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Abstract. The mean shift algorithm is a widely used non-parametric
clustering algorithm. It has been extended to cluster a mixture of lin-
ear subspaces for solving problems in computer vision such as multi-
body motion segmentation, etc. Existing methods only work with a set
of subspaces, which are computed from samples of observations. How-
ever, noises from observations can distort these subspace estimates very
much and greatly influences clustering accuracy. We propose to use both
subspaces and observations to improve performance. Furthermore, while
these mean shift methods use fixed metrics for computing distances, we
prefer an adaptive distance measure. The insight is, we can use tem-
porary modes in a mode seeking process to improve this measure and
obtain better performance. In this paper, an adaptive mode seeking al-
gorithm is proposed for clustering linear subspaces. By experiments, the
proposed algorithm is better than the state-of-the-art algorithm in terms
of clustering accuracy.
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1 Introduction

The mean shift (MS) algorithm is a non-parametric clustering method for finding
centers of arbitrarily distributed points in a vector space [1]. Characterized as
a gradient ascent algorithm, it has been successfully applied to tackle problems
like image segmentation and tracking [1][2].

Recently the MS algorithm has been extended to Grassmann manifolds for
clustering linear subspaces [3][4]. A Grassmann manifold is a collection of linear
subspaces endowed with a distance measure. A Grassmann point is a linear
subspace represented by an orthonormal matrix. If we concatenate columns of
this matrix into a long vector, the Grassmann manifold is a surface in a high
dimensional space. We will use the terms Grassmann point and linear subspace
interchangeably. The basic idea of the MS algorithm over Grassmann manifolds
is to compute a set of Grassmann points from samples of observations, find
modes or local centers of these Grassmann points, and cluster the points using
the modes.
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Subbarao and Meer proposed the nonlinear mean shift algorithm [3], which
started from a Grassmann point and iteratively moved it by logarithm and ex-
ponential mappings. One problem of their method is these mappings are compu-
tationally expensive. The intrinsic mean shift (Intrinsic MS) algorithm proposed
by Cetingül and Vidal [4] used discrepancy measures and QR decompositions to
simplify the computation. Unfortunately, clustering accuracy of both methods
is greatly restricted by accuracy of estimation of Grassmann point sets. The ac-
curacy of clustering depends on how well sampled Grassmann points can reflect
the underlying density functions. Due to noise, these Grassmann points could
deviate very much from the ground truth, and this heavily impairs performance.
Actually the sampled points only retrieve part of observation information, and
there is much information left behind. Reusing observation information will im-
prove clustering accuracy.

In this paper, we propose a mode seeking algorithm (GOPS MS) to improve
accuracy of clustering linear subspaces. It reuses observations as well as linear
subspaces. Given a linear subspace, we find observations in this subspace, and
encapsulate these observations and the subspace into an entity. This entity is
viewed as a point in a Grassmann manifold and Observations Product Space,
or simply a GOPS point. We will define a distance measure in GOPS such that,
if two linear subspaces are similar, their corresponding GOPS points are close.
Equipped with this measure, the GOPS MS performs mode seeking in the GOPS,
and linear subspaces are clustered according to these GOPS modes.

In tradition, MS algorithms [5][1][4][3] have fixed distance measures. In a
mode seeking process, they use a fixed distance to shift a temporary mode to the
next. However, we find a temporary mode actually provides useful information to
measure similarity between GOPS points. The proposed GOPS MS is equipped
with a distance measure adapted to temporary modes. When this measure is
updated with such a mode, distances between similar observations decrease and
these observations become more dense (see Figure 1). This facilitates clustering
tasks.

(a) Start (b) First Mode (c) Second Mode

Fig. 1. Illustration of change of distances. (a) shows distances between points
with an initial distance measure. The right green circles scatter in a large region. (b)(c)
show distances between points with distance measures updated by modes. These green
circles become more and more dense.
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Our algorithm can be applied to many problems in computer vision [4][6][7]
[8]. In this paper, we apply it to the problems of multi-body motion segmentation,
shape categorization and face clustering, and compare it with the Intrinsic MS,
a fixed metric algorithm. The corresponding overall clustering accuracy of the
proposed algorithm are 99 .2%, 89 .5% and 98 .0%, and better than those of the
Intrinsic MS as 82.1%, 64.5%, 76.5% respectively.

The rest of the paper is organized as follows. In Sect. 2, Euclidean mean shift
is reviewed, from which we will motivate our GOPS MS. In Sect. 3, we construct
the GOPS and explain the GOPS MS algorithm. Sect. 4 shows experiments and
comparisons with the Intrinsic MS. Conclusion and future work are discussed in
Sect. 5.

2 Euclidean Mean Shift

The Euclidean MS algorithm [9] finds local centers of a point set in a Euclidean
space, and clusters all points in this set by these centers. If the point set is viewed
as sampled points from a density function over the Euclidean space, the local
centers are actually modes of this set, which are the points of local maximum
density. So this algorithm is also considered as to seek modes and group points
sharing the same mode together.

Formally, let a set of observations xn ∈ Rd, n = 1, . . . , N, be points sampled
independently from a density function f . The kernel density estimate of f at x,
denoted by f̂(x;h), is given by f̂(x;h) = c

∑N
n=1 Φ(u2

n;h), where Φ(·) is a kernel
function, un = ||x − xn|| is a distance measure, c is a normalization term, and
h > 0 is the bandwidth. To locate a mode, the Euclidean MS algorithm seeks
next temporary mode y(k+1) by minimizing a sum of weighted distance squares
[10]

y(k+1) = arg min
y

N∑
n=1

||xn − y||2ψ(||xn − y(k)||2;h). (1)

where ψ(un;h) = −∇Φ(un;h). The distance || · || play an important role to
measure similarity between two points. Although it is a metric, the MS algorithm
does not require that. In the next section, we will define a distance measure that
is not a metric to compute similarity between points in GOPS. In addition, it is
shown in [10] that the convergence of the MS algorithm depends on the convexity
of the kernel Φ(·).

3 Mode Seeking in GOPS

In the following, we construct the GOPS to reuse observations for clustering and
explain the GOPS MS algorithm.

3.1 GOPS

The GOPS is a set of GOPS points with a distance measure over it. The GOPS
point is an entity including a linear subspace and observations in this subspace,
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denoted by G = {X,SX}. Here X is a m × p orthonormal matrix indicating a
p-dimensional linear subspace in Rm. Each observation is a vector in Rm. And
SX is an observation set in this subspace, denoted by a m×N matrix, where N
is the number of observations.

Suppose we have two GOPS points G1 = {X1,SX1}, G2 = {X2,SX2}. The
GOPS distance dGO is defined as

d2
GO(GX1 , GX2) = c1d

2
G(X1,X2) + c2d

2
X1

(SX1 ,SX2), (2)

where c1, c2 are weights and dG, dX1 are defined as follows. The Grassmann
distance [4] d2

G(X1,X2) computes distance between two linear subspaces as

d2
G(X1,X2) = p− tr(X2

TX1XT
1 X2). (3)

The fit measure d2
X1

(SX1 ,SX2) measures how well a linear subspace X1 fit ob-
servations SX1 ,SX2 . Let Im be a m ×m identity matrix. The fitness of X1 to
SX2 is

V 2
X1

(SX2) = tr(SX2
T(Im −X1X1

T)SX2), (4)

The fit measure between two GOPS points is defined as

d2
X1

(SX1 ,SX2) =
V 2
X1

(SX1) + V 2
X1

(SX2)
(|SX1 |+ |SX2 |)2

, (5)

where |S| provides the cardinality of S. Since SX1 lies in X1, V 2
X1

(SX1) ≈ 0 and
the fit measure actually measures the residual of SX2 to X1. And X1 is called
the reference subspace of this fit measure.

3.2 Adaptive Mode Seeking

Algorithm 1 Adaptive Mode Seeking
Input: A set of linear subspaces Xn, n = 1, 2, ..., N , an observation set S;
Output: A clustering of subspaces;
Algorithm:
for Each Xn do

Compute observations SXn in Xn by subset selection;
Y = Xn and SY = SXn ;
repeat

Update Y by fixing SY and solving Equation (7);
Update SY using subset selection with the updated Y;

until Y,SY changes little;
end for
Group together GOPS points sharing their modes.

The GOPS MS algorithm is summarized in Algorithm 1. It starts with a
GOPS point GY(1) = {Y(1), SY(1)}, sets Y(1) as the reference subspace of the fit
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measure (5) and computes its distances with other points dGO(GY(k) , GXn
), n =

1, · · · , N . We follow (1) and locate the next temporary mode GY(k+1) by

GY(k+1) = arg min
GY

N∑
n=1

d2
GO(GY, GXn

)wn(GY(k)), (6)

where
wn(GY(k)) = ψ(d2

GO(GY(k) , GXn);h).

The equation (6) is simplified by substituting (2) into (6) (see supplementary
material), and yields

GY(k+1) = arg min
GY

||YYT −C(k)||2F , (7)

where

C(k) =
N∑

n=1

wn(GY(k))(c1XnXT
n + c2[SYSXn ][SYSXn ]T). (8)

The notion [SYSXn
] stands for making a matrix by putting columns of SXn

after those of SY.
The two components of GY(k+1) are computed by fixing one and updating the

other respectively. First we fix SY = SY(k) in (8). Since YYT is the closest rank-
p matrix to C(k) under Frobenius norm, following [11], we decompose C(k) =
UDVT with singular value decomposition (SVD) and set Y(k+1) = U(:, 1:p)
(i.e., the columns of U associated with the p-largest eigenvalues). The SY(k+1)

is updated by performing subset selection introduced later.
The subspace Y(k+1) is a low dimensional representation of the column space

of C(k). Since those GOPS points GXn
close to GY(k) have large weights in Equa-

tion (8), Y(k+1) essentially fits to observation sets SXn
close to Y(k). Intuitively,

we use more observations roughly in Y(k) to refine estimation of linear subspace.
Therefore, Y(k+1) is more accurate than Y(k).

To compute the next mode Y(k+2), we reset the fit measure’s reference sub-
space to the temporary mode Y(k+1) and repeat above. Since the fit measure
(5) is adapted to Y(k+1), the GOPS distance (2) is updated accordingly. To see
why this adaptive distance measure improves clustering accuracy, notice that
Y(k+1) fits better than Y(k) to observation components of GOPS points near
Y(k). The fit measure between these points becomes smaller. Therefore, those
GOPS points are more close and dense as illustrated in Figure 1. This makes
clustering tasks easier. We will keep on updating GY(k+1) until there is no more
change. A mode is then obtained.

3.3 Subset Selection

The observation set SY(k+1) is updated by performing subset selection with
Y(k+1). Suppose observations are generated from a model and have Gaussian
noises. According to [12], a normalization of their residual to the model, called
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the studentized residual, follows a student’s t distribution. We will apply t-tests
to these residuals to find a subset of observations lying in Y(k+1). This pro-
cess is called subset selection. Before this, let us see how to compute the scalar
studentized residual of a linear regression model. Given N scalar observations
S ∈ R1×N , N explanatory d-dimensional vectors Q ∈ Rp×N , a Gaussian noise
ε ∼ N(0, σ2I) and a regression coefficient vector X ∈ R1×p such that S = XQ+ε,
the studentized residual for an observation S(n) is defined as

t(n) =
S(n) −XQ(n)

σ̂n

√
(1−V(n,n))

, (9)

where S(n) is the n-th element of S, Q(n) is the n-th column of Q, σ̂n is the
estimated variance, V = QT(QQT)−1Q and V(n,n) is the n-th diagonal element
of V.

Our model has two major differences compared with the linear regression
model above. First, S(n) is a m-dimensional vector instead of a scalar. Second,
our model is a mixture model rather than a single one. Unfortunately, it is
unknown if a vector residual follows a t distribution or others, and, if multi-
variable tests are proper. We adapt the testing as follows. Firstly, we perform
the t test for each dimension of S(n). If any dimension of S(n) cannot pass the
test, S(n) is rejected. Secondly, a portion of observations is utilized to estimate
variances. The detail is described in Algorithm 2. To guarantee the convergence
of GOPS MS, we select the largest size subset SY(k+1) from subset selection such
that the cost function (7) decreases.

Algorithm 2 Subset Selection Algorithm
Input: A linear subspace X ∈ Rm×p, observations SX ∈ Rm×N in X, and a single
observation S(h) ∈ Rm;
Output: if S(h) lies in X;
Algorithm:
Let Q = XTSX and Q(h) = XTS(h);
Compute a residual vector E = SX −XQ and sort the norm of each column of E
increasingly;
Select W columns of E with the smallest norms;

Estimate j-th dimension’s variance using these columns by σ̂(j,i) =
∑W

i=1 E(j,i)
M−p

;
Compute a score t(j,h) for S(h)’s j-th dimension by (9);
Perform the t test of t(j,h) with the degree of freedom W − p− 1 at the significance
level of 5%;
If any dimension of S(h) fails this test, S(h) does not lies in X.
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4 Experiments

In this section, we describe experimental setup and apply the GOPS MS to
problems of multi-body motion segmentation, affine shape categorization, and
face clustering.

4.1 Experiments Setting

In all experiments, we construct GOPS points as follows. For each observation,
we find its p nearest neighbors SX ∈ Rm×p in Euclidean space. Here p is the
rank of a linear subspace. Perform SVD on SX = ŪD̄V̄T and take Ū(:, 1 : p)
as a Grassmann point X. The set SX is taken as observations in X. The weight
c1, c2 in dGO is set by c1 = 1−λ and c2 = λ. For all applications, we set λ = 0.9.
The Epanechnikov kernel [5] is selected to compute wn(·). In subset selection,
we use W = 0.1N , where N is the number of observations.

Given the number of clusters, the proposed algorithm is compared with the
Intrinsic MS [4] in terms of clustering accuracy. The clustering accuracy is mea-
sured by the missing rate, which is the ratio of the number of points incorrectly
clustered to the total.
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Fig. 2. (a)(b) Results for multi-body motion segmentation. Features of the
same color belong to the same group. The segmentation for these examples are 100%
correct. The results are better viewed on a screen. (c) Missing rates of multi-body
motion segmentation for ten examples in [4].

4.2 Multi-Body Motion Segmentation

Multi-body motion segmentation is an essential problem for reconstructing or
understanding a dynamic scene with multiple rigidly moving objects. In this task,
trajectories of image features are segmented using their motion similarity without
knowing the moving object number. Observations are trajectories represented by
vectors in R2F , where F denotes number of frames. Under affine camera models,
each motion is a 4 dimensional linear subspace in R2F [4].

The GOPS corresponds to the Motion-Trajectory space. To compare with the
Intrinsic MS, we apply the GOPS MS to the ten examples of the Hopkins155
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database selected by the Intrinsic MS. Some results are shown in Figure 2 (a)(b).
The comparison of the GOPS MS and the Intrinsic MS is shown in Figure 2 (c).
The average missing rate of GOPS MS is 0.8% and better than that of Intrinsic
MS, which is 17.9%.

Fig. 3. Shape categorization results of GOPS MS. The images in the second
and third rows belong to the dog category. Images in each other row are clustered into
one category.

4.3 Affine Shape Categorization

Shape representation and analysis play an important role in object recognition,
gait recognition and image registration. Landmark based shape analysis, which
represents a shape by landmark points on its contour, is a popular approach for
shape representation. The affine shape space method [8] models shapes as affine
transformations of a base shape. Given a base shape represented by a m × 2
matrix B, the shape space is the set P = {P|P = BA}, where A is any 2 × 2
full rank matrix. Each shape space is mapped to a linear subspace spanned by
B. The study of affine shape spaces boils down to a study of the points on the
Grassmann manifold.

Affine shape categorization attempts to group shapes generated from the
same base shape B together. To perform the GOPS MS, we reformulate the
affine shape space as

P =
[
x y 0 0
0 0 x y

]
A1

11 · · · AN
11

A1
21 · · · AN

21

A1
12 · · · AN

12

A1
22 · · · AN

22

 . (10)

Here P is a 2m×N matrix, which includes N shapes and m landmarks for each
shape. x, y are the X-coordinates and Y-coordinates of a base shape B =

[
x y

]
.

An
i,j is the element of the i-th row j-th column of an affine transformation An. In
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this application, we use the database ETH-80 [13] as a benchmark. The database
ETH-80 includes eight categories of objects. We select four categories and twelve
images for each category for categorization.

We follow [14] to extract landmarks. After locating the outmost contour of
every image, we take the pixel with the smallest x and y coordinate as a starting
point, order the pixels on contour anti-clockwisely and sample 200 landmarks
uniformly. Principal component analysis (PCA) is applied to project these shapes
onto a subspace of 25 dimensions for computational efficiency. Then the GOPS
MS is performed. Our results are shown in Figure 3. The missing rate of GOPS
MS is 10.4%, which is better than 35.4% of the Intrinsic MS.

4.4 Face Clustering under Varying Illumination

Given a set of face images taken under varying illumination conditions, face
clustering attempts to cluster these images corresponding to the same face. By
assuming human faces are Lambertian objects, these images are approximately
lying in a low-dimensional subspace [7]. Hence this problem can be solved by the
GOPS MS.

We carry on experiments with the Yale Faces B database [15]. This database
consists of photos of 10 faces taken under 9 different poses and 64 different
illumination conditions. We follow [6] and select nine subsets of the ten faces
as examples for clustering. For computational efficiency, these images are down
sampled to 120×160 pixels and principal component analysis (PCA) is applied to
further reduce each image into a 25-dimensional vector. Table 1 summarizes the
missing rates for both algorithms. Compared with the Intrinsic MS algorithm,
our algorithm outperforms it for all the examples.

Example Id (1) (2) (3) (4) (5) (6) (7) (8) (9) Mean

GOPS 2.5 0 1.1 0 0.7 0.4 4.5 1.0 7.2 1.95

Intrinsic 28.4 0 18.2 24.0 38.4 20.3 19.5 30.4 31.8 23.4
Table 1. Missing rates for face clustering. Numbers in this table refer to the
missing rate (%). Each example is a combination of photos of attendees. For simplicity,
we use (1,5,8) to stand for a collection of photos of NO.1, NO.5 and NO.8 attendees.
These selected combinations are Id1: (5,8), Id2: (1,5,8), Id3: (1,5,8,10), Id4: (1,4,5,8,10),
Id5: (1,2,4,5,8,10), Id6: (1,2,4,5,7,8,10), Id7: (1,2,4,5,7,8,9,10), Id8: (1,2,3,4,5,7,8,9,10),
Id9: (1,2,3,4,5,6,7,8,9,10).

5 Conclusion

In this paper, we propose a mode seeking algorithm using observations and linear
subspaces to improve accuracy of clustering linear subspaces. As a mode seeking
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process goes on, the distance measure in use is updated by temporary modes.
Distances between similar linear subspaces are decreasing with the updated mea-
sure. This facilitates our clustering task. The proposed algorithm can be applied
to many computer vision problems, and we demonstrate its effectiveness for
multi-body motion segmentation, shape categorization and face clustering. The
experimental results show this algorithm improves the clustering accuracy sig-
nificantly compared with the state-of-the-art Intrinsic MS algorithm.
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