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Abstract

In this paper, we develop a novel self-calibration method
for single view 3D reconstruction using a mirror sphere.
Unlike other mirror sphere based reconstruction methods,
our method needs neither the intrinsic parameters of the
camera, nor the position and radius of the sphere be known.
Based on eigen decomposition of the matrix representing
the conic image of the sphere and enforcing a repeated eign-
value constraint, we derive an analytical solution for re-
covering the focal length of the camera given its principal
point. We then introduce a robust algorithm for estimating
both the principal point and the focal length of the cam-
era by minimizing the differences between focal lengths esti-
mated from multiple images of the sphere. We also present a
novel approach for estimating both the principal point and
focal length of the camera in the case of just one single
image of the sphere. With the estimated camera intrinsic
parameters, the position(s) of the sphere can be readily re-
trieved from the eigen decomposition(s) and a scaled 3D
reconstruction follows. Experimental results on both syn-
thetic and real data are presented, which demonstrate the
feasibility and accuracy of our approach.

1. Introduction

3D reconstruction has always been a hot topic in the field
of computer vision. Tremendous efforts have been devoted
to this problem in the past decades. In particular, multi-
view stereo (MVS) has been one of the most popular and
successful approaches in solving this problem, and numer-
ous state-of-the-art MVS methods have been proposed (e.g.,
[18]). Single view approach, on the other hand, has received
much less attention compared with MVS. Despite its poten-
tial, single view approach is relatively less studied in the
literature.

The working principle of most single view methods is
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based on observing multiple light paths to the same scene
point. This is often accomplished by introducing one or
more mirrors into the scene and observing the reflection(s)
of the scene on the mirror(s). Both planar and spherical
mirrors have been employed by such methods. Planar mir-
rors do not introduce any distortion in the reflected im-
ages, but provide only a very limited field of view (FOV)
(e.g., [9, 10, 11]). Spherical mirrors, on the other hand,
can provide a much wider FOV for 3D reconstruction (e.g.,
[8, 17, 20, 21]). However, distortions do exist in the re-
flected images, and these make the correspondence problem
more difficult.

Most of the existing mirror based methods for single
view 3D reconstruction require a fully calibrated setup, in
which the intrinsic parameters of both the camera and mir-
rors, as well as the positions and orientations of the mirrors
(relative to the camera) are assumed to be known. This of-
ten requires tedious calibration that hinders the application
of these methods. In [7], Chen et al. showed that, with
an internally calibrated camera, it is possible to recover the
position of a mirror sphere from its image up to a scale de-
termined by its radius. This allows a 3D reconstruction up
to an unknown scale under an unknown radius of the mirror
sphere.

In this paper, we revisit the problem studied in [7], which
is single view 3D reconstruction using an unknown mitror
sphere, but with an uncalibrated camera. It is well known
that, under perspective projection, the image of a sphere
would be a conic [12]. Based on eigen decomposition of
the matrix representing the conic image and enforcing a re-
peated eignvalue constraint, we derive an analytical solution
for recovering the focal length of the camera given its prin-
cipal point. Based on this analytical solution, we develop
two robust algorithms for estimating both the principal point
and focal length of the camera from multiple images as well
as from just one single image of the mirror sphere. With the
estimated camera intrinsic parameters, the position(s) of the
sphere can be readily retrieved from the eigen decomposi-
tion(s) as in [7], and a scaled 3D reconstruction follows.
The key contributions of this work include



e To the best of our knowledge, the first single view
3D reconstruction method that works under an uncali-
brated camera and an unknown mirror sphere (i.e., one
with both its position and radius being unknown).

e An analytical solution for recovering the focal length
of a camera from an image of an unknown sphere given
the principal point of the camera.

e A robust method for estimating both the principal point
and focal length of a camera from multiple images of
an unknown sphere placed at different positions.

e A novel method for estimating both the principal point
and focal length of a camera from just one single image
of an unknown sphere.

The rest of this paper is organized as follows. Section 2
gives a brief literature review. Section 3 provides the theo-
retical background of this work. The proposed algorithms
for estimating both the principal point and focal length of
a camera are introduced in Section 4, followed by a brief
description of the reconstruction method in Section 5. Ex-
perimental results are presented in Section 6. Section 7 dis-
cusses and concludes this work.

2. Related Work

Imaging systems consisting of a camera observing one or
more mirrors are referred to as a catadioptric imaging sys-
tem. They have many applications in both computer graph-
ics and comupter vision [27], including panoramic imaging
[34], stereo vision [8, 9, 11, 19, 23], light field imaging [33],
recognition [28], etc. Both planar mirrors and spherical mir-
rors are commonly used in constructing a catadioptric imag-
ing system.

A planar mirror provides a very cheap way of construct-
ing a new viewpoint, and is the simplest device for building
a stereo vision system from a single camera (e.g., [10]). It
is useful in applications like 3D reconstruction [13, 39] and
light field imaging [ 1 6]. In [22], Mitsumoto et al. described
the single planar mirror geometric constraints for 3D recon-
struction. They showed that it is possible to recover a large
coverage of an object by moving the planar mirror or by
placing multiple planar mirrors around the object. In [11],
Gluckman and Nayar used multiple planar mirrors to build a
complex imaging geometry. A planar mirror has the advan-
tage of not introducing any distortion in the reflected image.
However, its small FOV greatly hinders its use in practice.

A spherical mirror can provide a much wider FOV than
a planar mirror, and may even reflect the entire surround-
ing environment. This makes it more commonly used in
catadioptric systems. Existing methods often assume an in-
ternally calibrated camera, and consider only extrinsic cal-
ibration (e.g., [1, 2, 25, 31]). In [23], Nayar presented the

sphereo system for scene depth recovery. It consists of a cal-
ibrated camera looking at two specular spheres, with both
the radii and positions of the spheres being known a priori.
In [26], Powell et al. recovered light source positions from
specular highlights observed on surfaces of spherical mir-
rors. In [20], Lanman et al. built a catadioptric system using
a perspective camera and many identical spherical mirrors.
They recovered the parameters of the spherical mirrors by a
tailored calibration method. In [19], Kanbara et al. attached
a color marker around the camera lens to estimate the vi-
sual ray passing through a spherical mirror with a known
radius. In [30, 35], Wong et al. estimated the camera poses
and light source directions from a sphere with unknown ra-
dius and position using specular highlights observed on the
sphere and the silhouettes of the sphere. In [24] and [29],
the corneas were approximated as spheres, and exploited for
reconstructing a display from its reflections on the corneas.
In [7], Chen et al. introduced a method to reconstruct a
3D object using a moving spherical mirror. They showed
that without knowing the radius of the spherical mirror, a
3D surface can be recovered up to an unknown scale. Note
that all the aforementioned methods assume an internally
calibrated camera or a known sphere.

Other than using mirrors to build a catadioptric system,
there is also much effort aiming at recovering the mirror
surface itself from reflections observed on its surface (e.g.,
[4, 14, 15]). These, however, are out of the scope of this pa-
per. Besides, without considering the catadioptric system,
camera calibration has been explored using diffuse spheres
(e.g., [3, 32, 36, 37, 38]), while these methods normally re-
quire multiple images and multiple spheres.

3. Theoretical Background

Without loss of generality, consider a pinhole camera
with its optical centre locates at the origin O of a world
coordinate system, and a sphere of radius rs with its cen-
tre locates at a distance d from O along the positive Z-axis
of the world coordinate system (see Fig. 1). The projection
matrix of this camera can be written as P = K[R. 0], where
K is the 3 x 3 camera calibration matrix composed of the
camera intrinsic parameters, and R and O are the 3 x 3 rota-
tion matrix and the translation vector [0 0 O]T, respectively,
which define the rigid body transformation of the camera
with respect to the world coordinate system. The sphere will
project onto the image as a conic. This conic can be repre-
sented by a 3 X 3 symmetric matrix C such that each point x
(in homogeneous pixel coordinates) lying on this conic sat-
isfies xTCx = 0. Such a conic can be easily obtained from
the image by applying a robust conic fitting algorithm [12].

By removing the effect of K, the conic C will transform
nto

C=K'CK (1)



Figure 1. A perspective camera located at O observes a sphere S
of radius 7s. The image of the sphere S is a conic C', which can
be represented by a a 3 x 3 symmetric matrix C. O and C define
aright circular cone tangent to S. The axis of this cone pierces the
center of S. This axis is also the Z-axis of the world coordinate,
and the distance between O and the center of S is d.

which is a conic expressed in image plane coordinates. It
has been shown in [35] that, by eign decomposition, C can
be factorized into

C =RDR", 2)

where R is the rotation matrix of the camera, and D =
diag(A1, A1, \2) is a diagonal matrix composed of the

eigenvalues of C. Note that D represents a circle of radius

Pyt
2
sponds to the image of the sphere when the camera has its

optical axis aligned with the Z-axis of the world coordinate
system (i.e., when R = I). The sphere centre, expressed
in camera coordinates, can be recovered as drs, where r3 is

the third column of R and d = r, arg

Te

With a calibrated camera and a sphere with known ra-
dius, the position of the sphere can be uniquely recovered
from its image. An object can be reconstructed from its
reflections on the sphere placed at two distinct positions.
When the radius of the sphere is not known, the position
of the sphere can still be recovered up to an unknown scale
determined by this unknown radius, and this results in a re-
construction up to the same unknown scale.

re = centres at the image plane origin. It corre-

4. Estimating Camera Intrinsic Parameters

In this section, we first derive an analytical solution for
recovering the focal length of a camera from an image of a
sphere under a known principal point of the camera. Based
on this analytical solution, we introduce two robust algo-
rithms for estimating both the principal point and focal
length of the camera from multiple images of the sphere
as well as from just one single image of the sphere.

4.1. Focal Length

Assume the camera has unit aspect ratio, and let f and
(up, vp) be its focal length and principal point respectively.
The camera calibration matrix K can be factorized into

K =TF, (3)
where
1 0 wup f 00
T=1|0 1 v|,andF=[0 f 0. @
0 0 1 0 0 1

Substituting (3) into (1) gives
C =FT'TTCTF. (5)

Now suppose the principal point of the camera is known
(e.g., by assuming the principal point is at the image cen-
tre). The effect of T can be removed by translating all the
points by (—ug, —vg). After the translation, the conic C
will transform into

c=TTcT (6)
which is a conic having the same shape as C (see Fig. 2).
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Figure 2. (a) C: before removing the effect of T. (b) C: after
removing the effect of T.
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Substituting (6) into (5) gives

C =FTCF. (7)
Now let
. Wil Wiz w13 - wWir Wiz Wi
C=|wy Wy wy| andC= [W21 w2 wa3|,
W31 W32 Ws3 W31 W32 Ws3

and from (7) we have

Wil Wiz W3 onf? wif? wsf
Qo1 oy Wo3| = |Warf? Woaf? wasf ¥
W31 W32 W33 warf  wsaf W33

Recall that C can be factorized into C = RDRT, where
D = diag(A1, A1, \2) is a diagonal matrix composed of the



eigenvalues of C. The eigenvalues of C can be obtained by
solving the characteristic equation

det(C — \I) = 0. ©)
Note that (9) gives a cubic polynomial
N —BA2 A+ =0, (10)
where

B =Wi1 + War + W33
P o I “2 a2 a2
Y =W11We2 + W11W33 + Waals3 — Wiy — Wiz — Wag
NS N Y A
0 =W11W33 + Wiy + Waslwiy — W11Wa2lWss3

— 2W12W13W23

Since C has at least two identical eigenvalues, (10) must
have at least two equal roots. Hence we have [0]

2 =4 =0, (11)
where
p=p*—3y
1

25[(@11 — @92)? + (D11 — @33)% + (Wo2 — D33)?]

+ 3(0 + W5 + ©33)
v =232 — 9By — 275
=18(11Wa2w33 + 3W12013Wa3)
+2(0F) + @35 + 03)
+9(@11 + Qo2 + ©33) (W7, + OF5 + 0d3)
— 3(W11 + Wa2) (W11 + Wa3) (Wa2 + Was)
— 27(@11035 + W2oWis + W3307,)

Given the conic C and the principal point (ug,vg), the
only unknown in (11) is f. Solving (11) leads to 12 solu-
tions. We observe that among these 12 solutions, 8 of them
are zeros, and the remaining 4 have an identical absolute
value, which gives the solution of f. Under noisy data, the
solutions to (11) might be complex numbers. The 8 zero
solutions become pure imaginary numbers, and the remain-
ing 4 become two pairs of conjugate complex numbers, with
opposite signs for their real and imaginary parts (i.e., a + bi,
a — bi, —a + bi, —a — bi). The absolute value of their real
parts gives us an estimate of the focal length, i.e., f = ||a].

4.2. Principal Point

As discussed above, a unique focal length f can be ob-
tained by solving (11) when the principal point of the cam-
era is known or assumed to locate at the image centre. In
practice, however, the principal point is often not known a
priori. Besides, due to manufacture reasons, the principal

point usually does not locate exactly at the image centre,
but somewhere close to it.

We notice that given the ground truth principal point
(up, vp), the focal length estimated by (11) should be iden-
tical to the ground truth focal length f4;. On the other hand,
if we solve (11) using points close to the ground truth prin-
cipal point as the principal point, the estimated focal length
will become a complex number. The real part of this com-
plex number is close to fy;, and its imaginary part is a rela-
tively small value to compensate the errors.

Another observation is that, given the conic images of
the mirror sphere at two distinct positions, we can ob-
tain two estimates of the focal length, denoted as f; and
fo respectively, using the same assumed principal point.
fi = fa = fy4 holds when the assumed principal point
equals the ground truth principal point.

Based on the above observations, we propose to estimate
the principal point by minimizing the difference between
the focal lengths estimated from the conic images of the
mirror sphere at two distinct positions, subject to the princi-
pal point lying within a small window centred at the image
centre. The difference between the estimated focal lengths
is measured as the sum of the magnitudes of the differences
in their real and imaginary parts respectively

error = ||real(f1)| — |real(f2)||

12
+ [limag(f1)| — [imag(f2)|] - (2

The proposed approach is summarized in Algorithm 1.

Algorithm 1: Estimation of the principal point and fo-
cal length from two conic images of a mirror sphere.

Input : Image centre (u,,v.), conic images C, Cy
Output: Principal point (ug, vg), focal length f
Initialization: Set offsets along u, v directions as

w = constl, h = const2; set step size as s = const3;
set error as error,;, = large const;

for u, <+ u. — w to u. + w step s do

for v, <~ v, — h to v, + h step s do
Construct T using (4) with (up, vp);
Compute C;, C, using (6);

Construct Cl, Cg from Cq, Cs using (7);
Solve (11) for Cl, Cg to obtain f1, fa;
Compute current error, errorey,, by (12);

if error.,, < errory, then
Ug < Up
Vo < VUp
£ I’f'eal(fl)\-gl"'eal(fz)l

erroTmin < €rroreyr
end

end
end




The above algorithm requires two conic images of the
mirror sphere. When only one image of the sphere is avail-
able, one simple strategy is to assume the principal point
is at the image centre and then estimate f by solving (11).
This, however, often does not give an optimal solution as
the principal point, as mentioned before, usually does not
locate exactly at the image centre. Based on the observation
that the error in the estimated focal length is highly corre-
lated with the error in the position of the principal point, we
propose a novel approach for estimating both the principal
point and focal length of the camera from just one single
image of the mirror sphere. We first sample points evenly
within a small window centred at the image centre, and es-
timate a focal length f using each sample point as the prin-
cipal point. We then calculate the mean of these estimated
values and this gives us a final estimate of the focal length.
Next, we identify the sample point that leads to an estimated
focal length closest to the mean value as the principal point.
Fig. 3 gives an example of estimating the focal length us-
ing points sampled around the image centre as the principal
point. We can see that when the sampled principal point is
closer to the ground truth principal point, the estimated f
will be closer to the ground truth focal length fg;.

(420, 320) (580, 320)
> o

1118.4 1Q74.4 1059.8 1(30.4 1p10.1

10B9.1  1059.6

=

29.9 1002.3 970.5
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10p9.8 1029.9 1(000.0 949.9 9B9.8
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(420,/400) (580,(480)
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Figure 3. An example of camera intrinsics estimation from the
conic of a single sphere. The ground truth intrinsic parameters
are f = 1000, (uo,v0) = (500,400). Given the conic of the
sphere, we estimated the focal length by setting different image
points as the principal point. The coordinates (blue) stand for the
pixel coordinates, and the number (red) close to a pixel stands for
the estimated f by setting that pixel as the principal point. The
mean of the estimated values is f,, = 998.1. (500,400) is the
sample point that leads that to an estimated f closest to fy,.

5. Shape Recovery

After estimating the principal point (ug,vo) and focal
length f of the camera using the methods described in the
Section 4, we can obtain the camera calibration matrix K
using (3) and (4). We use K to transform the conic image

C into C using (1), and factorize it into C = RDR" by
eigen decomposition. The centre of the sphere, expressed
in camera coordinates, can be recovered as drs where r3
denotes the third column of R resulting from the eigen de-

1472 .
—< denotes the distance of the

c

composition, and d = r,

sphere centre from the camera centre. With the radius 74 of
the sphere being unknown, we can simply set r, to 1 and
the resulting reconstruction will then be scaled by %

Consider a scene point P, and let q; and g5 be its re-
flections observed on the surface of a mirror sphere placed
at S; and So, respectively (see Fig. 4). To reconstruct P
(in camera coordinates), we first construct the visual rays
V(q:1) and V(q2) for q; and qo, respectively, using the
formula V(q) = K~1q. We solve for the point of intersec-
tion Q; between V(q;) and the sphere at S1, and the point
of intersection Q2 between V(q2) and the sphere at So, re-
spectively. Based on the law of reflection, the incident rays
at Q; and Qs can be constructed, and P can be recovered
by triangulating these incident rays. In the case where P can
be directly observed by the camera, only one reflection of
P on the surface of a mirror sphere is sufficient to recover
P by triangulating the visual ray of the direct observation
with the incident ray of the reflection observed.

Figure 4. A perspective camera located at O observes the reflec-
tions of a scene point P at Q1 and Q2 on the surface of a mirror
sphere placed at S1 and S», respectively. P can be reconstructed
by triangulating: (a) Q1P with Q2P, if P is not visible; (b) OP
with Q1P (or Q2P), if P is visible.

6. Experimental Results

We evaluate our proposed methods on both synthetic and
real data. We compare our uncalibrated approach against
the method in [7] which assumes an internally calibration
camera.
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Figure 5. Synthetic experiment results under different noise levels. Ground truth value: f = 1200, uo = 495, vo = 395. (a) Reconstructed
principal point (uo, vo) errors by Algorithm 1 [Alg.1], and by the method using only a single image of the sphere [Sgl]. (b) Focal length
errors; (c) Length ratio errors compared with [7]; (d) Angle errors of the reconstructed rays compared with [7].

6.1. Synthetic Data

We used the same synthetic data set as in [7] to evalu-
ate our approach and compare against their method. A syn-
thetic perspective camera was employed to observe a mirror
sphere with radius 1.5mm placed at two distinct positions.
Four 3D points Py 5 3 41 were reflected at Qy11,12,13,14}
on the surface of the sphere when it was placed at S;, and
at Q(21,22,23,24) on the surface of the sphere when it was
placed at S;. P1Ps, P1P3 and PP, were mutually or-
thogonal to each other, and they were of the same lengths
(5 mm).

We applied SVD to fit conics to the edges extracted from
the images of the sphere [12].To evaluate the robustness of
our approach, we added Gaussian noise to the pixel coordi-
nates of the edges with noise level ranging from 0 to 3.0 pix-
els. With conics fitted to two images of the mirror sphere,
the camera calibration matrix K can be estimated using our
method described in Section 4.

With an unknown radius of the sphere, we can only re-
construct the scene up to an unknown scale. Hence, it is
more meaningful to compare the reconstruction error in

Figure 6. Reconstruction under noise level o = 2.0. Blue points:
ground truth; Red points: reconstruction. (Best viewed in color.)

terms of length ratios and angles rather than absolute dis-
tance errors. Let lq, l2, and I3 denote |P1 P3|, |P1Ps||
and ||P1Py]|, respectively. We measured the errors in the
length ratios Iy /ls, I2 /13 and I3 /15, respectively, as their de-
viations from 1. Similarly, let v, 8 and 6 denote /PP Ps3,
/P3P,P, and L/P,P P, respectively. The errors in «,
3 and 6 were measured as their deviations from 90°. We



performed 500 independent trials and our reconstruction
results as well as the comparison with [7] are presented
in Fig. 5. Generally, the errors increase linearly with the
noise level. Algorithm 1 performed slightly better than the
method using only a single image of the sphere, hence we
used the intrinsics estimated by Algorithm 1 for 3D recon-
struction in our experiment. Our length ratio errors and an-
gle errors are quite close to that of [7]. Fig. 6 shows our
reconstruction under the noise level ¢ = 2.0. The results
demonstrate the accuracy and robustness of our proposed
approach.

6.2. Real Data

To evaluate our approach on real data set, we performed
an experiment on a rectangular box with a dimension of
6 cm x 6 ¢cm x 8 cm. In the experiment, the box was
reflected by a mirror sphere of radius 40 mm placed at four
different positions. The reflections on the sphere surface
were captured using a Canon EOS 40D equipped with a
24-70 mm lens. Fig. 7 shows our experiment setup.

C™
®
(a) (b)

Figure 7. Real experiment setup (a) and reflections on a sphere
at four distinct positions (b-c). Four corners of a box are recon-
structed using the reflections in (b) and the other four corners are
reconstructed using the reflections in (c). The correspondences are
marked with red dots in the images. Note that the box is not visible
by the camera.

After fitting conics to the images of the sphere using
SVD, we first estimated the principal point and focal length
of the camera using the methods introduced in Section 4.
Table 1 shows our estimation result. It can be seen that
the estimated camera intrinsic parameters are very close to
those obtained by camera calibration using a calibration pat-
tern [5]. We used the intrinsics estimated by Algorithm 1
to reconstruct the corners of the box, and measured 24 an-
gles and 12 length ratios around them. We compared these
measurements against the ground truth values (90° for an-
gle and 1.25 for length ratio). We also compared our results
with that of [7], which works under an internally calibrated
camera. The RMS errors are given in Table 2. Fig. 8 shows
the reconstructed 3D corner points of our method and that
of [7]. The recovered surfaces are presented in Fig. 9. Our

approach achieved a high accuracy which is very close to
that using a calibrated camera.

/ Uo )
Calibration [5] 4435.36  1963.0 1277.0
FEstimation [Centre] | 4117.49 1944.0 1296.0
FEstimation [Alg.1] | 4386.06 1955.0 1285.0
Estimation [Sgl] 4301.02 1980.0 1290.0
Error [Centre] 717%  0.97% 1.49%
Error [Alg.1] 1.11% 0.41% 0.63%
Error [Sgl] 3.06% 0.87% 1.02%

Table 1. Estimation of camera intrinsic parameters. [Centre]: re-
sults by setting image centre as the principal point; [Alg.1]: results
by Algorithm 1; [Sgl]: results by the method using only a single
image of the sphere.

‘ angle length ratio
Calibrated[7] | 1.08 0.03
Ours 1.05 0.03
Table 2. RMS angle error and length ratio error of the recovered
box. The ground truth angle and length ratio are 90° and 1.25,
respectively.
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Figure 8. Reconstructed corners of a box. Blue: using a cali-
brated camera [7]; Red: using an uncalibrated camera (ours). (Best
viewed in color.)

Figure 9. Recovered surfaces. Left: using a calibrated camera [7];
Right: using an uncalibrated camera (ours).



7. Discussions and Conclusions

This paper addresses the problem of single view 3D re-
construction under an uncalibrated camera and an unknown
mirror sphere. We derive an analytical solution to solve the
camera focal length given the principal point by enforcing
a repeated eigenvalue constraint for the conic image of the
mirror sphere. Based on this analytical solution , we intro-
duce a robust algorithm to estimate both the principal point
and focal length of the camera by minimizing the differ-
ence between focal lengths estimated from multiple images
of the sphere. Besides, we also present a novel approach
to estimate both the principal point and focal length of the
camera in the case of just one single image of the sphere.
With the estimated camera intrinsic parameters, we can re-
cover the sphere position by eigen decomposition, and re-
construct the scene up to an unknown scale determined by
the radius of the sphere. Experimental results on both syn-
thetic and real data demonstrate the feasibility and accuracy
of our proposed approach. One limitation of our approach
is the difficulty in establishing dense and high quality re-
flection correspondences due to the distortions exhibited in
the reflected images. As a result, the reconstructed point
cloud is sparse. Note that this is in fact the limitation of all
3D reconstruction methods based on mirror spheres. In the
future, we would like to extend our work to achieve dense
3D reconstruction.
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