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ABSTRACT

This paper addresses the problem of recovering the 3D
shape of a surface of revolution from multiple uncalibrated
perspective views. In previous work, we have exploited
the invariant properties of the surface of revolution and its
silhouette to recover the contour generator and hence the
meridian of the surface of revolution from a single uncali-
brated view. However, there exists one degree of freedom in
the reconstruction which corresponds to the unknown orien-
tation of the revolution axis of the surface of revolution. In
this paper, such an ambiguity is removed by estimating the
horizon, again, using the image invariants associated with
the surface of revolution. A bundle-adjustment approach is
then proposed to provide an optimal estimate of the merid-
ian when multiple uncalibrated views of the same surface
of revolution are available. Experimental results on real im-
ages are presented, which demonstrate the feasibility of the
approach.

1. INTRODUCTION

Most of the existing techniques for the reconstruction of
surface of revolutions (or Straight Homogeneous General-
ized Cylinders, SHGCs) follows [1] and [2], which provides
algorithms for identifying the axis and the ending cross-
sections of SHGC, respectively. Such techniques have been
developed mainly for the case of single uncalibrated views
[3] [4]. In [5], we proposed an algorithm which makes use
of the invariant properties of a surface of revolution to cal-
ibrate the camera and recover its 3D shape. However, the
ambiguity in the orientation of the revolution axis cannot be
correctly resolved. Besides, the problems of how to obtain
an optimal solution for the camera calibration and the final
reconstruction in the case of multiple views and the problem
of self-occlusion has not been handled.

This paper addresses the problem of recovering the 3D
shape of a surface of revolution from multiple uncalibrated
perspective views. In this paper, we exploit the invariant
properties of the surface of revolution and its silhouettes

to locate both the imaged revolution axis and the vanish-
ing line(horizon) of the cross sections. These are used to
calibrate the intrinsic parameters of the cameras[6], rectify
the images such that each resultant silhouette exhibits bi-
lateral symmetry. The ambiguity in the orientation of the
revolution axis is removed during rectification with the in-
formation provided by the horizon. The contour generators,
and hence the meridians, can then be recovered from each
image. To find optimal estimates for the meridian and the
camera parameters, a base meridian is first computed from
meridians computed from all views. Bundle-adjustment, an
approach refining a visual reconstruction to produce jointly
optimal 3D structure and viewing parameter estimates [7]
[8], is then employed to refine the camera parameters, rec-
tification homographies and the shape information of the
meridian. This work is different from previous work in that,
rather than optimizing points, bundle adjustment is, for the
first time, applied to curves and meridians. The problem
of self-occlusion is also ”resolved” with the availability of
multiple views.

This paper is organized as follows. Section 2 presents
the theoretical background and our novel approach for re-
constructing a surface of revolution from a single uncali-
brated image. Section 3 presents the optimal meridian es-
timation and the bundle-adjustment method for reconstruc-
tion of a surface of revolution from multiple views. Results
of real data experiments are presented in Section 4 and con-
clusions are given in Section 5.

2. RECONSTRUCTION FROM A SINGLE VIEW

2.1. Invariant Properties of a surface of revolution

Harmonic Homology Under perspective projection, the im-
age of a surface of revolution will be invariant to a harmonic
homology[9][10]

W = I3 − 2
vxlTs
vT

x ls
, (1)



where ls is the imaged revolution axis, and vx is the van-
ishing point associated with normal of the plane containing
the revolution axis and the camera center. If the camera is
pointing towards the revolution axis, W will reduce to a
skew symmetry S where vx is at infinity. If the camera also
has unit aspect ratio, S will become a bilateral symmetry T
where vx is both at infinity and having a direction orthogo-
nal to ls.

Planar Homology A plane projective transformation U is
a planar homology if it has a line lf of fixed points together
with a fixed point vw [11]. The planar homology can be
defined by

U = I3 + (µ − 1)
vwlTf
vT

wlf
, (2)

where the line lf is called the axis, and the fixed point vw

is called the vertex. The cross ratio µ defined by the vertex,
a pair of corresponding points, and the intersection of the
corresponding line with the fixed axis, is invariant for all
points related by the homology. The harmonic homology
is the special case of a planar homology where its invariant
cross ratio is −1.

In the case of a surface of revolution, the planar homol-
ogy U arises in the images C1 and C2 of two cross sections
of the surface of revolution (see Fig. 1(b)). The vertex vw is
given by the intersection of the bitangent lines of the conics
C1 and C2, the axis lf is the horizon of the planes where
the cross sections of the surface of revolution lie on.

The axis lf and the vertex vw of the planar homology
U, and axis ls of the harmonic homology W are the image
invariants to be exploited to calibrate the camera and rectify
the images.

2.2. Invariants Estimation

This section introduces a novel approach to obtain the im-
age invariants of a surface of revolution which are the van-
ishing point vx, the imaged revolution axis ls and the hori-
zon lf . Given the silhouette of a surface of revolution, two
conics C1 and C2 can be fitted to two imaged cross sec-
tions of the surface of revolution. Let the external bitangent
points at C1 and C2 be x1, x′

1 and x2, x′
2, respectively (see

Fig. 1(a)). As x1, x2 and x′
1, x′

2 are related by the harmonic
homology W as introduced in section 2.1, the vertex vx and
the axis ls of W can be easily obtained by

vx =(x1×x2)×(x′
1×x′

2) (3)

ls =((x1×x′
1)×(x2×x′

2))×((x1×x′
2)×(x2×x′

1)). (4)

The vx and ls will be refined by making use of the whole
silhouette with equation (21) in section 3.2.

The two conics and their external bitangent lines forms a
perspective projection of a virtual cone in 3D space, where

the two conics corresponds to two cross sections and the
bitangent lines corresponds to two meridians of the cone.
Four parallel planes can be assumed existing in 3D which
correspond to the vertex vx, the two conics C1, C2, and
the horizon. After perspective projection, the cross ratio µ
formed by the intersection of any line with these four planes
in 3D will be invariant. For the planar homology U, let
points w1, w2 be the intersection between the horizon lf

and the line joining x1 and x′
1, lf and the line joining x2

and x′
2, respectively (see Fig. 1(b)). Thus the cross ratio

{vw,x1,x′
1,w1} is equal to {vw,x2,x′

2,w1}.

Generally, the plane formed by the camera center and
the revolution axis cuts the virtual cone at two meridians.
These two meridians intersect with conics C1 and C2 at
x3, x′

3 and x4, x′
4, respectively. Let w be the intersection

between the imaged revolution axis ls and horizon lf . Note
that the intersection point w is also the vanishing point vz

of z-axis. Because of the invariant property of the cross ra-
tio, {vw,x3,x′

3,vz} is equal to {vw,x4,x′
4,vz}, which is

also equal to {vw,x1,x′
1,w1} and {vw,x2,x′

2,w1}. Two
constraints can be obtained

{vw,x4,x′
4,w} = {vw,x3,x′

3,w} (5)

{vw,x′
4,x4,w} = {vw,x′

3,x3,w}, (6)

to uniquely define w. Thus the horizon lf of the horizon-
tal planes can be computed as the cross product of the two
vanishing points vx and vz , by

lf = vx × vz . (7)

vw

vx
x1 x2

x1'

x2'

ls

C1

C2

(a)

Fig. 1. (a) The geometric construction of the imaged revolution axisls

and the vanishing pointvx. (b) The geometric construction of the horizon.

Note an additional situation exists where x3 and x4 are
mapped to x′

4, x′
3 rather than x′

3, x′
4 as described above,

which will give an ambiguity in choosing vanishing point of
z-axis and thus the vanishing line (v ′

z and l′f in Fig. 1(b)).
Yet this ambiguity can be resolved by the visibility of the
imaged cross section.



2.3. Camera calibration

Under general perspective projection, the image of a sur-
face of revolution will be invariant to a harmonic homology
W. Its vertex vx and axis ls are related by the pole-polar
relationship [6]

ωvx = ls, (8)

where ω = K−T K−1 is the image of the absolute conic
(IAC) and K is the camera calibration matrix. By assuming
the skew of the camera to be zero, the matrix elements of
the IAC will become

ω =


 ω1 0 ω2

0 ω3 ω4

ω2 ω4 ω5


 . (9)

The camera can be calibrated by estimating ω. Let vx =
[v1 v2 v3]T and ls = [l1 l2 l3]T, each pair of vx and ls pro-
vides the following two constraints [6]

v1l3ω1 + (v3l3 − v1l1)ω2 − v2l1ω4 − v3l1ω5 = 0 (10)

v1l2ω2 − v2l3ω3 + (v2l2 − v3l3)ω4 − v3l2ω5 = 0 (11)

Hence ω can be estimated, up to a scale factor, by a linear
least squares method given two or more pairs of vx and ls.
The calibration matrix K can then be obtained from ω by
Cholesky decomposition [12].

2.4. Image Rectification

In [5], the image of the surface of revolution is rectified by
a planar homography induced by a rotation such that the re-
sultant silhouette is bilaterally symmetric about the y-axis.
Such a rotation rotates the camera about its optical center
until the revolution axis of the surface of revolution lies on
the y-z plane at the camera coordinate system, and simpli-
fied the reconstruction of the surface of revolution (see [5]
for details). However, the unknown orientation of the revo-
lution axis on the y-z plane induces one degree of freedom
ambiguity in the reconstruction.

In this paper, such an ambiguity is removed by using
the information provided by the estimated horizon. A pla-
nar homography Hx induced by a rotation about the x-axis
is computed such that the principle point lies on the trans-
formed horizon. This corresponds to rotating the camera
about its x-axis until its z-axis aligns with the z-axis of the
world coordinate system. After the rectification, the con-
figuration is now simplified to one in which the surface of
revolution has its revolution axis coincides with the y-axis
of the world coordinate system with an aligned pinwhole
camera placed along the z-axis (see Fig.2).

2.5. Reconstruction

Let’s consider a surface of revolution S̃r(s, θ). S̃r(s, θ) =
[X(s) cos θ Y (s) X(s) sin θ]T is generated by rotating a

meridian curve C̃r = [X(s) Y (s) 0]T about the y-axis and
a pinhole camera P̂ = [I3 −c] centered at c = [0 0 −dz]T,
with dz > 0 (see Fig.2).

IIs

Fig. 2. A surface of revolutionSr, whose axis of revolution coincides

with they-axis, being viewed by a pinhole cameraP̂ = [I3 −c] centered

at c = [0 0 −dz ]T.

The contour generator can be parameterized by s as [5]

Γ(s) = c + λ(s)p(s), where (12)

p(s) · n(s) = 0, (13)

where c indicates the camera center, p(s) = [x(s) y(s) 1]T

is the viewing vector from c to the focal plane at unit dis-
tance for the point Γ(s), and λ(s) is the depth of Γ(s) from
c along the z direction. n(s) is the unit surface normal at
Γ(s) which can be determined as the cross product between
p(s) and the tangent along silhouette at p(s) [5].

It can be shown that the surface normal at point S̃r(s0, θ0)
is normal to the meridian curve through S̃r(s0, θ0) and lies
on the plane containing the y-axis and the point S̃r(s0, θ0).
This coplanarity constraint, expressed by [5]

n(s)T[ny]×Γ̃(s) = 0, (14)

where ny = [0 1 0]T, can be expanded to recover the depth

λ(s) =
dzn1(s)

n1(s) − n3(s)x(s)
, (15)

and the contour generator can then be recovered using Eqn.(12).
Such reconstruction is determined up to a similarity trans-

formation since the distance dz cannot be recovered. The
meridian which forms the surface of revolution can be ob-
tained by

C̃r(s) =




√
(λ(s)x(s))2 + (λ(s) − dz)2

λ(s)y(s)
0


 . (16)

3. RECONSTRUCTION FROM MULTIPLE VIEWS

3.1. Estimation of the Base Meridian

By using the method described in section 2.5, a meridian
can be obtained from each image. However, these merid-



ians may not agree with each other due to the presence of
noise and self-occlusion. A unique meridian is needed to
represent the reconstructed surface of revolution from all
views and here a B-spline is fitted to the meridians to pro-
vide a base meridian. The B-spline can be written as a linear
combination of spline segments by

B(t) =
g∑

i=−k

ciNi,k+1(t), (17)

where k is the degree of B-spline, g is the number of seg-
ments, and ci are the B-spline coefficients(i.e., the control
points). Ni,k+1(t) are the base functions defined by the re-
cursive function

Ni,l+1(t) =
t−ui

ui+l−ui
Ni,l(t)+

ui+l+1−t

ui+l+1−ui+l
Ni+1,l(t)

Ni,1(t) =
{

1 if t ∈ [ui, ui+1)
0 if t �∈ [ui, ui+1)

. (18)

where {u0, . . . , ug} is the knot sequence of the B-spline.
Hence to find the optimal estimate of the base meridian
by spline, the problem turns to find the control points, the
number and position of the knots given the meridian points.
Here all the meridian points are treated independently and
the optimal B-spline can therefore be found by standard
curve fitting method.

Let (xr , yr) be the L sample points on the meridians
with xr < xr+1, r = 1, . . . , L. Consider representing the
base meridian with a smooth B-spline determined by the
smoothing constraint [13]

Z∑
r=1

(wr((xr, yr) − B3(s)))2 ≤ S, (19)

which minimizes the distances from the sampling points
to the fitted B-spline whose smoothness is kept by the in-
equality. This can be solved by the Lagrange least squares
method. wr((xr , yr)−B3(s)) is the weighted distance from
the sampling points to the fitted B-spline, where wr are the
weights corresponding to the sampling points, B3(s) are
the fitted cubic B-spline and S is the smoothing parame-
ter. Non-uniform B-spline is used here for B-spline repre-
sentation because generally B-splines may need more knots
and control points at positions with greater curvature. The
strategies in [13] have been used here to automatically place
the knots within the iteration of B-spline fitting.

In addition to the smoothing constraint, other constraints
on end point derivative and convexity can be used to refine
the spline. Detailed explanation can be found in [13] for
estimating the B-spline with these constraints.

Note that the meridians reconstructed from all views are
expressed in different camera coordinates, thus it is impor-
tant to scale (mj) and translate (dyj) the meridians along
the y-axis so that they are aligned before estimating the base
meridian.

3.2. Bundle-Adjustment

In the presence of noises, any of the camera intrinsics, ho-
mographies and the base meridian cannot be assumed to be
exactly correct, a bundle-adjustment optimization is there-
fore needed to provide further refinement.

The parameters which can be fed into the final bundle-
adjustment procedure are, the camera matrix K, the rotation
for each view in Sec.2.4, the scalars mj and translations dyj

and B-spline control points ci, and the number and position
of knots {u0, . . . , ug} in Sec.3.1.

Given an initial estimate of the surface of revolution
generated by the base meridian, the cost function can be
formulated as the reprojection error of points on the surface
of revolution, i.e.,

cost =
X∑

j=1

Y∑
i=1

dist(PjΓ̃j(s), ρj)2, (20)

where Γ̃j(s) are the 3D points on the contour generator
of the surface of revolution, Pj = mjK[Rj tj ] are the
projection matrix where Rj = (RfjRbjRaj)−1 and tj =
[0 dyj dz0]T, where dz0 is a predefined value for dz , Rfj is
the rotation matrix related to the rectifying homographyH x

defined in section 2.4, and Rbj and Raj are the two rotation
matrix defined in [5].

The bundle-adjustment proceeds as follows,

i) For each image, extract the silhouette ρi of surface of
revolution from its image by applying Canny edge detector
[14]. Fit two conics to find the top and bottom cross sections
of the surface of revolution and then obtain the image in-
variants by the approach proposed in Section 2.1. Estimate
the harmonic homology W by sampling Q evenly spaced
points xi along ρj and minimizing the orthogonal distance
from the transformed sample points x ′

i = W(vx, ls)xi to
the original silhouette ρj [6]

Cost(vx, ls) =
Q∑

i=1

dist(W(vx, ls)xi, ρj))2. (21)

ii) Given two or more silhouettes and the harmonic ho-
mologies, find the camera intrinsics by estimating the image
of the absolute conics ω using equation (10)and (11).

iii) For each image, compute a planar homographyH ′
r =

HxHr to rectify the image such that the resultant silhouette
exhibit bilateral symmetry. Hr is the rectifying homogra-
phy defined in [5].

iv)Recover the meridians with (12). Normalize and align
them to get the scalars mj and translators dyj . Estimate the
optimal base meridian with the constraint in (19).

vi) Feed the parameters estimated from the previous steps
to (20) to minimize the reprojection errors of the surface of



revolution. This can be solved by the Levenberg-Marquardt
method [12].

With these steps, the bundle-adjustment will refine all
the estimated motion and shape parameters, especially the
ambiguity in the orientation of y-axis and the control points
of the B-spline representing the base meridian.

4. EXPERIMENTS AND RESULTS

Experiments are carried out to demonstrate the feasibility
of our novel approach for reconstruction of surface of rev-
olution from multiple views. We first present the problems
existing in reconstruction from a single view with the ap-
proach of [5](see Fig.3). The left column of Fig.3(c) shows
self-occlusion of a candle holder where the contour genera-
tor does not intersect a subset of the cross sections. Due to
self-occlusion, middle part of the candle holder cannot be
correctly reconstructed. The right column of Fig.3(d) shows
with the single ellipse fitting approach in [5], the ambiguity
in the orientation of the revolution axis cannot be correctly
recovered. The upper and lower parts of the candle holder
turn bend due to the bad estimate of the orientation.

Fig. 3. (a) Image of a candle holder with self-occlusion.(b) A general

view of the candle holder in (a).(c) Meridian reconstructed from the view

in (a). (d) Meridian reconstructed with a wrong estimate ofφ0 from the

view in (b).

Fig.4 shows the reconstruction of the candle holder, where
the problems of self-occlusion and the ambiguity in the ori-
entation of the revolution axis are both resolved using our
algorithm. The silhouette of each image exhibits bilateral
symmetry after rectification (see Fig.4(c)). The invariant
cross ratio facilitates the detection of the horizon which helps
to remove the ambiguity in the orientation of the revolution
axis(see Fig.4(d)). A B-spline is used to represent the base

meridian (see Fig.4(e)), generating the 3D shape of the can-
dle holder (Fig.4(f)). In implementation, only the position
of the control points are optimized because, after the curve
fitting, the number and position of the knots are relatively
fixed, and only the control points will have great effect on
the shape of the base meridian.

lf

x0

lsC1

C2

(b)

Fig. 4. (a) A image in a sequence of a candle holder.(b) Canny edge

extracted from the image in (a), together with two fitted conics and im-

age invariants.(c) Rectified silhouette and invariants of (b) which exhibits

bilateral symmetry. (d) Rectified silhouette and invariants of (c) where

intersection betweenls and lf coincides with the principle point.(e) Re-

constructed base meridian with the smoothing B-spline fitting.(f) Recon-

structed model with bundle-adjustment, generated by rotating the refined

base meridian around the axis of revolution.

Table 1. Reconstruction of a candle holder compared between results
from single view with from multiple views.
Results View 1 View 2 View 3 View 4 All Views
Ratio 0.3209 0.3036 0.3142 0.3198 0.3360
Relative error 3.72% 8.93% 5.75% 4.05% 0.81%

The reconstruction of the candle holder has been refined
compared with [5]. The radius of the topmost circle and
the height, measured manually using a ruler with a resolu-
tion of 1 mm, are 5.7 cm and 17.1 cm respectively. The
ground truth value for the ratio of these two values of the
reconstructed candle holder is 0.3333 (5.7/17.1). The im-



provement in precision can be seen from Table 1, where
row 2 gives out the ratio of the topmost circle to the height
of the reconstructed candle holder from 4 single images and
from all images, row 3 shows the error of the ratio relative to
the ground truth value. Another example is given in Fig. 5,
which shows the reconstruction of a bowl. The radius of
the topmost circle and the height of the bowl were 6.4 cm
and 6.2 cm respectively. The ground truth value for the ra-
tio of these two values of the reconstructed bowl is 1.0323
(6.4/6.2). The improvement in precision can be seen from
Table 2. The reconstruction from all images has the min-
imum relative error, and this proves the feasibility of our
bundle-adjustment algorithm.

lf
x0

ls

C1

C2

(b)

Fig. 5. (a) A image in a sequence of a bowl.(b) Rectified silhouette and

invariants of (c) where intersection betweenls and lf coincides with the

principle point. (c) Reconstructed base meridian with the smoothing B-

spline fitting.(d) Reconstructed model with bundle-adjustment, generated

by rotating the refined base meridian around the axis of revolution.

Table 2. Reconstruction of a bowl compared results from single view
with that from multiple views.

Results View 1 View 2 View 3 View 4 All Views
Ratio 0.9610 0.9773 0.9514 0.9392 1.0474
Relative error 7.13% 5.49% 8.06% 9.30% 1.46%

5. CONCLUSIONS

In this paper, a novel approach is proposed to obtain the im-
age invariants of a surface of revolution and to reconstruct
it from a single uncalibrated view. By exploiting informa-
tion containing in all views, a bundle-adjustment technique
is also developed to remove the problems existing in recon-
struction from a single view. The ambiguity in the orien-
tation of the revolution axis is naturally removed by image

rectification. The meridians reconstructed from all views
have been used for computing a base meridian by fitting
with a smooth B-spline. The base meridian and the camera
parameters are then refined with a bundle adjustment pro-
cess by minimizing the reprojection errors. The algorithm
attains an optimal reconstruction by simultaneously refin-
ing the camera intrinsics, rectifying homographies and the
shape of the meridian.
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