [17] estimated a single distant point light source. Vogiatzis et al. [18] introduced a robust technique

to accurately estimate a single light direction from a visual hull of a quasi Lambertian object.

However, multiple light sources are often present in natural environments, and the problem of estimating

multiple light directions is generally more challenging. In [19], constraints derived from surface normals and

image intensities at occluding boundaries were exploited to estimate multiple light directions. A unique

solution for more than four light sources could not be computed from a single image under the Lambertian

model. In [20], multiple light sources from a sphere of known physical size were estimated by identifying

critical points (CP). CP have a maximal change of intensity and occur on a smooth surface whenever the

light direction is perpendicular to the normal of the surface. Unfortunately, CP are difficult to detect due to

their sensitivity to noise. Wang and Samaras [21] proposed to segment an object into light patches, where

each patch is illuminated by a different set of sources. For an object with known geometry and albedo, light

directions can then be determined.

The above methods analyze the shading on a Lambertian model with constant surface albedo and treat

specular highlights as outliers. However, the specular reflection component of light is known to work in

a very predictable manner, and it can be exploited for light estimation. Similarly, cast shadows provide

rich informations of light sources [22]. In [23], cues from shading, shadow, and specular highlights were

combined for the estimation of a directional light in a textured scene. Unlike existing work, a textured

surface is considered. Lagger and Fua [24] recovered multiple light directions from textured objects by

optimizing a standard lighting model. The algorithm of Lagger and Fua can operate in the presence of an

arbitrary texture and an unknown number of light directions, but unfortunately, 3D geometry is assumed

to be known. The aforementioned methods mostly require prior knowledge of the projections of a reference

object with known geometry to give the relationship between surface orientations and image intensities.
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Debevec utilized a mirror sphere in [25] to estimate the global illumination in real world scenes. Using

such a mirror sphere might, however, change the scene illumination due to its strong reflection properties.

Besides, it is challenging to extract the boundary of a highly reflective object. Instead of using a mirror

sphere, Zhou and Kambhamettu [26] used a sphere which exhibited both specular and diffuse components.

They proposed an iterative method to recover the location and radius of a sphere from a pair of calibrated

images, and used the recovered sphere to estimate the light directions from the specular highlights on the

sphere. Similar to their work, this paper considers the problem of recovering multiple distant light sources

from a single sphere with unknown radius and location. Unlike [26], we do not require multiple fully

calibrated views for recovering the radius and location of the sphere via an iterative method. It will be

shown in this paper that light directions can be recovered directly from a scaled sphere estimated from a

single view. Given multiple views of the sphere, a solution is introduced to estimate the camera parameters

using the recovered sphere and light directions. Hence, both the light directions and camera parameters

(intrinsic and extrinsic) can be recovered using a single sphere. It will be shown that at least two light

sources are necessary to determine all the parameters of the cameras.

Camera calibration has been extensively explored in the literature [27]. The usual approach is to regard

view dependent appearances such as specular highlights as outliers. However, it has long been known that

specular highlights provide rich shape and pose information [28]. The literature on estimation of camera

poses from specular highlights is relatively sparse. In [29] it was shown that specular flow can be used as a cue

for 3D pose estimation. Specular highlights captured with a mirror sphere were matched against similar cues

generated from a CAD model of an object in various poses. Recently, Agrawal and Ramalingam [30] worked

with a single image of a calibration grid reflected on two or more specular spheres to determine the camera

pose. The estimation was performed without knowledge of the radii and locations of the spheres; however,

the camera was assumed to be internally calibrated. In [31], the specular reflection of a polygonal light source

on a sphere was used to estimate the camera pose. Lagger et al. [32] demonstrated how specular highlights

can be exploited for accurate registration of shiny objects. They observed that specular highlights are very

sensitive to pose changes and can provide additional constraints that can be incorporated into standard pose

estimation algorithms.

Instead of using specular highlights as an additional constraint for camera pose, in this work we will

exploit spherical specular highlights as the exclusive source of information for both camera intrinsic and

extrinsic parameters estimation.

3. Sphere Reconstruction

Consider a pinhole camera viewing a sphere. Let the radius and center of the sphere be Sr and Sc =

[ Xc Yc Zc ]T respectively, and let the camera coordinate system coincide with the world coordinate
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system. The sphere can be represented as a quadric surface by using a 4× 4 symmetric matrix

S =

 I3 −Sc

−ST
c (ST

c Sc − S2
r )

 , (1)

where I3 = diag{1, 1, 1} is a 3 × 3 identity matrix. Any 3D point X lying on S will satisfy the equation

X̃TSX̃ = 0, where X̃ denotes the homogeneous coordinates of the point. Suppose the 3 × 3 calibration

matrix K of the pinhole camera is known, the projection matrix for the camera can be written as

P = K[ I3 0 ]. (2)

The image of S under P will be a conic section. This conic can be represented by a 3× 3 symmetric matrix,

given by [27]

C =
[
PS∗PT

]∗
, (3)

where S∗ denotes the sphere in the dual space and is given by

S∗ = S−1 = −

 ScS
T
c /Sr

2 + I3 Sc/Sr
2

ST
c /Sr

2 1/Sr
2

 . (4)

Now, the conic image can be expressed in terms of K, Sc and Sr, by combining (4) and (2) with (3), as

C =
[
KKT −KSc [KSc]

T
/Sr

2
]∗
. (5)

Any 2D point x lying on C will satisfy the equation x̃TCx̃ = 0, where x̃ represents, again, the homogeneous

coordinates of the point. The back projection of the conic image C defines a cone, which will be tangent to

the sphere S and can be represented as a quadric surface using a 4× 4 symmetric matrix [27]

Q = PTCP

=

 KTCK 0

0T 0

 . (6)

Note that the intersection of the cone Q with the sphere S is a circle with the plane of the circle being

orthogonal to the line joining the camera center and the sphere center. Hence, Q is a right circular cone

with its vertex at the the camera center (the world origin) and axis passing through the sphere center Sc

(see Fig. 1). If the radius Sr of the sphere is known, Sc can be uniquely determined along the cone axis. In

the next paragraph, a closed form solution for Sc will first be derived under a special case (C is a circle).

The method for estimating Sc under the general case (C is a conic) will then be discussed.

Special case: Consider the case where the sphere center lies along the positive Z-axis, and the camera

calibration matrix is given by an identity matrix I3. Under this configuration, the sphere center will have
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Figure 1: The conic image C of a sphere and the camera center O will define a right circular cone Q tangent to a family of

spheres whose centers are collinear. A unique sphere center can be determined from its conic image along the cone axis if its

radius Sr is known.

Z-axis

Figure 2: In the special case, the projection of the sphere will be a circle C̄ with center at the origin of the image plane. The

sphere center S̄c will lie along the positive Z-axis and the distance d between the camera center and S̄c can be recovered using

properties of similar triangles.

coordinates S̄c = [ 0 0 d ]T. Note that d is also the distance between the camera center and the sphere

center. The image of the sphere can be obtained using (5), and is given by

C̄ =
[
I− S̄cS̄

T
c /S

2
r

]∗
=


1 0 0

0 1 0

0 0
S2
r

S2
r−d2

 . (7)

Note that C̄ represents a circle with radius r =
√

S2
r

d2−S2
r
. The center of C̄ is at the origin, which is also

the image of the sphere center. Given the radius r of C̄, the distance d between the camera center and the

sphere center can be recovered (see Fig. 2) as

d = Sr

√
1 + r2

r
, (8)

and the location of the sphere center follows.

General case: Consider the case where the sphere center and the camera calibration matrix are given by

Sc and K respectively. Generally, the image of the sphere will no longer be a circle centered at the origin,

but a conic section C centered at an arbitrary point xa. Note that xa is in general not the image of Sc. In
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Figure 3: The 3D to 2D projection of the sphere S and the specular highlight X (left). Note that the light direction L, the

viewing direction V and the normal N to the reflection surface at the point of incidence X lie in the same plane (right).

order to recover Sc from C, the effect of K is first removed by normalizing the image using K−1. The conic

C will be transformed to a conic Ĉ = KTCK in the normalized image. This conic can be diagonalized into

Ĉ = MDMT = M


a 0 0

0 a 0

0 0 b

MT, (9)

where M is an orthogonal matrix (i.e., MT = M−1) whose columns are the eigenvectors of Ĉ and D is a

diagonal matrix consisting of the corresponding eigenvalues. Let a > 0 and b < 0, then the matrix MT

defines a rotation that will transform Ĉ to the circle D with radius r =
√
− b

a centered at the origin. This

transformation corresponds to rotating the camera about its center until its principle axis passes through

the sphere center. This reduces the general case to the previously described special case, and the distance d

between the camera center and the sphere center can be recovered in terms of r and Sr. Finally, the sphere

center can be recovered as

Sc = M[ 0 0 d ]T

= dm3, (10)

where m3 is the third column of M.

4. Light Direction Estimation

Suppose the center Sc of a sphere with known radius Sr has been estimated using the method described

in the previous section. It is straightforward to recover a light direction from an observed highlight on the

sphere by using the properties of specular reflection (Fig. 3).

To recover the light direction, first construct a ray r from the camera center O through a pixel x

corresponding to a highlight

r = O + tV, (11)
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Figure 4: The first intersection point of the ray with each sphere from the family of solutions will have the same unit surface

normal.

where V = K−1x̃ is the viewing direction for the specular highlight observed at x and K is the camera

calibration matrix. Next, the point X on the sphere giving rise to the highlight is obtained by determining

the first intersection of the ray r with the sphere S. The unit surface normal at X can then be obtained as

N =
X− Sc

Sr
, (12)

and, finally, the light direction L can be recovered as

L = 2(V ·N)N−V. (13)

Now suppose the radius Sr of the sphere is unknown. It has been shown in Sect. 3 that there exists

a one-parameter family of solutions for the sphere center Sc which all lie on the straight line joining the

camera center and the true sphere center. It will now be shown that the light direction recovered from an

observed highlight using any of these scaled spheres will be identical. In other words, light directions can

be recovered from the highlights observed in the image of a sphere without knowing its size and location.

Proposition 1. Consider a ray casted from the camera center and the family of spheres with varying radius

recovered from the conic image of a sphere. If this ray intersects any of these spheres, it will intersect all

the spheres and the first point of intersection with each sphere will all have the same unit surface normal.

Proof. Since the cone constructed from the camera center and the conic image of the sphere will be tangent

to all the recovered spheres, any ray lying within this cone will intersect all these spheres, whereas any ray

lying outside this cone will intersect none of them. Consider a sphere S from the family with radius Sr and

center Sc. Suppose the ray intersect S at the point X with surface normal N. Consider a second sphere S′

from the family, and let its radius and center be S′r and S′c. A line being parallel to N can be constructed

from S′c, and let the intersection point between this line and S′ be X′.

Consider the two triangles 4OScX and 4OS′cX
′. Obviously, |XSc| : |X′S′c| = Sr : S′r. It follows

from (8) that |OSc| : |OS′c| = Sr : S′r. Finally by construction, ∠OScX = ∠OS′cX
′. Hence 4OScX and

4OS′cX
′ are similar and ∠ScOX = ∠S′cOX′. It follows that the ray will intersect S′ at X′ at which the

surface normal N′ is parallel to the surface normal N at X. Since the two spheres being considered are

chosen arbitrarily, the same argument applies to all spheres in the family.
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From (13), the light direction L only depends on the vector V and the surface normal N. The following

corollary therefore follows immediately from Proposition 1.

Corollary 1. The light direction estimated from an observed specular highlight in an image of a sphere will

be independent of the radius used in recovering the location of the sphere center.

5. Camera Calibration

5.1. Camera Intrinsic Parameters

The estimation of sphere center and light direction in the previous sections requires known camera

intrinsic parameters. In this section, an iterative method is proposed for recovering the camera calibration

matrix K. For simplicity, the following practical assumptions are made. It is supposed that the camera has

zero skew ζ = 0, that the pixels are square (ku = kv = 1) and that the principal point is at the image center

(ux = w/2, uy = h/2), where w and h are the width and height of the image respectively. As a result, we only

need to solve for the unknown focal length f to determine the calibration matrix

K =


fku ζ ux

0 fkv uy

0 0 1

 (14)

=


f 0 w/2

0 f h/2

0 0 1

 . (15)

To determine f from images, we suppose that the sphere is captured from at least two distinct viewpoints

and that the images were taken with constant focal length under constant illumination.

Consider the case, where a camera with a particular focal length f captures a sphere. The proposed

methods in Sect. 3 and Sect. 4 can be applied to recover the sphere center Sc and light direction L. Let

us now change the focal length to f ′. It follows from (11) that a distinct ray will be recovered, which will

intersect the sphere centered at S′c. As a result of the equations (12) and (13) a distinct light direction

L′ will be recovered. Since we assume light directions are fixed globally, we can employ a consistency

measurement on light directions estimated from images captured from distinct viewpoints. Unfortunately,

estimated light directions from different views are defined in different coordinate systems and we propose to

solve this problem by measuring angles between pairs of distinct estimated light directions.

Consider, for example, two distinct unit light directions {L1,1, L1,2} estimated in a first view and two

distinct unit light directions {L2,1, L2,2} estimated in a second view. The angle difference between the pairs
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Figure 5: Recovery of camera extrinsic parameters. By assuming an arbitrary but fixed radius for the sphere in both views, it

is possible to relate the two cameras in a common coordinate system.

can be defined as

δ = |∠(L1,1,L1,2)− ∠(L2,1,L2,2)| (16)

= |cos−1(LT
1,1L1,2)− cos−1(LT

2,1L2,2)|.

Based on this consistency measurement, the focal length f can be solved by considering all angles between

light directions for all views. We propose to determine f by solving the following optimization problem

minimize
f>0

∑
i,i′,j,j′,i<i′,j<j′

|LT
i,jLi,j′ − LT

i′,jLi′,j′ |, (17)

where Li,j represents the j-th estimated light direction in the i-th view. We found that (17) can be mini-

mized efficiently using basic optimization techniques, namely Grid Search and Powell’s Conjugate Gradient

Descent method. To determine a unique focal length, we performed exhaustive Grid Search with the bounds

[100, 10000] and a sampling density of 500. Subsequently, we performed Powell’s Conjugate Gradient Descent

method to find the local minimum nearest to the minimum obtain from the Grid Search.

5.2. Camera Extrinsic Parameters

Suppose two images of a sphere are captured from two distinct viewpoints. The sphere center can be

recovered in each of the two camera-centered coordinate systems respectively (see Sect. 3). By assuming

an arbitrary but fixed radius for the sphere in both views, it is possible to relate the two cameras in a

common coordinate system as illustrated in Fig. 5. Without loss of generality, let the sphere center in the

camera-centered coordinate system of the first view be Sc and that of the second view be S′c respectively.

By considering a common world coordinate system centered at the sphere center, the projection matrices

for the two views can be written as

P = K[ I Sc ]

P′ = K[ I S′c ]. (18)
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Note that the above projection matrices are not unique. Due to the symmetry exhibited in the geometry of

the sphere, an arbitrary rotation about the sphere center (i.e., the world origin) can be applied to the camera

without changing the image of the sphere. This corresponds to rotating the camera around the sphere while

keeping the cone constructed from the image tangent to the sphere. A rotation around the axis of the cone

will also keep the image of the sphere unchanged. Hence, by choosing the first camera as a reference view,

a more general form of the projection matrices for the two views is given by

P = K[ I Sc ]

P′ = K[ R S′c ], (19)

where R is a 3× 3 rotation matrix.

By assuming the light directions being fixed globally in both views, the highlights observed in the

two images can be exploited to uniquely determine the relative rotation between the two cameras. Note

that the location of the highlight on the sphere surface will depend on both the light direction and the

viewpoint. Hence the locations of the highlights due to the same light direction will be different under two

distinct viewpoints, and their projections on the two images do not provide a pair of point correspondence.

Nonetheless, using the method described in Sect. 4, the light directions can be recovered in each of the two

camera-centered coordinate systems.

Let the unit light direction in the camera-centered coordinate system of the first view be L and that of

the second view be L′ respectively. Since these two directions are parallel in the common world coordinate

system, the rotation matrix R relating the two cameras will bring L to L′, i.e.,

RL = L′. (20)

The above equation places two independent constraints on R. Hence, observing two highlights produced by

two distinct light directions in two images will provide four constraints, which are enough to determine the

three parameters of R.

In practice, estimated light directions are not exact, due to the presence of noise. It may not be possible

to find a rotation that perfectly maps a set of light directions {L1, . . . ,Lm} to another set of light directions

{L′1, . . . ,L′m}. A least squares solution can be obtained instead by minimizing the sum of squared residual

errors

ε =
m∑
j=1

||L′j −RLj ||2. (21)

Note that (21) attains a minimum if the sum of the dot products

c =
m∑
j=1

(RLj) · L′j (22)
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attains a maximum. Readers not familiar with quaternion representation of rotations are suggested to read

Appendix A. Using unit quaternion representation to represent a rotation, (22) can be rewritten as

c =
m∑
j=1

(q̇L̇jq̇
∗) · L̇′j , (23)

where q̇ is the unit quaternion representation of the rotation matrix R, and L̇ is the quaternion representation

of the light direction vector L. Since (ṗq̇) · ṙ = ṗ · (ṙq̇∗), (23) can be further rewritten as

c =
m∑
j=1

(q̇L̇j) · (L̇′jq̇). (24)

Using matrix representations for quaternion multiplications, (24) can be expressed as

c =
m∑
j=1

(L̃jq̇) · (L′jq̇) = q̇TWq̇, (25)

where L and L̃ are the orthogonal 4×4 quaternion matrices as in (A.3), and W is a 4×4 symmetric matrix

given by

W =
m∑
j=1

(L̃j)
TL′j . (26)

From basic eigenvalue theory, the unit quaternion which maximizes (25) is given by the eigenvector ė of W

corresponding to the largest positive eigenvalue. A rotation matrix can then be extracted as the lower-right-

hand submatrix of ẼTE, where E is the quaternion matrix representation of ė.

Finding the transformation between points measured in two different coordinate systems (also known as

absolute orientation) is also studied in the field of photogrammetry, and our results are a special case of the

derivations in [33].

6. The Shape of a Specular Reflection

The theoretical formulation derived in this paper takes a single point as input for the estimation of

light directions and camera parameters. However, in practice a non-infinitesimal light source will produce

a specular reflection covering an area on the sphere, from which a single point has to be extracted. To

determine which point to select form this area, we examine the shape of a specular reflection produced by

a light source of spherical shape. We first synthetically estimate the ground truth area belonging to the

specular reflection that is produced from a light source of spherical shape. The boundary of this area can

be obtained by considering the great circle of the spherical light source that is perpendicular to the light

direction. This circle was sampled and each sample point was forward projected on the reflective sphere and

finally projected to the image using the 4th degree forward projective equation given in [34]. The resulting

image points were taken as the ground truth shape. In addition, we also obtained a ground truth image
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Figure 6: The ground truth shape and ground truth points of specular reflections for various incident angles γi. We approximate

the ground truth shape with an ellipse and the ground truth point with the center of the ellipse. Although the error ε increases

for larger γ, it can be seen that even for a large incidence angle of γ3 = 135◦ the error was just ε3 = 3.06 pixel.

point for the projected center of the spherical light source that satisfies (13). Both, the ground truth point

and the ground truth shape are plotted for three different light directions in Fig. 6. Here, γi denotes the

incident angle which we define as the angle between the light direction and the line that connects the camera

center with the sphere center.

It can be seen in Fig. 6 that the shape of the reflection appears to be an ellipse for the first two cases. To

confirm this we fitted a conic to the ground truth shape and found that the sample points are approximately

but not perfectly elliptical. It can be seen that the ground truth shape is not elliptical for the large incident

angle γ3. Nevertheless we fit an ellipse to it and the ellipse center provides an approximation to the ground

truth point. We estimated the errors ε1, ε2 and ε3 which we define as the euclidean distance (in pixel) from

the ground truth point to the fitted ellipse center. Although the shape appears to become increasingly

non-elliptical for larger incident angles γ, we found that for γ1 = 45◦, γ2 = 90◦, and γ3 = 135◦ the error

was just ε1 = 0.31, ε2 = 1.10, and ε3 = 3.06 (in pixel) respectively. We conclude that the ellipse center is a

good approximation to the ground truth point.

7. Experimental Results

The closed form solutions for recovering the sphere centers, light directions and camera rotations and

the iterative method for recovering the focal length have been implemented. Experiments on both synthetic

and real data were carried out and the results are presented in the following sections.

7.1. Analysis with Synthesized Data

To evaluate the robustness of the proposed method, noise was added to the sphere’s silhouette as well

as to the locations of two specular highlights. To add noise to the silhouette, points were first sampled and

then perturbed with noise in a radial direction. A noisy conic was obtained as a conic robustly fitted to

these noisy points using a direct least squares method [35]. Noise was added directly to the coordinates of
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Figure 7: To evaluate the robustness of the proposed method, noise was added to the sphere silhouette as well as to the

locations of the specular highlights. Errors in (a) rotation, (b) translation angle, (c) translation length and (d) light direction

are shown.
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Figure 8: To evaluate the robustness of the proposed method, noise was added to the conic section as well as to the locations

of two specular highlights. (a) Errors in focal length estimated from 2, 4, and 8 views. (b) Shape of cost function (17) when

adding noise to specularities. (c) Shape of cost function (17) when adding noise to conic.

the specular highlights. Experiments with noise levels ranging from 0.0 to 3.0 pixels were carried out. To

obtain statistically meaningful results, 250 independent trials for each noise level were conducted and errors

were estimated and averaged.

Fig. 7 plots the mean errors in estimated (a) rotation, (b) translation angle, (c) translation length and

(d) light direction against the noise level. The error in rotation in Fig. 7 (a) was obtained by decomposing

the rotation matrix R = RT
noisyRgroundtruth into an angle and axis. The angle was taken as the error. It can

be seen that the error increased linearly with the noise level in all cases and that the error in translation in

Fig. 7 (b) and Fig. 7 (c) is very low. This follows from the fact that translation depend only on the sphere’s

outline, which has been fitted robustly to the noisy points. In contrast, noise added to the specular points

have a larger impact on the error. This can be seen in Fig. 7 (d) where light directions are estimated less

accurately when noise is exclusively added to the specular points. It can be seen in Fig. 7 (a) that the error

in rotation will be reduced when more light sources are added into the scene.

The robustness of focal length estimation proposed in Sect. 5.1 has also been analyzed. Fig. 8 (a) plots

the error in the focal length estimation using 2, 4, and 8 images. It can be seen that the error is inverse

proportional to the number of views and that noise added to specular points have a larger impact on the
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Figure 9: (a) Five reconstructed objects shown together with a billiard sphere and the estimated cameras. (b) The cost function

for the focal length estimation and the obtained minimum compared to Zhang’s calibration pattern method [36].

error. Fig. 8 (b) and Fig. 8 (c) show the shape of the cost function in (17) for noisy specularities and noisy

conic. Even for larger noise levels, a minimum can still be located near the ground truth.

In addition to the experiments above, where noise was added individually to the conic or the specularities,

we performed an additional experiment with noise added simultaneously to both conic and specularities. In

general, we observed that errors in the estimated camera parameters and light directions were slightly larger

than the sum of the individual errors shown in Fig. 7 and Fig. 8.

7.2. Experimental Results on Real Data

In this section, we present three experimental results on real images. We are not aware of other methods

that estimate light and camera parameters simultaneously. Therefore, we evaluate the quality of the esti-

mated light and camera parameters using a planar calibration pattern, 3D reconstruction and augmented

reality.

7.2.1. Experiment One

The camera observed five objects and a billiard sphere with a radius of 27 cm, as seen in Fig. 9 (a).

The objects were illuminated by two light sources that were placed at an approximate distance of 2.0 m

away from the sphere center. The initial camera center was positioned approximately 0.5 m away from the

sphere center. Since ground truth for camera and light parameters were not available in this experiment,

we verified the correctness of the estimated parameters as follows.

• First, the physical measurements of the five objects were compared against reconstructions obtained

using the estimated camera parameters. The reconstructions were obtained from triangulations of

corresponding points. It can be seen in Table 1 that the error between measured and estimated entities
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hand

measured

[cm]

estimation

[cm]

error

[cm]

error

[%]

Book width (w) 23.0 22.80 0.20 0.84

Book height(h) 2.5 2.46 0.04 1.21

Book depth (d) 16.5 16.53 0.03 0.19

Phone box w 8.9 8.89 0.01 0.03

Phone box h 8.0 7.96 0.04 0.38

Phone box d 14.5 14.24 0.26 1.75

Big Lens box w 13.5 13.47 0.03 0.20

Big Lens box h 13.5 13.51 0.01 0.12

Big Lens box d 20.0 20.19 0.19 0.96

Small Lens box w 10.0 10.14 0.14 1.47

Small Lens box h 10.5 10.60 0.10 1.01

Small Lens box d 11.0 11.20 0.20 1.89

Ruler w 5.0 5.17 0.17 3.43

Ruler d 30.5 30.63 0.13 0.43

Table 1: Reconstructions compared to their corresponding physical measurements.

0 1 2 3 4 5 6 7 8 9 10 11

(a) 2.23 1.23 1.72 0.89 2.39 3.52 3.59 2.35 2.80 1.76 0.77 2.06

(b) 0 0.01 2.29 0.98 0.92 0.02 2.35 0.73 2.39 0.91 3.61 0.40

Table 2: For each view 0 to 11: (a) Average image distances in pixel between projected and measured points. (b) Average

image distances in pixel ∗ 10−1 between projected and reflected specular points.
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was generally very low. In Table 2 the mean reprojection error for the vertices of the reconstructed

objects is given for all views. This table also lists the back projection error of specular highlights.

The images were also augmented with a wireframe model of the reconstructions and a synthetic

rendering of the billiard sphere in Fig. 10 (b). The sphere was rendered under the estimated light

directions. The correct location of the specular highlights on the sphere, with respect to the original

sphere shown in Fig. 10 (a), and the correct augmentation of the wireframe models confirm the low

errors reported in Table 2.

• Second, the focal length is compared to an estimate made using a planar calibration pattern [36].

The cost function of the optimization (17) is plotted in Fig. 9 (b) and a minimum was obtained at

f̂ = 4698, while the planar calibration pattern gave f̄ = 4416.

• Third, a virtual bunny was augmented into the scene in Fig. 10 (c). The virtual bunny was rendered

using the estimated light directions and a shadow was casted into the scene. The good registration of

the bunny confirms the good quality of the estimated camera parameters and light directions.

7.2.2. Experiment Two

A second experiment on real data was performed. This time, we took two images from different viewpoints

of a billiard sphere illuminated by two light sources. The estimated focal lengths was again compared against

estimates made using the planar calibration pattern. The experiment was repeated for different focal lengths.

The cost functions of the optimization problem (17) for three different focal lengths were plotted in Fig. 11

and the minima were obtained at f̂17mm = 3742, f̂24mm = 5100, f̂40mm = 7820, while Zhang’s planar

calibration pattern method yielded f̄17mm = 3761, f̄24mm = 5037, f̄40mm = 8336, respectively.

7.2.3. Experiment Three

Finally, a third experiment on real data was performed. This time, five light bulbs were placed approx-

imately 2 m away from a billiard sphere, which had a radius of 27 mm. The camera was approximately

located 1.5 m from the sphere center. Seven images of the billiard sphere and a planar checkerboard pattern

were taken from different viewpoints.

The point correspondences of the pattern were used to estimate the symmetric transfer error (STE),

which we calculate as follows. For each point ui the distance d(u′i,Fũi) between the epipolar line Fũi and

its corresponding point u′i was computed; here F represents the Fundamental matrix. This was done in

both directions and the mean distance was used as the error

e =

p∑
i=1

d(u′i,Fũi) + d(ui,F
Tũ′i)

2p
, (27)
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Figure 10: Frames 1, 3, 5, 7 and 9 of the image sequence are shown: (a) captured image, (b) with augmented reconstruction

and synthetically rendered billiard sphere, and (c) cropped image with augmented bunny. The sphere in (b) and the bunny in

(c) have been rendered using the estimated light directions. The correct location of the specular highlights on the synthetic

sphere in (b) and the correct registration of the bunny in (c) show the good quality of the estimated light directions and camera

parameters.
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Figure 11: The cost functions of the optimization problem in (17) for three different focal lengths of the second experiment. It

can be seen that the obtained minima are close to results obtained from the planar calibration pattern.

where

d(p, l̃) =
|ax20 + by20 + c|√

a2 + b2
(28)

is the absolute Euclidean distance (in pixels) between a point p = [ x0 y0 ]T and a homogeneous line

l̃ = [ a b c ]T.

Table 3 lists the STE (in pixel) in the second column for the 6 image pairs. It can be seen that

the average STE error was approximately 3 pixel. Considering the fact that the image resolution was

4752 pixel× 3168 pixel and the focal length was 4391 pixel, this is a low error.

Camera extrinsic parameters were also obtained from the dense point correspondences on the planar

pattern. The relative rotations and translations between the estimated cameras were compared against

those estimates from the planar calibration pattern and are listed in columns 3 to 7 of Table 3. The average

angular error in the estimated rotations was 0.66◦ for the rotation and the average errors in the translations

were 0.51cm, 0.34cm and 0.12cm for the x, y and z component of the translations vectors. The procedure

for obtaining the error in rotation was the same as in the synthetic case, but this time using the rotation

obtained from the calibration pattern as the ground truth. Given the large distances between the camera

centers and the sphere center, these obtained results are accurate.

8. Conclusions

In this paper we have described how light directions and both camera intrinsic and extrinsic parameters

can be recovered from specular highlights observed on a sphere. The main contributions of this paper are

1. a closed form solution for recovering light directions from the specular highlights observed in a single

image of a sphere with unknown size and location,

2. an iterative solution to recover the focal length from multiple views of the sphere, and
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STE

[pixel]

R

[degree]

Tx

[cm]

Ty

[cm]

Tz

[cm]

A ↔ B 2.69 0.23 0.14 0.02 0.02

A ↔ C 2.99 0.57 1.06 0.22 0.21

A ↔ D 3.43 0.94 1.50 0.86 0.41

A ↔ E 3.66 0.85 0.26 0.49 0.05

A ↔ F 3.67 0.61 0.01 0.39 0.01

A ↔ G 1.99 0.77 0.09 0.01 0.01

average 3.07 0.66 0.51 0.34 0.12

Table 3: Estimation results for the six image pairs of the third experiment. The symmetric transfer error (STE) is listed in

column 2 and the relative errors in rotation and translation are listed in columns 3 to 6.

3. a closed form solution for recovering the relative camera poses using the estimated sphere, focal length

and light directions.

The estimation quality of both light directions and camera parameters depends on the quality of the

extracted silhouettes and specular highlights. As we have shown in synthetic experiments, if the sphere

silhouettes and the specular highlights cannot be accurately extracted, the camera poses and light directions

would be inaccurate. Sophisticated methods for sphere silhouette and specular highlight extractions, e.g.,

based on temporal tracking information, should therefore be employed to ensure accurate estimations.

Appendix A. Quaternions and Rotations

We represent quaternions with a four vector

q̇ = [ w x y z ]T , (A.1)

or alternatively by a sum of a real number w and three imaginary numbers x, y and z as

q̇ = w + ix+ jy + kz, (A.2)

where i2 = j2 = k2 = ijk = −1. Note that the purely imaginary quaternion q̇ = 0 + ix+ jy+ kz represents

the vector q = [ x y z ]T . The conjugate of a quaternion negates its imaginary part q̇∗ = w−ix−jy−kz.

Products of quaternions can be expressed as a multiplication between an orthogonal 4 × 4 quaternion

matrix and a quaternion

q̇ṙ = Qṙ =


w −x −y −z

x w −z y

y z w −x

z −y x w

 ṙ

20



or

ṙq̇ = Q̃ṙ =


w −x −y −z

x w z −y

y −z w x

z y −x w

 ṙ. (A.3)

A rotation

x′ = Rx (A.4)

can be represented using unit quaternions (i.e., ‖q̇‖ = 1) as

ẋ′ = q̇ẋq̇∗, (A.5)

where ẋ is the quaternion representation of the vector x. The rotation representation using unit quaternions

in (A.5) follows from q̇ẋq̇∗ = Qẋq̇∗ = Q̃TQẋ, where

Q̃TQ =


q̇ · q̇ 0 0 0

0 (w2 + x2 − y2 − z2) 2(xy − wz) 2(xz + wy)

0 2(yx+ wz) (w2 − x2 + y2 − z2) 2(yz − wx)

0 2(zx− wy) 2(zy + wx) (w2 − x2 − y2 + z2)

 .

If q̇ is a unit quaternion, q̇ · q̇ = 1 and the lower-right-hand submatrix of Q̃TQ is an orthonormal matrix

representing the rotation. Therefore, if q̇ is a unit quaternions, (A.5) can be used to represent a rotation.
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