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Abstract. This paper addresses the problem of self-calibration and mo-
tion recovery from a single snapshot obtained under a setting of two mir-
rors. The mirrors are able to show five views of an object in one image.
In this paper, the epipoles of the real and virtual cameras are firstly es-
timated from the intersection of the bitangent lines between correspond-
ing images, from which we can easily derive the horizon of the camera
plane. The imaged circular points and the angle between the mirrors can
then be obtained from equal angles between the bitangent lines, by pla-
nar rectification. The silhouettes produced by reflections can be treated
as a special circular motion sequence. With this observation, technique
developed for calibrating a circular motion sequence can be exploited
to simplify the calibration of a single-view two-mirror system. Different
from the state-of-the-art approaches, only one snapshot is required in
this work for self-calibrating a natural camera and recovering the poses
of the two mirrors. This is more flexible than previous approaches which
require at least two images. When more than a single image is available,
each image can be calibrated independently and the problem of vary-
ing focal length does not complicate the calibration problem. After the
calibration, the visual hull of the objects can be obtained from the sil-
houettes. Experimental results show the feasibility and the preciseness
of the proposed approach.

1 Introduction

Mirrors have been used for generating multiple views of an object, from which
the visual hull can be obtained to recover the object shape and it has may appli-
cations [18] [14] [19]. The object and its reflections generally provide symmetric
relationships for recovering parameters of the camera and the mirror [24] [5]
(or a pair of mirrors [4]). In [7], Gluckman and Nayar discussed the geometry
and calibration of a two-mirror system using point correspondences. Hu et. al.
[10] later presented an approach for obtaining the camera calibration from the
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constraints imposed by both the silhouette outlines and point correspondences.
Fujiyama et. al. [5] clearly presented the geometry of multiple view using one
mirror. Forbes et. al. [3] introduced an approach based on silhouettes alone.
However, they assumed an orthographic projection model and required a dense
search in the parameter space to determine the initial estimates. Later in [2] they
improved their method by providing closed form solutions for the initial parame-
ter estimates using a perspective camera model. However, at least two snapshots
were required for acquiring the calibration and estimating the motion. Besides,
their method still required the assumption of an orthographic projection in the
process of motion recovery. In another recent work, Huang [11] proved that the
focal length can be recovered from a single snapshot of the setting, but it was
based on the assumption that the principal point lied on the image center.

By exploring the geometry of two mirrors, this paper relates a two-mirror set-
ting to a circular motion. Many studies have been conducted in circular motion
[17], [1], [12], [16], [9]. Traditional method obtained the rotation angles by care-
ful calibration [17], i.e., the camera internal parameters, rotation angles, camera
orientations, etc are all accurately known. In [1], Fitzgibbon et al. developed a
method to handle the case of uncalibrated camera with unknown rotation angles
based on a projective reconstruction. Their method is based on the projective
geometry of single axis motion, and it involves the computation of both fun-
damental matrices and trifocal tensors from point correspondences. Jiang et al.
[12] further extended this approach by making use of the conic trajectories of
the rotating point features, and developed an algorithm that requires neither
the computation of fundamental matrices nor trifocal tensors. An alternative
approach is to exploit the silhouettes of the object. Mendonça et al. [16] pro-
posed to recover the structure and motion in several steps, each of which only
involves a low dimensional optimization. However, the camera intrinsics are still
required in the procedure for recovering the rotation angles and the subsequent
Euclidean reconstruction. Zhang et al. [20] introduced an approach for uncali-
brated silhouettes based on a new formulation of the circular point, and they
further extended their method by making use of the 1D camera geometry [21].

Inspired by [16] and [20], it is derived in this paper that circular motions of
a pair of symmetric objects can be obtained from the relationships between the
image of the object and its reflections in two mirrors. The silhouettes produced
by reflections can be treated as a special circular motion sequence. With this ob-
servation, technique developed for calibrating a circular motion sequence can be
exploited to simplify the calibration of a single-view two-mirror system. Different
from the state-of-the-art techniques [2] which assume orthogonal projection for
recovering the motion, this work is totally based on perspective projection and
hence it is applicable for any real scenes. More importantly, only one snapshot is
required in this work for calibrating a natural camera (with three unknowns) and
recovering the motion. This is more flexible than the previous approaches which
require at least two images and the problem of varying focal length in multiple
views will not complicate the calibration problem. Experimental results show
the feasibility and the preciseness of the proposed approach.
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The remainder of the paper is organized as follows. Section 2 gives the fun-
damental theories of the two-mirror setup. It also presents the relationship be-
tween the two-mirror setting and the circular motion. Section 3 describes self-
calibration of the camera, with the recovery of image invariants, i.e., the circular
points, the imaged rotation axis, the vanishing point of the x-axis of the real
camera and the mirror angles, etc. Section 4 introduces implementation details
of the proposed technique. Section 5 presents the experimental results, followed
by discussions and conclusions in Section 6.

2 Two-Mirror Setup and Circular Motion

2.1 Two-Mirror Setup

In this section, we introduce the two-mirror setup in a 3D space. The reflections
shown by mirrors are used to derive vanishing points for parallel tangent lines
and these vanishing points all lie on the vanishing line lh of a plane in which the
real and virtual cameras lie.

Let us first consider a camera C capturing an object O and its reflection
O1 in a mirror M (see Fig.1(a)). Note that there would be a virtual camera
C1 which is the reflection of C in the mirror M . Consider two planes Π> and
Π⊥ passing through the two cameras C, C1 and tangent to both O and O1

externally. As both sides of the mirror are symmetric, the tangent points on O
and O1, i.e., X, X1 and Y, Y1, provide two point correspondences with respect
to the mirror. The joint lines XX1, YY1 and the line joining the camera centers
CC1 are parallel to each other and perpendicular to the mirror plane. Let the
images of XX1 and YY1 in the real camera C be l>, l⊥, respectively, which
are the bitangents to the silhouettes of O and O1. Their intersection point v1

indicates the vanishing point of the perpendicular direction of the mirror plane.
Now let us consider the two-mirror setup (see Fig.1(b)) capturing five objects.

The camera C observes the real object O and also its four mirror reflections O1,
O2, O12 and O21. The virtual object O1 is the reflection of O in the mirror M1;
O2 is the reflection of O in the mirror M2; O12 is the reflection of O1 in the
mirror M2; and O21 is the reflection of O2 in the mirror M1. Note there are
two virtual mirrors Mv1, Mv2 which reflect O1 to O21, O2 to O12, respectively.
There are also several virtual cameras which are the reflections of the real camera
C, i.e., the virtual cameras C1, C2 (the reflection of C in the mirror M1, M2,
respectively), the virtual camera C21 (the reflection of C1 in the mirror Mv1 and
also the reflection of C2 in M1), the virtual camera C12 (the reflection of C2 in
the mirror Mv2 and also the reflection of C1 in M2). Note all the cameras lie
on a common plane Π and the bitangents XX1, YY1 in Fig.1(a) are parallel
to Π, which implies the five (real and virtual) objects lie on a plane parallel to
Π. Besides, note that the mirrors M1, M2, Mv1, Mv2 intersect along a common
line Ls which is perpendicular to Π.

Let the images of O, O1, O2, O21, O12 be o, o1, o2, o21, o12, respectively, and
the vanishing line of Π be lh (see Fig.1(c)). From the mirror reflections, it can
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(a) (b)

(c)

Fig. 1. Geometry of the mirror(s). (a) One mirror setup. (b) Two mirror setup. (c)
The image of the two-mirror setup.

be seen that the outer bitangents of o, o1 and that of o2, o21 intersect with the
horizon lh at the vanishing point v1; the outer bitangents of o, o2 and that of
o1, o12 intersect with lh at v2; the outer bitangents of o1, o21 intersect with lh at
v21; the outer bitangents of o2, o12 intersect with lh at v12. Hence the horizon
lh can be recovered as a line passing through all the vanishing points v1, v2, v21

and v12.

2.2 Relating the Two Mirror Setting to the Circular Motion

We have observed that the silhouettes produced by reflections can be treated
as a special circular motion sequences. In this section, we will illustrate this in
detail. Consider the top view of Fig.1(b). The real and virtual cameras C, C1,
C2, C21, C12 are all on the plane Π. Let the real camera C lie on the negative Z-
axis of the world coordinate system and the mirror intersection line Ls coincides
with the Y -axis (see Fig.2(a)).The projection matrix of C is

PC = KR[I| −T], (1)

where K is the camera intrinsic matrix, R is the camera initial orientation and
T = [0 0 − 1]T is the camera center. Let the angle between the mirror M1 and
the negative Z-axis be σ, and the angle between the mirror M2 and the negative
Z-axis be ϕ. Then the angle between M1 and M2 is θ = σ+ϕ. From the mirror
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reflections, it can be seen that |OC| = |OC1| = |OC2| = |OC21| = |OC21|, where
|AB| indicates the length of AB. Hence the camera centers C, C1, C2, C21, C12

lie on a circle (see Fig.2(a)). Besides, note that the angle between M1 and OC1 is
σ, and the angle between M2 and OC2 is ϕ. Similarly, the other angles between
virtual cameras and mirrors can also be easily derived as shown in Fig.2(a).

(a) (b)

Fig. 2. Top view of the mirror setup. (a) The camera centers lie on a circle. (b) The
cameras perform circular motion.

Imagine that there is a plane mirror Π1 which passes through Ls and C1.
Let Cv1 be the reflection of C1 according to Π1. The camera projection matrices
for C1 and Cv1 can be represented by

PC1 = KR[RY(σ)
∑

RY(−σ)| −T],
PCv1 = KR[RY(2σ)| −T],

(2)

where
∑

= diag([−111]), RY (σ) indicate rotation around Y -axis by an angle σ.
Similarly, let Cv2 be the reflection of C2 according to Π2, where Π2 is a virtual
plane mirror passing through Ls and C2. We can easily derive the projection
matrices for C2 and Cv2 in a similar way.

Now it can be easily observed that C21 is obtained by rotating C counter-
clockwise about the point O with an angle 2(ϕ + σ), i.e., twice of the angle
θ between the mirror M1 and M2. Similarly, C12 is obtained by rotating C
clockwise about the point O with 2θ. C2 is obtained by rotating C1 clockwise
about the point O with 2θ. Therefore, it can be observed that C, Cv1, C21,
C12, Cv2 are the cameras performing a circular motion and the rotation axis is
the Y -axis. Besides, it can also be derived that the angles have the following
constraints

∠CC1C21 = ∠C1CC2 = ∠CC2C12 = π − θ. (3)
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Under circular motion, the fundamental matrix relating any two views can
be explicitly parameterized in terms of the image invariants, and is given by
[1][15]

F(ψ) = [vx]× + κ tan
ψ

2
(lsl

T
h + lhl

T
s ), (4)

where ψ is the rotation angle between the two views. ls is the imaged rotation
axis and vx is the vanishing point of X-axis. κ is an unknown but fixed scalar
used to account for the different scales used in the homogeneous representations
of the two terms in the summation [22].

3 Self-Calibration of Two-Mirror Setting

In this section, a novel approach for self-calibrating the two-mirror setup will be
introduced. The imaged circular points of the horizontal camera plane are firstly
derived by metric rectification of the horizontal plane. The angle between the
mirrors can thus be easily obtained. From the metric rectification, the imaged
rotation axis can be derived. The vanishing point of the X-axis can thus be
obtained by a cross ratio relationship. These image invariants could be used for
a camera self-calibration.

3.1 Recovery of the Circular Point and the Mirror Angle

First, from the horizon lh = [l1 l2 l3]T estimated in Section 2, the image in
Fig.1(b) can be rectified to an affine plane using a ‘pure projective’ transforma-
tion [13], given by

P =

 1 0 0
0 1 0
l1 l2 l3

 . (5)

Let the circular points be [α ∓ jβ, 1, 0]T on the affine plane, the plane can be
further transformed to a metric plane using an affine transformation [13] given
by

A =

 1
β −

α
β 0

0 1 0
0 0 1

 . (6)

Note that in equation (3) the angle ∠CC1C21 formed by the line lCC1
=

[la1 la2 la3]T and lC1C21
= [lb1 lb2 lb3]T , and the angle ∠C1CC2 formed by lC1C =

[lp1 lp2 lp3]T and lCC2
= [lq1 lq2 lq3]T are equal unknown angles on the world

plane. Hence the 2D point (α, β) can be shown lying on the circle with center
on the point (cα, cβ) = ( aq−bp

a−b−p+q , 0) and squared radius r2 = ( aq−bp
a−b−p+q )2 +

(a−b)(ab−pq)
a−b−p+q − ab, where a = − la2

la1
, b = − lb2lb1 , p = − lp2lp1 and q = − lq2lq1 indicate

the directions of each line. Similarly, by making use an additional unknown
equal angle ∠CC2C12 in equation (3), (α, β) can be determined easily. Hence
the pair of circular points in the original image can be recovered, by i, j =[(α±
jβ)l3, l3,−αl1 − l2 ∓ jβl1]T .
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From i, j, the angle between the two mirrors can thus be directly obtained
by using the Laguerre’s formula

θ =
1

2j
log{v1,v2; i, j} (7)

where {v1,v2; i, j} denotes a cross-ratio, j2 = −1.

3.2 Recovery of the Imaged Rotation Axis

By making use of the projection and affine transformations P and A (see Section
3.1), the imaged circular points i, j are expected to be rectified to their genuine
position I,J =[1 ± j 0]T . However, we still need a rotation R to transform the
imaged circular points to their genuine position. Hence by the same transfor-
mations, the imaged rotation axis ls can be rectified to a plane [1 0 0]T passing
through the camera center and the rotation axis. Thus ls can be initialized as

ls = (RAP)T

1
0
0

 . (8)

The vanishing point vz of the Z-axis can be obtained as the intersection
between ls and lh. The vanishing point vx can also be easily recovered from the
cross ratio

{i, j;vx,vz} = −1. (9)

The angle σ between the mirror M1 and the negative Z-axis (see Fig.2(a)) can be
obtained by σ = π/2− log{v1,vz; i, j}/(2j) and the angle ϕ between the mirror
M2 and the negative Z-axis can be obtained by ϕ = π/2− log{v2,vz; i, j}/(2j),
where j2 = −1.

Note the pair of circular points i, j of the circular plane are given by [22]

i, j ∼ vx ∓ j κls × lh, (10)

where κ is the same scalar in equation (4). As i, j, vx, ls, lh are known variables,
κ can be easily obtained. Hence the epipoles ei (i = 1, 2) between a pair of the
images of the circular motion can be obtained from [15]

ei ∼ vx − (−1)iκ tan
ψ

2
ls × lh. (11)

And the refinement of the imaged rotation axis ls can be carried out as a
two dimensional optimization problem by minimizing the distance between the
transformed epipolar tangents l′i and the silhouette in the second image (see
Fig.3). The transformation is defined by a harmonic homology [8][15] W−T ,

which is given by W = I− 2
vxl

T
s

vT
x ls

.
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Fig. 3. The overlapping of two silhouettes and their epipolar tangents under the circular
motion. l1,l′1,l2 and l′2 are the outer epipolar tangent lines.

3.3 Self-Calibration and Motion Recovery

The obtained imaged circular points can be used to find the camera intrinsics
since they lie on the image of the absolute conic (IAC) ω. Besides, the imaged
rotation axis ls and the vanishing point vx define a pole-polar relationship w.r.t.
ω [8]. ω can then be estimated from the following constraints:{

iTωi = 0 and jTωj = 0,
ls = ωvx .

(12)

Since these provide three independent constraints, given only a single image,
a natural camera with zero skew and unit aspect ratio can be calibrated by
Cholesky decomposition [6] of ω. For multiple images captured with varying
focal length, each image can be calibrated independently. Hence the problem of
varying focal length does not complicate the calibration problem.

4 Implementation

Here we introduce using one snapshot to calibrate the camera and recover the
motion. Cubic B-spline snakes are used to extract silhouettes from the images
with sub-pixel localization accuracy. The horizon lh is initially obtained by ro-
bustly fitting a line to the vanishing points constructed from the outer tangents
to the object silhouettes in the image. lh and the vanishing points are then re-
fined by minimizing the distance between the tangent lines and the corresponding
silhouettes.

The image can then be transformed to an affine plane by equation (5). Then
the imaged circular points i, j can be obtained by making use equal unknown
angles in the world plane (see Section 3.1 in detail). The imaged rotation axis ls
is then initialized as the rectified Y Z-plane by equation (8) and the vanishing
point vx of X-axis can be recovered by (9). ls and vx can be refined by the
finding of a line tangent to one silhouette which is transformed by the harmonic
homology W−T to a line tangent to another silhouette under the circular motion
[16]. From the estimated lh, i, j, ls, vx, the fixed scalar κ and the rotation angles
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can be easily derived (see Section 3.2 for detail). Besides, a natural camera
can be calibrated with the recovered ls, vx and i, j, by equation (12). The
camera extrinsic parameters can then be estimated by aligning the images of
the horizon and the rotation axis through rectifying each image independently
by a homography induced by a rotation about the camera center such that Ls

coincides with the Y -axis of the world coordinate and the Z-axis of the camera
world coordinate coincides with the Z-axis of the world coordinate [?].

Besides, if multiple snapshots were taken, we need to specify the five silhou-
ettes from different views in a common reference frame to refine the estimation.
This can be achieved by firstly aligning the world coordinate recovered with
different snapshots and rectifying the five-view silhouette sets with the camera
matrices so that the cameras all point towards the rotation axis Ls. The silhou-
ette sets are then scaled and translated along the rotation axis so that the outer
epipolar tangents coincide with the projected tangents from silhouettes in the
other silhouette set.

Finally, a bundle-adjustment using Levenberg Marquardt minimization is
applied to refine all the parameters. The intrinsics and the angle θ between
mirrors M1 and M2 are then estimated with the optimized entities, followed by
a constructing the visual hull from silhouettes.

5 Experiments and Results

Real experiments were carried out to test the feasibility of the approach. The
first experiment consisted views of a girl (see the first column Fig.4). The image
had a resolution of 1296 × 861. Provided with only one single snapshot, the
camera was self-calibrated under the assumption of a natural camera (zero-skew
and unit aspect ratio). Column 2-4 of Table 1(a) compare the estimated camera
matrix and the recovered mirror angle with that of the ground-truth (obtained
with a planar calibration pattern [23]) and the approach introduced in [2]. It can
be seen that the recovered angle θ between the mirrors has a high resolution. The
focal length f and the u0 coordinate of the principal point were both precisely
estimated while v0 was not. This is due to the error in the estimated vx. Column
2-4 of Table 1(b) show the experimental results with two snapshots. It can be seen
the calibration results is better with more snapshots involved in estimation. From
the recovered motion, Fig.4(c) shows the 3D model reconstructed with only one
single snapshot and Fig.4(d) shows that with two snapshots. The model becomes
more accurate may due to the reason that more snapshots may provide more
accuracy in the camera calibration and the visual hull.

The second experiment consisted views of a monster (see the second colum of
Fig.4). The image had a resolution of 1296×861. With only one single snapshot,
column 6-9 of Table 1(a) compare the estimated camera matrix and the mirror
angle with that of the ground-truth (obtained with a planar calibration pattern
[23]) and the approach introduced in [2]. Column 6-9 of Table 1(b) show the
result with two snapshots. From the estimated motion, Fig.4(d) shows the 3D
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Real experiment. The 1st column is for the experiments of the girl and the 2nd
column is for that of the little monster. (a)&(b) An image of the two mirror setting.
(c)&(d) The reconstructed 3D models from a snapshot. (e)&(f) The reconstructed 3D
models from 2 snapshots.

model reconstructed with only one single snapshot and Fig.4(f) shows that with
two snapshots.

6 Conclusions

In this paper, we have presented a practical and efficient approach for self-
calibrating a camera from only a single snapshot obtained under a setting of
two-mirror. We relate it with a circular motion and use image rectification to
find the initial estimation of the imaged rotation axis. Different from the state-
of-the-art approaches, only one snapshot is required in this work for calibrating
a natural camera and recovering the motion. This is more flexible than the previ-
ous approaches which require at least two images. Hence the problem of varying
focal length in multiple images does not complicate the calibration problem. Af-
ter calibration, a visual hull of the object can be obtained from the silhouettes.
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(a)

Girl Monster

- f u0 v0 θ f u0 v0 θ

Ground-truth 1178.4 663.78 440.74 74.3◦ 2971.4 623.89 415.31 74.3◦

Method in [2] 1224.5 648 430.5 - 2950.6 648 430.5 -
Proposed method 1196.7 633.43 413.2 74.18◦ 2958.8 606.05 365.82 74.43◦

Percentage error to GT 1.55% 1.73% 2.34% 0.16% 0.42% 0.60% 1.67% 0.17%

(b)

Girl Monster

- f u0 v0 θ f u0 v0 θ

Ground-truth 1178.4 663.78 440.74 74.3◦ 2971.4 623.89 415.31 74.3◦

Method in [2] 1173.2 646.9 432.71 - 2959.2 664.32 403.28 -
Proposed method 1172.7 648.97 426.45 74.35◦ 2976.9 659.46 375.4 74.21◦

Percentage error to GT 0.48% 1.26% 1.21% 0.07% 0.18% 1.20% 1.34% 0.12%
Table 1. Comparative results of the intrinsic and the angle between the mirrors.
Column 2-5 show experiments with images of a girl. Column 6-9 show experiments
with images of a monster.(a) From a single snapshot. (b) From two views of the two-
mirror settings.

Experiments have produced convincing 3D models, demonstrating the practical-
ity of our algorithm.
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