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Abstract. This paper studies the problem of multi-body segmentation
and motion number estimation. It is well known that motion number
plays a critical role in the success of multi-body segmentation. Most of
the existing methods exploit only motion affinity to segment and deter-
mine the number of motions. Motion number estimated in this way is
often seriously affected by noise. In this paper, we recast the problem of
multi-body segmentation and motion number estimation into an over-
segmentation detection problem, and introduce three measures, namely
loss of spatial locality (LSL), split ratio (SR) and cluster distance (CD),
for over-segmentation detection. A hierarchical clustering method based
on motion affinity is applied to split the motion clusters recursively until
over-segmentation occurs. Over-segmentation is detected by Kernel Sup-
port Vector Machines trained under supervised learning using the above
three measures. We leverage on Hopkins155 database to test our method
and, with the same motion affinity measure, our method outperforms an-
other state-of-the-art method. To the best of our knowledge, this paper
is the first to tackle the problem of multi-body segmentation and motion
number estimation from the perspective of over-segmentation detection.

1 Introduction

To reconstruct or understand a dynamic scene consisting of multiple moving
objects observed by a static or moving camera, the trajectories of image features
are often segmented using their motion affinity. Estimation of the motion number
is critical to such a multi-body segmentation, and its failure often leads to a high
error rate in the motion segmentation. In this paper, we refer to motion number

as the number of independently moving objects in a scene.
Most of the existing works, if not all, exploit only motion affinity to segment

and determine the number of motions. In the factorization method presented
by Costeira and Kanade [1], the motion number was determined by sorting
the shape interaction matrix and detecting blocks via minimizing the Frobenius
norm of the shape interaction matrix subject to some physical constraints. This
detection method suffers a lot from noisy data, especially when the noise level
is high. Gear [2] converted the data matrix into an echelon form, and features
of the same motion shared the same zero positions in the synthetic case. The
motion number was then given by the number of different configurations. He also
provided a bipartite graph model for real data with noise, and tried to explain
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it with probabilistic models. Nevertheless, he admitted that real data was too
complex to be explained by this model. Vidal et al. [3] presented the concept of
multi-body fundamental matrix for the segmentation problem, and retrieved the
motion number from the rank of the matrix of Veronese mapping of trajectories.
It is a non-trivial problem to estimate the rank of a matrix with noise. This
method also requires a minimum number of trajectories for each motion, which
may not be practical. In [4], trajectories were clustered based on the distance
of subspace using spectral clustering. In [5], the authors introduced the ordered
residual metric, and clustered the trajectories also by spectral clustering. For
the spectral clustering method in [6], the motion number was equivalent to the
multiplicity of the zero eigenvalue of graph Laplacian, and the affinity matrix
of trajectories was usually generated in such a manner as Normalized Cut [7].
The parameters of this model are quite influential, but are difficult to adjust
for different applications. From the perspective of information theory, Ma et
al. [8] modelled the problem via lossy data coding and compression, with the
assumption that the mixed data were drawn from a mixture of Gaussian dis-
tributions. Given data to be compressed and a distortion criterion, the motion
number and segmentation were obtained by minimizing the coding length. This
method generalizes the problem but only considers data with mixtures of Gaus-
sian distributions. [9] and [10] tackled the motion number estimation problem
with a sampling method based on Torr’s extension of Schwarz’ BIC approxi-
mation [11]. Recent work [12] applied the Dirichlet Process Mixture Models to
the motion hypotheses, and obtained the motion number when the process con-
verged. However, with a median scale of disturbance and noise, the converged
state was unsteady. [13] focused on the change of motion number in video and
proposed a method based on an outlier detection approach. Most of the methods
above determine the motion number only from the motion information, except
[9] and [10] which used a local sampling scheme [14].

There is no doubt that motion affinity is a key factor for motion number esti-
mation. However, this is by no means the only factor that matters. In this paper,
we recast the problem of multi-body segmentation and motion number estima-
tion into an over-segmentation detection problem, and introduce three measures,
namely loss of spatial locality (LSL), split ratio (SR) and cluster distance (CD),
to detect the occurrence of over-segmentation. A hierarchical clustering method
based on an improved ordered residual metric is applied to split the motion clus-
ters recursively until over-segmentation occurs. Supervised learning is employed
to train Kernel Support Vector Machines using the above three measures mo-
tion affinity measure, our method outperforms another state-of-the-art method.
To the best of our knowledge, this paper is the first to tackle the problem of
multi-body segmentation and motion number estimation from the perspective
of over-segmentation detection.

The rest of paper is organized as follows. Section 2 states our problem state-
ment. Section 3 introduces the proposed measures for over-segmentation detec-
tion. The hierarchical clustering method and classifiers for over-segmentation
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detection are described in Section 4. In Section 5, experiments and comparisons
are presented. Finally conclusion and future work are discussed in the Section 6.

2 Problem Statement

Suppose several rigid objects are moving independently in a scene with different
3D motions, and a video camera is used to observe them. Feature points of
the objects and the background are tracked through the video sequence. The
problem of multi-body segmentation is to find the number of rigid motions and
group the trajectories according to their motion affinity. Motion affinity refers to
the degree to which motions share similar rotation and translation in 3D space.
In this paper, we focus on objects in rigid motions and only consider the case
when different moving objects have different 3D motions. We assume that all
features are visible and tracked throughout the video sequence.

3 Measures for Over-Segmentation Detection

In this paper, the motion number is estimated by a recursive splitting approach.
An initial motion cluster containing all the trajectories is recursively split into
smaller clusters until over-segmentation occurs. When the recursion stops, the
number of the resulting motion clusters simply gives the motion number. In the
following subsections, we will introduce three measures for over-segmentation
detection.

3.1 Loss of Spatial Locality

Assume that the moving objects are not transparent. Feature points of the same
motion often scatter locally unless occlusion exists. Without occlusion, if two
sets of features segmented into two different motions overlap, these features are
likely being over-segmented. An example is shown in Fig. 1, where plus and
circle marks denote features segmented into two different motions. The segmen-
tation in Fig. 1(b) is more reasonable than that in Fig. 1(a) because there is
no overlapping of the features, and hence shape integrity is not violated. Obvi-
ously, the overlapping of features in different motion clusters is a strong cue for
over-segmentation.

Based on the above observation, we introduce a measure, namely loss of

spatial locality (LSL), for over-segmentation detection. Given a motion affinity
measure, a dataset can be divided into a number of motion clusters. For each
element in a cluster, the number of its neighbors belonging to a different cluster
is counted. LSL is defined as the total sum of such a number for all elements
in all clusters, and it provides a measure for the degree of overlapping. If a
feature set of the same motion is segmented into two motion clusters with a
perfect motion affinity measure, every feature will have a probability of 0.5 to be
selected into either cluster. A high LSL score would therefore mean the clusters



4 Guodong Pan and Kwan-Yee K. Wong

(a) (b)

Fig. 1. Plus and circle marks denote features segmented into two different motions.
(a) Overlapping of features segmented into different motions suggests the occurrence
of over-segmentation. (b) There is no overlapping of the features and hence shape
integrity is not violated.

are highly overlapped and vice verse. For simplicity, K-Nearest Neighbor is used
in determining the neighbors of a feature, and LSL is formulated as

LSL =
1

FN

F∑

f=1

N∑

i=1

G(xi,f , k), (1)

where F is the number of frames in the sequence, N is the number of feature
points, xi,f is the i-th feature point in the f -th frame, G(x, k) is the number of
neighbor points belonging to a different cluster within the k-nearest point set of
xi,f in term of image distance.

3.2 Split Ratio and Cluster Distance

Over-segmentation can also occur when there is no overlapping of feature sets.
This can happen when the motion affinity measure is too sensitive which seg-
ments features on a rigid object into non-overlapping but adjacent motion clus-
ters (see Fig. 2). For example, consider a car translating and rotating at a road
junction. Motion affinity between features in the front (at the back) of the car
would often score higher than those between the front and the back of the car.
Consequently, features in the front of the car would often be segmented into one
motion, and those at the back would be segmented into another motion. Ob-
viously, LSL cannot detect this type of over-segmentation. Nonetheless, human
can perceive such features sharing one single motion because (1) these non-
overlapping clusters are relatively close to each other, and (2) they share similar
motions. Based on these observations, two further measures, namely split ratio

(SR) and cluster distance (CD), are introduced. SR is defined as the ratio of
the smallest image distance between features in separate clusters to the largest
one. It provides a measure for the distance between two non-overlapping clusters
with respect to their sizes. Over-segmentation would produce a low SR score.
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CD is defined as the distance between two cluster centers in the motion space.
It measures how similar the motions of the two clusters are. Over-segmentation
would produce a low CD score.

Fig. 2. Over-segmentation can also occur when there is no overlapping of feature sets.
This can happen when the motion affinity measure is too sensitive which segments
features on a rigid object into two non-overlapping but adjacent motion clusters.

4 Hierarchical Clustering with Supervised Classifiers for

Over-Segmentation Detection

As mentioned before, the problem of multi-body segmentation is recast into
an over-segmentation detection problem. A hierarchical clustering approach is
adopted to recursively split the motion clusters until over-segmentation occurs.
Initially, all trajectories are considered as one single motion cluster. An improved
Ordered Residual metric is employed to split each motion cluster in two smaller
clusters. This corresponds to building a binary tree in which the root node con-
tains all the trajectories. Each split will produce two child nodes, the union of
which is their parent node. After each split, classifiers trained under supervised
learning are used to detect the occurrence of over-segmentation based on the
previously introduced measures, namely loss of spatiality locality (LSL), split
ratio (SR) and cluster distance (CD). If over-segmentation is detected in the
split at a particular motion cluster, its child nodes will be removed from the
binary tree and further splitting of its child clusters will be prohibited. Alg. 1
summarizes the algorithm of the proposed hierarchical clustering method. The
improved Ordered Residual metric used for clustering and the classifiers used
for over-segmentation detection will be described in detail in the following sub-
sections.
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Algorithm 1 Algorithm of the hierarchical clustering method.

Track image features to produce the trajectory data W ;
Estimate the motion affinity K between each trajectory using Dual Pass Ordered
Residual method;
Dimension reduction: Project K onto the 4-D subspace corresponding to the 4 largest
singular values and get a 4-D point set D;
Create an empty queue Q and add a node R containing D to it;
Create an empty binary tree T and add R as the root node;
while Q not empty do

Retrieve a node N from Q;
Split the point set in N into two clusters by K-means;
Compute LSL, SR and CD for the two child clusters;
Assign the values of LSL, SR and CD to N ;
Use classifiers to decide if over-segmentation occurs;
if over-segmentation not occurs then

Add two new nodes containing the new clusters into Q;
Add the two new nodes as child nodes of N in T ;

end if

end while

The number of clusters (motions) is given by the number of leaf nodes in T .

4.1 Dual Pass Ordered Residual Method

Several motion affinity measures have been mentioned in Section 1, such as
shape interaction matrix [1], Local Subspace Affinity [4], and Ordered Residual
[5]. Among these measures, the Ordered Residual method strongly interests us
since it provides a more robust statistic estimation of motion affinity. In this
paper, we propose an improved version of this method called Dual Pass Ordered

Residual method, which is computational more efficient than the original method
proposed in [5]. As its name suggests, the proposed method consists of two passes.
In the first pass, we follow [5] in the way that a sufficient number of trajectory
sets are randomly drawn to generate a hypothesis set, and the affinity matrix
is computed. In the second pass, we fully exploit the information retrieved from
the first pass by decomposition of the affinity matrix to obtain the nearest k
neighbor of each trajectory in the motion space. For each trajectory, we obtain
a refined hypothesis of the subspace by decomposition of the trajectories in the
k neighbors instead of those selected randomly in the whole trajectory space.
The number of hypotheses is independent of the size of the sampling, and we
can obtain a satisfactory motion affinity matrix within two passes.

4.2 Classifiers for Over-Segmentation Detection

Although three measures for over-segmentation detection have been introduced
in Section 3, it is still difficult to find a simple function relating them to make a
decision on the occurrence of over-segmentation. Furthermore, over-segmentation
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is more or less a subjective perception, with different people giving different opin-
ions. Hence, a machine learning approach is adopted in this paper to learn the
decision function.

(a) (b)

Fig. 3. A single-node structure for the root node and a triple-node structure for the
non-root node

Each cluster node in the binary tree is associated with three features, namely
loss of spatial locality (LSL), split ratio (SR) and cluster distance (CD), computed
from its child nodes. A single-node structure and a triple-node structure are
designed for classifying the split of a root node and a non-root node respectively.
The single-node structure contains only one single node (see Fig. 3(a)), and is
used for determining whether to split the root node or not based its associated
features (i.e., LSL, SR and CD). The triple-node structure contains three nodes,
including the node under consideration, its parent node, and its sibling node (see
Fig. 3(b)), and is used for determining whether to split a non-root node or not
based on the features of all three nodes (i.e., nine values in total). A classifier is
trained for each type of structures respectively.

In the training stage, Kernel Support Vector Machines (SVM) with radial
basis function [15] are trained under supervision. Observations are the features of
the structures associated with each node, and labels are the decisions of whether
to split or not. Observation collection includes two stages: dataset selection from
the database as a training set and feature extraction. For dataset selection, we
exploit two methods of cross-validation, namely K-fold cross validation and Hold-
out cross validation, to evaluate the performance as the volume of the training
set decreases. K-fold cross validation partitions the database into k folds, and
uses k−1 portions as the training set and the rest for testing. For Hold-out cross
validation, a portion of data will be hold out for testing and the rest will be used
as training data. Both methods are applied because we want to find out the least
portion of data needed to train the classifiers while keeping the performance. For
each validation method, we train several SVMs and select the classifier giving the
best performance. Feature extraction is carried out by the hierarchical clustering
method introduced in the previous subsection, but without over-segmentation
detection. A decision is labelled when a new structure appears.
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5 Experiments

We leveraged on the benchmark of Hopkins155 [16] for experiments. Our method
was applied to various real dynamic scenes with two to five motions, with both
rigid and articulated motions. There are 119 two-motion examples, 35 three-
motion examples and 1 five-motion example. To demonstrate the effectiveness
of the proposed measures for over-segmentation detection, we compared our
method with the spectral clustering method presented in [5]. To ensure a fair
comparison, both methods used the same motion affinity metric as described
in [5]. We have not compared our method with some other methods such as
[9] and [10] because the performance of such methods heavily depends on the
implementations.

To cluster the motions, we first computed the motion affinity as described in
[5], centered the kernel matrix K and obtained its projection points P4 in the 4-

D subspace by eigen-value decomposition K = RDRT and P4 = D
1

2

4
R(:, 1 : 4)T ,

whereD4 is the 4×4 diagonal block ofD associated with the largest 4 eigenvalues,
and R(:, 1 : 4) consists of the 4 columns of R associated with the largest 4
eigenvalues. K-Means method was then used to cluster P4 into two groups. This
was done once in the testing stage but repeated eight times for the training
stage to find the correct clustering. We computed LSL, SR and CD from the
two groups for over-segmentation detection. The neighbor number for LSL was
chosen to be 1 since we found any number within the range [1, . . . , 5] would give
similar performance. For K-fold method, we trained k SVMs and selected the
one with the best performance as our classifier. With Hold-out cross validation
method, for each fixed portion, we repeated 1/portion times, each time trained
one SVM and selected the one with best performance.

Table 1. Error rates for K-fold cross-validation.

FoldNumber 2 3 4 5 6 7 8

Overall 18.7% 16.1% 14.2% 17.4% 14.8% 15.5% 15.5%

TwoMotion 0% 0.8% 0% 0% 0% 0% 0%

ThreeMotion 77.1% 68.6% 60.0% 74.3% 62.3% 65.7% 65.7%

FiveMotion 100% 100% 100% 100% 100% 100% 100%

Table 2. Error rates for Hold-out cross-validation.

PortionForTest 95% 90% 85% 80% 75% 70% 65% 60% 55%

Overall 21.3% 21.9% 21.3% 21.3% 21.3% 19.4% 18.1% 18.1% 15.5%

TwoMotion 0% 0% 0% 0.8% 0% 0% 0% 0% 0%

ThreeMotion 91.4% 94.3% 91.4% 88.6% 91.4% 82.9% 77.1% 77.1% 65.7%

FiveMotion 100% 100% 100% 100% 100% 100% 100% 100% 100%
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The error rate with K-fold is listed in Table 1. Overall error rate is defined by
the ratio of the number of erroneously estimated examples to the total number
in the database. Error rate of each motion number is also listed for analysis.
We summarize the results of Hold-out in Table 2. From the tables, we can see
our method did well in two-motion case but was not satisfactory for the three-
motion and five-motion cases for both cross-validation methods. We also notice
that the error rate of two-motion case in Hold-out was not very sensitive to the
number of training samples. For example, the error rate associated with the case
using 5% of data for training is the same with those using more training data.
However, the error rate of three-motion case decreases as training data increase
from 5% to 45%, which may indicates that there may be an insufficient number
of three-motion and five-motion samples in the training set.

Table 3 below copies the results shown in Table 2 of [5] for ease of reference.

Table 3. Error Rates for [5]

Database Hopkins 155

Overall 36.63%

TwoMotions 32.63%

ThreeMotions 50.34%

With benefit from the features for over-segmentation detection, our method
outperforms [5] in most cases. For two-motion case, our method can virtually
achieve an error rate of 0%. For three-motion case, the result of [5] is a little
better than ours. One possible reason for the poor performance of our method
is that the number of SVM parameter for three-motion and five-motions case
is larger than that of the two-motion case, while the number of samples for the
former in the database is much less that that of the later. The database hence
provides an insufficient training set for the more-motion case.

6 Conclusion and Future Work

In this paper, we recast the problem of multi-body segmentation and motion
number estimation into an over-segmentation detection problem. The main con-
tributions of our work are (1) the introduction of three measures, namely loss
of spatial locality, split ratio and cluster distance, for over-segmentation detec-
tion; (2) the introduction of the Dual Pass Order Residual method for computing
motion affinity; (3) the introduction of a hierarchical clustering method for multi-
body segmentation with a supervised learning approach for over-segmentation
detection. We leverage on Hopkins155 database to test our method and, with
the same motion affinity metric, our method outperforms another state-of-the-art
method. To the best of our knowledge, this paper is the first to tackle the prob-
lem of multi-body segmentation and motion number estimation from the per-
spective of over-segmentation detection. In the future, more exploration should
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be focused on the structures and features of over-segmentation that determine
complex decision trees, such as a classifier structure for more than two motions.
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