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Design and Analysis of Optimization Methods for
Subdivision Surface Fitting

Kin-Shing D. Cheng, Wenping Wang, Hong Qin, Kwan-Yee K. Wong, Huaiping Yang
and Yang Liu

Abstract— We present a complete framework for com-
puting a subdivision surface to approximate unorganized
point sample data, which is a separable nonlinear least
squares problem. We study the convergence and stability
of three geometrically-motivated optimization schemes and
reveal their intrinsic relations with standard methods
for constrained nonlinear optimization. A commonly-used
method in graphics, called point distance minimization,
is shown to use a variant of the gradient descent step
and thus has only linear convergence. The second method,
called tangent distance minimization, which is well-known
in computer vision, is shown to use the Gauss-Newton step,
and thus demonstrates near quadratic convergence for zero
residual problems but may not converge otherwise. Finally,
we show that an optimization scheme calledsquared
distance minimization, recently proposed by Pottmann et
al., can be derived from the Newton method. Hence, with
proper regularization, tangent distance minimization and
squared distance minimization are more efficient than
point distance minimization. We also investigate the effects
of two step size control methods – Levenberg-Marquardt
regularization and the Armijo rule – on the convergence
stability and efficiency of the above optimization schemes.

Index Terms— subdivision surface, fitting, optimization,
squared distance.

I. INTRODUCTION

Shapes represented by 3D unorganized geometric
points are now readily available as the widespread
use of 3D scanning devices for shape acquisition
becomes a common practice. For geometric pro-
cessing, we often need to fit a surface to such point
samples. Subdivision surface is a preferred repre-
sentation because of its compactness and ability
to accommodate general control mesh connectivity.
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From the optimization point of view, the surface
fitting problem is aseparablenonlinear least squares
problem. In principle, we need to minimize an
objective function consisting of a geometric error
term and a smoothing term. The geometric error
term can be approximated by different functions
measuring the squared distance between a fitting
surface and the target shape. These error functions
lead to different local quadratic models of the ob-
jective function and result in different optimization
efficiency.

A. Our Work

This paper is an extension to our work [1]
presented at Pacific Graphics 2004. We present
a general and complete framework for computing
a subdivision surface via geometric point fitting.
Specifically, we focus on convergence analysis of
optimization schemes for solving this surface fitting
problem. Suppose that the shape to be fitted, called
the target shape, is defined by unorganized data
points. To start the fitting process, an initial subdivi-
sion surface is first generated from the point cloud
by applying the dual marching cubes method [2].
The control points are then optimized by minimizing
an objective function through iterative quadratic
minimization. New control points are added pro-
gressively in order to better capture the features of
the target shape; this gives rise to a multi-staged
optimization problem. Although we use Loop’s sub-
division surface [3] to handle triangular meshes, the
proposed algorithmic flow can naturally apply to
other types of subdivision surfaces based on linear
schemes.

We consider three geometrically-motivated meth-
ods in this paper. The first method is based on
a point-to-point distance error metric, thus called
point distance minimization[4]. This method has
been used predominantly for decades in graphics
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and CAD/CAM for curve and surface fitting. It
has monotonic descent but converges slowly. The
second method uses a point-to-tangent distance error
metric, thus calledtangent distance minimization.
This has been used in the computer vision field
for model registration [5]. In general, it converges
much faster than point distance minimization, but is
unstable for a target shape with sharp features. The
third method, calledsquared distance minimization,
has been recently proposed by Pottmann et al. [6]
for B-spline curve and surface fitting.

Our contribution is the systematic study on the
convergence behaviors of the above optimization
methods in the setting of subdivision surface fitting.
The derivations of these methods in the literature
are only based on geometric arguments. We es-
tablish their equivalences to three well-understood
optimization methods –steepest descent, the Gauss-
Newton method, and the Newton method, respec-
tively – for nonlinear constrained optimization.

This connection to well-known optimization tech-
niques helps explain or understand the practical
behaviors of these three methods in surface fitting.
The steepest descent method is well known to have
a linear convergence rate, thus explaining the slow
convergence of point distance minimization. The
Gauss-Newton method has quadratic convergence
for zero residual problems, but it converges only
linearly or may not converge at all for problems
with a large residue – this also conforms with
the observed behavior of tangent distance mini-
mization. Squared distance minimization is a sim-
ple geometric incarnation of the Newton method,
thus explaining its observed superior convergence
in the general case. Based on this interpretation,
we apply the Levenberg-Marquardt regularization to
tangent distance minimization and squared distance
minimization to ensure monotonic decrease of the
objective function, thus improving the robustness of
their convergence. Details about these basic opti-
mization techniques can be found in standard texts
on optimization (e.g., [7], [8]).

B. Related Work

The problem of computing a compact surface
representation of a target shape defined by unorga-
nized data points has many applications in computer
graphics, CAD, and computer vision. Numerous ap-
proaches have been proposed over the past decades.

These include fitting methods based on optimiza-
tion [9], [10], [11], [12], [13], [14], active surface
methods [15], [16], [17], and other approaches [18],
[19], [20], [21]. Among parametric surfaces, subdi-
vision surface has gained popularity because of its
ability to deal with general object topology as well
as arbitrary connectivity of the control mesh [22].
Some works are closely related to the problem
addressed in this paper. In Hoppe et al.’s method [9],
a mesh surface is computed to fit unorganized points
via optimization of an energy function. In [11],
[12], a (non-iterative) linear least squares problem is
solved to produce a fitting surface composed of B-
spline surfaces for quadrangle patches and Catmull-
Clark surfaces for extraordinary corner patches.
In [13], a Loop’s subdivision surface is computed to
fit a mesh surface by iterative quadratic optimiza-
tion, using a simplification of the input mesh as
the initial control mesh. All these methods use the
point distance (PD) error functionto approximate
the geometric error between the fitting surface and
the target shape in each iteration. This is essentially
the parameter correction method by Hoschek [4],
but we will refer this scheme aspoint distance
minimization, or PDM for short. PDM belongs to
the category of the alternating method [23], [7] for
solving separable nonlinear least squares problems;
it has only linear convergence rate and converges
slowly in practice, as we will demonstrate later in
this paper.

Tangent distance minimization, abbreviated as
TDM, uses another error function, calledthe TD
error term, based on a point-to-tangent distance,
and it has been used in computer vision for 3D
model registration by Chen and Medioni [5] and
active curve fitting by Blake [15]. In the extension
to their work in [13], Marinov and Kobbelt apply
a combination of the PD error term and TD error
term to improve the efficiency of their surface
fitting method [24], without considering the issues
of convergence analysis and step size control.

Squared distance minimization, or SDM for short,
uses the so-calledsquared distance(SD) error term,
which is first considered in [25] and further inves-
tigated in detail from a geometric point of view
by Pottmann et al. [26] with applications to shape
fitting with B-spline curves and surfaces [6], [27].
However, they did not give convergence analysis or
consider step size control for ensuring convergence.

In this work we emphasize on the convergence
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behaviors of PDM, TDM, and SDM in the setting
of subdivision surface fitting from an optimization
point of view, and investigate the step size control
schemes as applied to these methods. Our results
provide new and useful insights to the practical sur-
face fitting procedures used in computer graphics.
A variant of the SDM method, along with TDM
and PDM, has been recently studied in [28]. The
connections of our work here to that of [28], as well
as their differences, are elaborated in Section V.

II. FITTING ALGORITHM

A. Problem Formulation

Suppose that input data points, defining atarget
shapeΓ, are sampled from an underlyingtarget
surfaceΓT , which is a manifold surface of arbitrary
genus. For convergence analysis, the second order
differentiability of ΓT is assumed. Our goal is to re-
construct the surfaceΓT by computing a subdivision
surface fromΓ.

Let P (s, t) be a local parameterization of a fitting
surface S. The fitting error betweenS and the
target surfaceΓT is measured by the sum of squared
distances from a set of dense sample points onS to
ΓT . Denote these sample points bySk = P (sk, tk),
which are linear combinations of the control points
Pi, k = 1, 2 . . . , m, of a Loop’s subdivision surface
S. We assume thatm is much greater thann, the
number of control points, so that the fitting problem
is properly constrained. LetVk = V (uk, vk) ∈ ΓT

be the closest point from the sample pointSk on the
fitting S to the target surfaceΓT . The fitting error
at Sk is then given byfk = ||Sk − V (uk, vk)||. The
point V (uk, vk) ∈ ΓT is called thefoot pointof Sk.

DenoteP = {Pi}
n
i=1 and U = {(uk, vk)}

m
k=1.

The control pointsP of the best fitting surfaceS
are computed by solving the following optimization
problem,

min F (P,U) = Fe(P,U) + Fs(P), (1)

whereFe = 1
2

∑m

k=1 f 2
k = 1

2

∑m

k=1 ‖Sk−V (uk, vk)‖
2

is theL2 fitting error, andFs(P) is a regularization
term that is a quadratic function of the control points
P. The variables in the functionF are control points
P = {Pi}, and the parameter valuesU = {(uk, vk)}.
Clearly, F is quadratic inP, but is, in general, a
highly nonlinear function ofU .

We may treat P as basic variables and U
as dependent variables, since it is required that
V (uk, vk) be the foot point of the sample pointSk,

which is a linear function ofP. This leads to the
following commonly-used optimization strategy in
surface fitting: given an initial fitting surface with
the sample pointsSk, one first computes that foot
pointsV (uk, vk). With U being known, one updates
the control pointsP by minimizing F (P,U) over
the control pointsP; this is done by solving a linear
system of equation, sinceF (P,U) is quadratic inP
andU has been fixed. The above two steps of foot-
point computation and control point computation
are iterated to further improve the fitting error until
convergence.

This commonly-used iterative fitting method
is called thepoint distance minimization(PDM)
method. Because of the separate treatments of vari-
ablesP and U , the optimization problem defined
in (1) is also called a separable variable problem.
We will also consider two other more efficient local
optimization schemes based on the same framework,
i.e., TDM and SDM.

An initial fitting surface is needed to start the
above iterative procedure. It is natural to begin with
an initial fitting surface having the same topology
as the target shape and a simple control mesh.
Control points need to be inserted progressively as
optimization proceeds to make the fitting surface
better capture the fine features of the target shape.
This means that we need to consider a multi-staged
optimization problem, with proper scheduling of
adding new control points.

B. Algorithmic Flow

Our proposed fitting procedure has the following
main steps:
(1) Normalization: Normalize the target shape by

uniform scaling to fit it within the cube[0, 1]3.
(2) Precomputation: Pre-compute the distance

field, as well as the tangential and curvature
information of the target surfaceΓ for setting
up error terms.

(3) Initial mesh: Compute an initial control mesh
using the dual marching cubes method [2].

(4) Points sampling: Generatem dense sample
points S0

k on the current fitting surface using
the method in [29], [30].

(5) Error function setup: Use the sample points
generated in step (4) to set up the error function

FL(P) =
1

m

m
∑

k=1

FL,k(P) + Fs(P), (2)
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whereFL,k(P) is one of the three error terms
to be introduced in Section II-D.

(6) Minimization: Update control points by mini-
mizing the quadratic functionFL(P). This is
done by solving a linear system of equations
using the conjugate gradient (CG) method.

(7) Error evaluation:
Sample new pointsS1

k on the fitting surface
with updated control points, and compute their
foot points V 1

k . Next compute the maximum
errorEm and the root-mean-square errorErms,
where

Em = max
k

{||S1
k − V 1

k ||2}.

and

Erms =

[

1

m

∑

k

||S1
k − V 1

k ||
2
2

]
1

2

.

Here ||S1
k − V 1

k ||2 is called the local error. The
algorithm is terminated, ifEm or Erms falls
below a pre-specified error threshold, or the
number of iterations reaches some limit. If the
fitting error has been reduced significantly in
this step by the current iteration (but still larger
than the threshold), go to Step 4 to start the
next iteration. Otherwise, go to Step8.

(8) Refinement: New control points are inserted in
the regions of large fitting errorEm. Go to step
4 for the next iteration.

The flowchart is shown in Fig. 1. Note that
remeshing could be used in step (3) to reduce the
number of extraordinary vertices whose valences are
not six.

C. Preprocessing and Initialization

To quickly obtain the foot pointsV 0
k of the sample

pointsS0
k, we pre-compute an adaptive distance field

of the target shape using the idea in [31]. The
pre-computed information, such as distances and
foot points, are stored at the corners of adaptive
octtree cells. During the optimization process, the
foot point of a sample pointS0

k is computed by
trilinear interpolation from the stored values at the
corners of the smallest cell containingS0

k.
The normal vector and the principal curvatures of

the target surfaceΓT at Vk are also pre-computed
from the point cloudΓ for setting up the TD error
functions and the SD error functions. For a given
target pointVk, we first find its neighboring points

start

done

yes

no

yes

no

Terminate?

Need to refine the
Control Mesh?

Normalize the Target

Pre-compute the
Distance Field and

Curvatures

Generate Initial Mesh

Sample Points on the
Fitting Subdivision

Surface

Form Local Quadratic
Models of the Goal

Function

Optimize

Evaluate Fitting Error

Refine Control Mesh

Fig. 1. Work flow.

Vk,j. A local coordinate frame atVk can then be
defined by the principal curvature directions and the
normal direction which are the eigenvectors of the
covariance matrixCV given by

CV =
∑

j

(Vk,j − Vk,c)(Vk,j − Vk,c)
T ,

whereVk,c is the centroid ofVk’s neighboring points.
A polynomial z = k1x

2 + k2y
2 is then fitted to the

neighboring pointsVn(i,j) in this local frame and the
principal curvatures are simply set to2k1 and2k2.

We use the dual marching cubes method devised
by Schaefer and Warren [2] to compute the initial
control mesh from the dual grid of cells of an
adaptive octree partition of the target data set. The
meshes generated by this method are topologically
faithful, adaptive to curvature or features of the
target shape, and therefore more desirable than
those generated by the ordinary marching cubes
method [32], which tends to produce too many
fragmented triangles, even in flat regions of the
target shape, as observed in [1].

D. Error Functions

1) PD Error Term: Suppose that the fitting sur-
face has been sampled by the pointsS0

k, whose
foot points areV 0

k . Let Sk be the variable points
of S0

k, depending on the variable control pointsP.
A simple error term is given by

f 2
PD,k = ||Sk − V 0

k ||
2, (3)
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which is called thepoint distance(PD) error term
becausefPD,k is the distance betweenSk and V 0

k .
The optimization scheme resulting from using the
PD error term forFL,k(P) in (2) is called point
distance minimizationor PDM.

2) TD Error Term: When the target surfaceΓT

is relatively flat aroundV 0
k , the tangent plane of

ΓT at V 0
k is a good approximation toΓT in a

neighborhood ofV 0
k . This observation leads to the

so-calledtangent distance (TD) error term, defined
as

f 2
TD,k = |(Sk − V 0

k )T Nk|
2, (4)

whereNk is a constant unit normal vector toΓ at
V 0

k . Clearly,f 2
TD,k is the squared distance fromSk to

the tangent plane(X−V 0
k )Nk = 0. The optimization

scheme resulting from using the TD error term is
called tangent distance minimizationor TDM.

3) SD error term : Now we consider the second
order approximation to the squared distance fromSk

to ΓT , as proposed in [6], [25]. Letd be the signed
distance such that|d| = ||S0

k − V 0
k ||. Let ρ1 and

ρ2 denote the principal curvature radii ofΓT at V 0
k ,

associated with the principal unit direction vectors
T1 and T2. We make the following convention on
the signs ofd andρi, i = 1, 2. Suppose thatN is a
normal vector to the target surfaceΓT . If the sample
point Sk is on the side ofΓT pointed to byN , i.e.,
N · (S0

k − V 0
k ) > 0, then d > 0; otherwise,d ≤

0. Similarly, if the curvature center in the normal
section along the tangent vectorTi is on the side of
ΓT pointed to byN , thenρi > 0; otherwise,ρi ≤ 0,
i = 1, 2.

SinceV 0
k is locally the closest point fromS0

k to
ΓT , then we have|d| < |ρi| whend andρi have the
same sign. It can be shown [25], [26] that the second
order approximation to the true squared distance is

f̂2
SD,k = α1[(Sk − V 0

k )T T1]
2 + α2[(Sk − V 0

k )T T2]
2

+ [(Sk − V 0
k )T N ]2, (5)

where α1 = d/(d − ρ1) and α2 = d/(d − ρ2).
The coefficientα1 (or α2) becomes negative ifρ1

(or ρ2) and d have the same sign. Denote[α]+ =
max{α, 0}. To have a non-negative error function,
f̂ 2

SD,k is modified to

f2
SD,k = [α1]+[(Sk − V 0

k )T T1]
2 + [α2]+[(Sk − V 0

k )T T2]
2

+ [(Sk − V 0
k )T N ]2. (6)

This termf 2
SD,k is called thesquared distance (SD)

error term, since it is derived from a second order
approximation to the true squared distance. The

ellipsoid in Fig. 2 shows an iso-distance surface of
the SD error term for the caseα1 > 0 andα2 > 0;
the SD error term reduces to the TD error term
if α1 = 0 and α2 = 0. The optimization scheme
resulting from using the SD error term is called
squared distance minimizationor SDM.

Fig. 2. An iso-surface of SD error term.

Fig. 3. Triangle split.

E. Smoothing Term

The smoothing term in (2) is defined as

Fs =
λ

n

n
∑

i=1

W (Pi)
T W (Pi),

where Pi, i = 1, 2, . . . , n, are the control points
andW (·) is a discrete version of Laplacian [33]. It
is difficult to automatically choose an appropriate
value of the coefficientλ [34]; therefore, most
existing methods chooseλ in a heuristic manner.
Likewise, in our test examples, the initial value for
λ is set to0.001 at the beginning, and is reduced
gradually as the optimization proceeds.

We use the conjugate gradient method to mini-
mize the error function (2). This iterative solver is
terminated if the relative error improvement is less
than10−6 or the number of iterations reaches200.
These parameters produce satisfactory results in our
experiments.

F. Local Refinement

When the fitting error remains large due to the
insufficient number of control points, new control
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points are inserted to triangles that have large local
errors and split the triangles in a 1-to-4 manner
(see Fig. 3). This step is calledlocal refinement.
To avoid undesirable T-vertices, the neighboring
triangles are also split, following the Red-Green
splitting scheme [35].

III. OPTIMIZATION PROPERTIES

In this section we shall establish the connection
between the three optimization techniques intro-
duced so far – PDM, TDM and SDM – and standard
optimization techniques in optimization theory. Due
to space limit, we shall only discuss some basic
facts that we are going to use directly; the reader is
referred to standard texts (e.g., [7], [8]) for detailed
introduction to optimization theory.

A. Basics of Optimization

First consider the Newton method. Given an
objective functionf(x) : RN → R and the current
variable valuexc near a local minimum off(x),
the next iteratex+ is the minimizer of the local
quadratic modelmc(x) of f(x) aboutxc, where

mc(x) = f(xc) + ∇f(xc)
T (x − xc)

+ 1
2
(x − xc)

T∇2f(xc)(x − xc), (7)

which is the second order Taylor expansion off(x)
at xc. If ∇2f(xc) is positive definite,x+ is the
unique solution of the equation

0 = ∇mc(x+) = ∇f(xc)+∇2f(xc)(x+ −xc). (8)

The Newton method has local quadratic conver-
gence.

Various iterative schemes can be obtained by
replacing the Hessian∇2f(xc) in Eqn. (7) by dif-
ferent estimates of it. Among these, the Gauss-
Newton method is preferred for solving nonlinear
least squares problems [8]. Consider a nonlinear
least squares problem,

f(x) = 1
2

∑

k

rk(x)2. (9)

The Hessian off(x) is

∇2f(x) =
∑

k

∇rk(x)∇rk(x)T +
∑

k

rk(x)∇2rk(x).

(10)

In the Gauss-Newton method, one discards the
second-order term to use the approximate Hessian

∇̃2f(x) =
∑

k

∇rk(x)∇rk(x)T (11)

to replace the Hessian∇2f(xc) in (8) to compute
the next iteratex+. The Gauss-Newton method
has quadratic convergence for zero residual prob-
lems because the discarded term

∑

k rk(x)∇2rk(x)
is negligible in those cases. However, the Gauss-
Newton method only converges linearly or may
not converge at all for large residual problems
because the Hessian is poorly approximated in these
situations [8].

B. Surface Fitting as a Separable Problem

The surface fitting problem can be formulated as
a separable nonlinear least squares problem with the
following objective function,

F (P,U) =

m
∑

k=1

Fk(P,U) + Fs(P) (12)

= 1
2

m
∑

k=1

‖Sk(P) − V (uk, vk)‖
2 + Fs(P),

whereSk is a linear function of the control points
P. To simplify notation, we denoteS = Sk(P),
(u, v) = (uk, vk), andE = S −V (u, v). ThenFk =
1
2
ET E. In the following, we will useP, u and v

as subscripts to denote derivatives with respect to
these variables.

SinceV (u, v) is the foot point of the sample point
S to the target surfaceΓT , E is perpendicular to the
tangent plane ofΓT at V (u, v). It follows that

(S − V (u, v))TVu = ET Vu = 0,

(S − V (u, v))TVv = ET Vv = 0. (13)

These two equations are constraints tieing the vari-
ables(u, v) to the control pointsP. In fact, the two
equations in (13) are also necessary conditions for
the objective functionF to have a local minimum,
since the partial derivatives ofFk with respect tou
andv are

∂Fk/∂u = (S − V (u, v))TEu,

∂Fk/∂v = (S − V (u, v))TEv,

and noting thatEu = −Vu and Ev = −Vv. There-
fore the introduction of these constraints does not
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preclude any minimizer of the original optimization
problem.

We first discuss the convergence behavior of
PDM. PDM performs the following two alternating
steps iteratively: (1) solving a linear system of
equations to obtain the variable control pointsPi

while fixing the parameter values(uk, vk); and (2)
computing foot points to find the(uk, vk) with the
fixed control pointsPi. The first step decreases the
value of the objective function but moves away
from the constraints (13). The second step moves
the iterate back to give a feasible point satisfying
the constraints (13). This is, in fact, thealternating
method for solving a separable and constrained
nonlinear problem, and is known to have linear
convergence [7].

It can be shown that TDM uses a Gauss-Newton
step and SDM is equivalent to the Newton method.
The proofs of these facts are given in appendices in
order to have a better flow of discussion.

C. Regularization and Step Size Control

The Gauss-Newton method works poorly
for large residual problems, so the Levenberg-
Marquardt method (the LM method), which is a
regularized version of the Gauss-Newton method, is
normally used [8]. The essence of the LM method
is that the local quadratic model is trusted only
within a small enough neighborhood of the current
point xc, defined by the constraint‖s‖ ≤ 4k,
where s is the step. The selection of the value
of 4k depends on the degree of the agreement
between the local model and the objective function.
The optimality condition for this constrained
optimization gives

(∇2f(xc) + νcI)s = −∇f(xc). (14)

The Hessian is then approximated as

∇2f(x) ≈
∑

k

∇rk(x)∇rk(x)T + νcI. (15)

In other words,s is computed by replacing∇2f(xc)
in (8) by

∑

k ∇rk(x)∇rk(x)T + νcI.
In LM regularization the gain ratio is monitored,

which is the ratio of the actual decrease in the
objective function to the decrease predicted by the
local model [36]. If the gain ratio is small, meaning
that the current model is a poor approximation
to the goal function,νc is increased so that the

next step will be closer to the steepest descent
direction and the step size is reduced. If the gain
ratio is large, meaning that the current model is
a good approximation to the goal function,νc is
decreased so that the next step will be closer to a
Gauss-Newton step. By monitoring the agreement
between the local model and the actual objective
function, this approach tries to get the advantages
of both the steepest descent method and the Gauss-
Newton method. For all values ofνc, called the LM
parameter, the coefficient matrix is positive definite.
Note that both the direction and the step size are
modified in the LM method. In the same vein, we
will also consider the LM regularization of SDM in
next section.

Besides the LM method, the Armijo method [8] is
also commonly used for guaranteeing convergence.
After the direction of a steps has been determined
by a particular method (PDM, SDM or TDM), the
step size is decided by performing a line search.
Although the Armijo method improves convergence,
extra goal function and gradient evaluations are
required and these increase the computational time.
Different from the LM method, only the step size is
modified in the Armijo method. The effectiveness
of the LM method and the Armijo method will be
investigated in the experiments in Section IV.

IV. EXPERIMENTS

We will present test examples computed by PDM,
TDM and SDM to observe and confirm the conver-
gence behavior of the three methods, as influenced
by initial control mesh specification, smoothness
term and step control methods (i.e., the LM method
and the Armijo rule.) We will also present examples
of subdivision surface reconstruction from complex
target shapes. All experiments were run on a PC
with Intel Xeon2.8 GHz CPU and2.00 GB RAM.
All data sets are first scaled uniformly to fit into a
rectangular box with the longest side equals to1.0.

A. Initial mesh and sharp feature

We first consider applying PDM, TDM and SDM
to a data set with two different initial control
meshes, without the smoothness term or regulariza-
tion. Here no new control points are added during
optimization.

Example 1: (Refer to Fig. 4.) The target shape is
an ellipsoid with semi-principal axes being0.25, 0.5
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and1.0 and the initial mesh has14 control points, as
shown in Fig. 4. The optimized surface by SDM is
shown in Fig. 4(a); the optimized surface by TDM
is similar to that by SDM and therefore not shown.
The error curves are shown in Fig. 4(b).

(a)

0 20 40 60 80 100
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−3
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−2

10
−1

Iteration

E
rr

or

PDM
SDM
TDM

(b)

Fig. 4. (Example 1). (a) Left: Target shape and initial mesh; Right:Optimized mesh and surface
by SDM. (b) Error curves.

Example 2: (Refer to Fig. 5.) The same target
shape is used here as in Example 1, but the initial
control mesh is now farther away from the target
shape, as shown in Fig. 5(a). The surface recon-
structed with SDM is also shown. The error curves
of PDM, TDM and SDM are shown in Fig. 5(b).
TDM does not converge for this data set.
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Fig. 5. (Example 2). (a) Left: Target shape and initial mesh; Right:Optimized mesh and surface
by SDM. (b) Error curves.

Discussion: Examples 1 and 2 show that SDM
converges much faster than PDM. TDM has similar
convergence rate as SDM, but may easily become
unstable if the initial mesh is far away from the
target shape. That is because TDM, using a Gauss-
Newton step, discards from the Hessian the part
r(x)∇2r(x) that is related to the curvature and
residue; herer(x) reflects the distance between the
initial fitting surface and the target shape. Therefore
TDM should always be used with LM regularization
for stable convergence, as will be seen shortly.

Example 3: (Refer to Fig. 6.) Here we consider
an elongated ellipsoid with two sharp ends, with
semi-principal axes being0.125, 0.25 and 4.0, as
shown in Fig. 6(a) with the initial mesh. We use
this target shape to test PDM, TDM and SDM
in the presence of sharp features. The optimized

subdivision surface by SDM is also shown. The
optimized surface by TDM is similar to that by
SDM and is therefore not shown. The error curves
of PDM, TDM and SDM are shown in Fig. 6(b). We
see that SDM and TDM have similar convergence
behaviors, and PDM converges to a poor local
minimum with a larger residual error.
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Fig. 6. (Example 3). (a) Top: Target shape and initial mesh; Bottom:Optimized mesh and surface
by SDM. (b) Error curves.

B. Smoothness Term and Multi-stage Optimization

In this section we consider the effects of the
smoothness term on convergence behaviors and
insertion of new control points.

Example 4: (Refer to Fig. 5(a) and Fig. 7(a).)
The data set and initial control mesh used here are
the same as those in Example 2 (see Fig. 5(a)),
where TDM fails to converge. Now we want to
observe whether the introduction of a smoothness
term can make the convergence of TDM stable.
The smoothness term is defined in Section II-D.
We tested different values of coefficientsλ = 10−i,
i = 2, 3, 4, 5, 6, resulting in the error curves of TDM
shown in Fig. 7(a).
Discussion: In this example,λ = 0.001 or 0.0001
leads to stable convergence with a small fitting error.
Bigger values ofλ make the surface too “stiff”,
giving large fitting errors, while smaller values
of λ fail to make TDM stable. We remark that,
except for trial-and-error or methods based on user
assistance, there is currently no commonly accepted
general scheme that can automatically determine the
coefficient of the smoothness term in the context of
curve or surface fitting.

Example 5: (Refer to Fig. 7(b).) Here we will
test the effects of adaptively adding new control
points and reducing the smoothness coefficient pro-
gressively at different stages of the fitting process,
using PDM, TDM and SDM. The target shape
is the ball joint model containing137, 062 points
(Fig. 9) and the initial control mesh has128 control
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Fig. 7. (a) Error of TDM for Example 4. (b) Error for Example 5.

points. The initial smoothness coefficient is0.01.
Throughout optimization, new control points are
inserted at regions of large errors progressively.
The final number of control points at the50-th
iteration is202, 151 and 199 for PDM, TDM and
SDM, respectively. The smoothness coefficient is
decreased to0.001 and 0.0001 at the20th and the
40th iterations, respectively. Fig. 7(b) shows the
error curves of PDM, TDM and SDM. Obvious
reduction of the fitting error can be observed due
to the control points insertion and the smoothing
coefficient adjustment. During each stage between
the insertions of control points, SDM and TDM are
again more efficient than PDM.

C. LM Regularization and the Armijo Rule

Since TDM uses a Gauss-Newton step, it exhibits
instability if used without any regularization. In
this section we apply LM regularization to TDM,
and also to SDM, to observe its effect on the
convergence of the two methods.

Example 6: (LM regularization of TDM. Refer
to Fig. 4(a) and Fig. 8(a)). Here the target shape and
initial control mesh are the same as in Example 1,
as shown in Fig. 4(a). No smoothing term is used.
Let TDMLM denote TDM with LM regularization.
Fig. 8(a) shows the error curves for TDMLM and
TDM. TDMLM takes 0.551s to getErms smaller
than 0.002. The error curves in Fig. 8(a) indicate
that TDMLM delivers both fast convergence and
monotonic descent of the fitting error, while the
error of TDM is not monotonically decreasing.

Example 7: (LM regularization of TDM. Refer
to Fig. 5(a) and Fig. 8(b).) Here the target shape
and the initial control mesh are the same as used in
Example 2, as shown in Fig. 5(a). Recall that TDM
fails to converge in that example. Now we apply
TDMLM without smoothing term. Fig. 8(b) shows
the error curves of TDMLM and TDM. Clearly,

TDMLM converges fast and stably. TDMLM takes
1.593s to have anErms smaller than0.002.

Example 8: (LM regularization of SDM. Refer
to Fig. 4(a) and Fig. 8(c).) Here we apply LM
regularization to SDM for the same target shape
and initial mesh as in Example 6, as shown in
Fig. 4(a). The regularized SDM will be denoted by
SDMLM. Fig. 8(c) shows the error curves of SDM
and SDMLM, where the SDM error curve here is
the re-scaled version of the same SDM error curve
in Fig. 4. It can be seen that the SDM error curve
is actually not monotonically descending but that
of SDMLM is. SDMLM takes1.011s to getErms

smaller than0.002.

Example 9: (LM regularization of SDM. Refer to
Fig. 5(a) and Fig. 8(d).) In this example SDM and
SDMLM are applied to the same target shape and
initial control mesh as in Example 7, as shown in
Fig. 5(a). The error curves of SDM and SDMLM
are shown in Fig. 8(d). Again, we see that SDMLM
leads to more stable convergence than SDM without
regularization.

Example 10:(Refer to Fig. 5 and Fig. 8(e).) In
this example step size control using the Armijo rule
is applied to every step of PDM, TDM and SDM.
The target shape and the initial mesh are the same as
in Example 2 (shown in Fig. 5). The corresponding
variants of PDM, TDM and SDM with step size
control are called PDMSC, TDMSC and SDMSC,
respectively. Fig. 8(e) shows the error curves of
PDM, TDM and SDM and their variants. We see
that the stability of TDM is improved greatly by
step size control, while PDMSC and SDMSC have
similar convergence behavior to PDM and SDM.
PDMSC has anErms larger than0.002 after 100
iterations (4.138s) while SDMSC and TDMSC just
take5 iterations (0.240s) and12 iterations (0.812s)
to obtainErms smaller than0.002, respectively.

Discussion: From the three preceding examples we
conclude that LM regularization is helpful to the
stabilization of TDM and SDM, and it ensures
monotonic decrease of fitting errors. Step size con-
trol by the Armijo rule is also very effective for
TDM, but much less effective for PDM and SDM,
which are often already quite stable even without
step size control, though step size control does
ensure monotonic decrease of SDM.
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Fig. 8. Error curves (a) for Example 6; this is the zoom-in view of theTDM error curve in Figure 4. (b) for Example 7. (c) for Example8. (d) for Example 9. (e) for Example 10.

(a) (b) (c) (d) (e) (f)

Fig. 9. Ball Joint: (a) Point cloud. (137, 062 points; dimension:0.87 × 0.50 × 1) (b) Initial mesh. (416 control points) (c) Initial surface. (d) Final mesh. (551 control points) (e) Final surface. (f)
Shaded subdivision surface. Max. Err.: 0.0064; RMS. Err.: 0.0009.

TABLE I

TIME STATISTICS (IN SECONDS) FOR

PRE-COMPUTATION.

# of data Curvatures Distance
points fields

Ball joint 137,062 95.83s 52.51s
Igea 134,345 36.07s 215.69s

Rocker arm 40,177 14.91s 70.48s
Bunny 35,201 212.74s 148.26s
Buddha 543,652 4837.67s 200.66s

TABLE II

TIME BREAKDOWN (IN SECONDS).

Eqn. Eqn. Err. Ttl.
setup solving evaluation time

Ball joint 38 3 31 73
Igea 83 5 63 152

Rocker arm 41 6 30 78
Bunny 39 5 32 77
Buddha 1,134 32 641 1,808

TABLE III

COMPARISON WITH THE APPROACH IN[24] FOR THE IGEA MODEL.

THE ERRORSEm AND Erms ARE EXPRESSED IN PERCENTAGE

OF THE DIAGONAL OF THE MODEL.

Final # of Em Erms Time taken
control points (%) (%) (min:sec)

Result in [24] 1,553 0.247 0.05755 8:29
Our result 2,385 0.229 0.03472 2:32

D. Surfaces from Complex Target Shapes

In this section we will show that our fitting
method works effectively as well for complex tar-
get shapes. Figures 9, 10, 11, 12 and 13 show
the data sets for a ball joint, a head (Igea), a
rocker arm, a bunny and a buddha (data sources:

http://www.cyberware.com (Igea, the ball joint and the rocker

arm) and http://www-graphics.stanford.edu/data/3Dscanrep/

(the bunny and the buddha)). The figures show the initial
meshes, the optimized control meshes by SDM, the
initial and optimized subdivision surfaces with color
error coding and the shaded optimized subdivision
surfaces. The color code of a data point is interpo-
lated in a piecewise linear manner from blue, green,
yellow and red corresponding to local error values
(c.f. Section II-B) 0.0, 0.0066666, 0.0133333, and
0.02, respectively.

Table I gives the timing data for the preprocessing
steps. Neighboring points within a distance of0.03
from a data pointVk are used for computing the
curvatures atVk. Table IV shows the error statis-
tics. The numbers in# of contr. ptsfield refer to

TABLE IV

OPTIMIZATION SET UP.

# of # of smooth. Em Erms

iter. contr. pts. coeff.

Ball joint 29 416, 551 10
−2 , 10

−4 0.0064 0.0009
Igea 14 526, 2,385 10

−2 , 10
−4 0.0036 0.0005

Rocker arm 15 870, 950 10
−2 , 10

−5 0.0029 0.0003
Bunny 14 919, 996 10

−2 , 10
−5 0.0082 0.0009

Buddha 9 4,662, 18,715 10
−3 , 10

−5 0.0043 0.0003

the number of control points in the initial control
meshes and the final optimized control meshes.
The numbers insmooth. coeff.field refer to the
initial and the final values for the smoothing term
coefficient. Table II shows the breakdown of the
time used in different tasks in the optimization.
The total time does not include the time on pre-
computation. All the five examples were computed
with SDM.
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(a) (b) (c) (d) (e) (f)

Fig. 10. Igea: (a) Point cloud. (134, 345 points; dimension:0.70 × 1× 1) (b) Initial mesh. (526 control points) (c) Initial surface. (d) Final mesh. (2, 464 control points) (e) Final surface. (f) Shaded
subdivision surface. Max. Err: 0.0036; RMS. Err.: 0.0005.

(a) (b) (c) (d) (e) (f)

Fig. 11. RockerArm: (a) Point cloud. (40, 177 points; dimension:0.51 × 1 × 0.30) (b) Initial mesh. (870 control points) (c) Initial surface. (d) Final mesh. (950 control points) (e) Final surface. (f)
Optimized subdivision surface. Max. Err.: 0.0029; RMS. Err.: 0.0003.

(a) (b) (c) (d) (e) (f)

Fig. 12. Bunny: (a) Point cloud. (35, 201 points; dimension:1 × 0.78 × 0.99) (b) Initial mesh. (919 control points) (c) Initial surface. (d) Final mesh. (996 control points) (e) Final surface. (f)
Optimized subdivision surface. Max. Err.: 0.0082; RMS. Err.: 0.0009.

(a) (b) (c) (d) (e) (f)

Fig. 13. Buddha: (a) Point cloud. (543, 652 points; dimension:0.41 × 0.41 × 1) (b) Initial mesh. (4, 662 control points) (c) Initial surface. (d) Final mesh. (18715 control points) (e) Final surface.
(f) Optimized subdivision surface. Max. Err.:0.0043; RMS. Err.:0.0003.
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From Table II we observe that the time for gener-
ating entries of the matrix of the linear equations is
substantial when compared with other parts. Note
that the number of data points affects mainly the
time used for the preprocessing steps, but does
not affect much the time used in the optimization
step, which is mainly determined by the number of
control points.

Finally, we would like to compare the fitting re-
sult of the Igea model in Fig. 10 with that produced
in [24]. Table III shows that SDM obtains compa-
rably smallEm andErms as by the method in [24],
using significantly shorter period of time. (The PC
on which we ran this experiment has the same
specifications as the one used in [24].) However,
we note that the projection direction for fitting error
evaluation is different from that in our approach. In
[24], target data points are projected onto the fitting
subdivision surface. In our approach, sample points
on the subdivision surface are projected onto the
target shape, following the framework in [6].

V. D ISCUSSION ANDCONCLUSION

We have presented a comprehensive study on
a class of three methods for fitting subdivision
surfaces to 3D data points, both theoretically and
experimentally, from the optimization point of view.
There are a variety of other optimization techniques
that can be applied to shape fitting and further
efforts should be made on understanding these
methods as well.

There are currently two different variants of
SDM, along with TDM and PDM. The study
presented in this paper is based on the original
framework proposed by Pottmann et al. [6], and the
other variant has been recently proposed by Wang
et al. [28] in the setting of B-spline curve fitting,
where the connections of PDM, TDM and SDM
to the standard optimization techniques are also
studied. While these two different frameworks have
apparently been motivated by the same geometric
intuition, they need to be distinguished carefully, not
merely because of the difference in the dimensions
of their working spaces. In the framework of [28],
the data points are projected onto the fitting curve
for error measurement, while in the present paper,
sampled points on the fitting surface are projected
onto a fixed target shape defined by data points for
error measurement. This difference means that the

analysis and results of [28] do not apply to the
setting in this paper. For example, here we have
shown that the SDM method follows directly from
the Newton method, whereas the Hessian has to
be greatly simplified in order to derive the SDM
method in [28]. In addition, the present paper is
featured by extensive experimental study of effects
of many practical aspects of optimization, including
control point insertion, smoothness terms, LM reg-
ularization and the Armijo rule for step size control.

In the three optimization methods considered
here, since sample points on the fitting surface
are projected onto the target shape for setting up
error functions, they essentially assume that the
target shape is not very noisy or sparse so that
the estimated normal and curvatures are reasonably
accurate. The advantage of this treatment is that
foot points, normal and curvature information can be
computed efficiently with the aid of preprocessing
of the fixed target shape. However, the drawback
is the limit on the application of these methods to
fitting a surface to noisy and sparse data points. One
way of addressing this limitation is to use instead
the methods (PDM, TDM and SDM) presented
in [24] and [28]. Note that, in that case, computation
of foot points, normal and curvature information has
to be performed on an iteratively-updating fitting
subdivision surface, and will therefore be relatively
time-consuming.
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APPENDIX A: TDM AND GAUSS-NEWTON METHOD

We shall show that TDM uses a Gauss-Newton
iteration. We first compute the gradient ofF by
taking into account the dependence of the foot point
parameters(u, v) on the control pointsP through
the constraints (13). SinceFk = 1

2
ET E, due to the

constraints (13), we obtain the gradient vector

∇PFk = (ST
P
−∇PuV T

u −∇PvV T
v )E = ST

P
E. (16)

Here ∇PFk is 3n vector, wheren is the number
of control points, andST

P
is a 3n by 3 matrix. Let

Fk(x) = 1
2
f 2

k = 1
2
ET E, where fk = ‖E‖. Since

∇PFk = fk∇Pfk, we have, by (16),

∇Pfk =
∇PFk

fk

= ST
P

E

fk

= ST
P

E

‖E‖
= ST

P
N, (17)

where N is the unit normal vector of the target
surfaceΓT at the foot pointV .

By (17), we have∇Pfk(∇Pfk)
T = ST

P
NNT SP.

In the second order Taylor expansion ofFk at Pc,
replacing the Hessian by∇Pfk(∇Pfk)

T yields,

Fk(Pc) + ∇PFk(Pc)
T ∆P + 1

2
∆PT∇2

P
Fk(Pc)∆P

≈ Fk(Pc) + ∇PFk(Pc)
T ∆P + 1

2
∆PT ST

P
NNT SP∆P

= 1

2
(Sc − Vc)

T (Sc − Vc) + (Sc − Vc)
T SP∆P

+ 1

2
∆PT ST

P
NNT SP∆P

= 1

2
(Sc − Vc)

T NNT (Sc − Vc)

+ (Sc − Vc)
T NNT SP∆P + 1

2
∆PT ST

P
NNT SP∆P

= 1

2
(Sc + SP∆P − Vc)

T NNT (Sc + SP∆P − Vc)

= 1

2
(S − Vc)

T NNT (S − Vc) = 1

2
[(S − Vc)

T N ]2

= 1

2
× TD error term, (18)

where the last equality follows from (4). Since(Sc−
Vc) andN above are parallel, we have made use of
the fact that

(Sc − Vc)
T (Sc − Vc) = (Sc − Vc)

T NNT (Sc − Vc)
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and

(Sc − Vc)
T SP∆P = fkN

T SP∆P

= fkN
T NNT SP∆P = (Sc − Vc)

T NNT SP∆P.

Hence, by (18), TDM uses a Gauss-Newton step.

APPENDIX B: SDM AND NEWTON METHOD

Now we are going to show that the SD error term
is given by the Newton iteration, after appropriate
modification to make the Hessian positive semi-
definite. Differentiating∇PFk in (16) yields the
Hessian as

∇2
P
Fk =

(

ST
P
−∇PuV T

u −∇PvV T
v

)

SP + ET SPP

=
(

ST
P
−∇PuV T

u −∇PvV T
v

)

SP . (19)

Here ET SPP = 0, since the sample pointS is a
linear combination of control pointsP.

Without loss of generality, suppose thatV (u, v) is
a local regular parameterization of the target surface
ΓT such thatVu = T1 and Vv = T2, which are
the unit principal direction vectors ofΓT at the
current foot pointVc, and then there isV T

u Vv = 0.
Differentiating the constraints (13) with respect to
P yields

0 =
(

∇Pu V T
uu + ∇Pv V T

vu

)

E

+
(

ST
P
−∇Pu V T

u −∇Pv V T
v

)

Vu (20)

=
(

V T
uuE − V T

u Vu

)

∇Pu + ST
P

Vu + V T
vuE∇Pv

and

0 =
(

∇Pv V T
vv + ∇Pu V T

uv

)

E

+
(

ST
P
−∇Pu V T

u −∇Pv V T
v

)

Vv (21)

=
(

V T
vvE − V T

v Vv

)

∇Pv + ST
P

Vv + V T
uvE∇Pu.

From (20) and (21), we obtain

∇Pu = −
ST

P
Vu + V T

vuE∇Pv

V T
uuE − V T

u Vu

(22)

and
∇Pv = −

ST
P

Vv + V T
uvE∇Pu

V T
vvE − V T

v Vv

. (23)

By assumption and differential geometry of sur-
faces, we haveVu = T1, Vv = T2, Vuu = κ1N ,
Vvv = κ2N , E = dN , whereκ1, κ2 are the signed
principal curvatures atV . With the substitutions in
(22) and (23), we obtainV T

uuE − V T
u Vu = dκ1 − 1

and V T
vvE − V T

v Vv = dκ2 − 1. Furthermore, since
V T

u E = 0, differentiating with respect tov yields

V T
uvE + V T

u Ev = V T
uvE − V T

u Vv = 0.

Therefore,V T
uvE = V T

u Vv = 0. Putting all these
together, it follows from (22) and (23) that

∇Pu = −
ST

P
T1

dκ1 − 1
, ∇Pv = −

ST
P

T2

dκ2 − 1
. (24)

Recall the notationρ1 = 1
κ1

and ρ2 = 1
κ2

from
Section II-D. Substituting (24) in (19) yields

∇2
P
Fk = ST

P
SP +

ST
P

T1T
T
1 SP

dκ1 − 1
+

ST
P

T2T
T
2 SP

dκ2 − 1

= ST
P

(I − T1T
T
1 − T2T

T
2 )SP

+dκ1

ST
P

T1T
T
1 SP

dκ1 − 1
+ dκ1

ST
P

T2T
T
2 SP

dκ2 − 1

= ST
P

NNT SP + α1S
T
P

T1T
T
1 SP + α2S

T
P

T2T
T
2 SP ,

whereα1 = d/(d− ρ1) andα2 = d/(d − ρ2) as in
Section II-D. Here note thatT1T

T
1 +T2T

T
2 +NNT =

I and d, ρ1, ρ2 are signed values (see Section II-
D.3).

Thus we have obtained the Hessian∇2Fk. Sub-
stituting∇2Fk in the following second order Taylor
approximation of the objective function, noting that
(Sc − Vc)

T T1 = (Sc − Vc)
T T2 = 0, we obtain

Fk(Pc) + ∇PFk(Pc)
T ∆P + 1

2
∆PT∇2

P
Fk(Pc)∆P

= 1

2
(Sc − Vc)

T (Sc − Vc) + (Sc − Vc)
T SP∆P

+ 1

2
∆PT

(

ST
P

NNT SP + α1S
T
P

T1T
T
1 SP

+α2S
T
P

T2T
T
2 SP

)

∆P

= 1

2
(Sc − Vc)

T NNT (Sc − Vc)

+(Sc − Vc)
T NNT SP∆P + 1

2
∆PT ST

P
NNT SP∆P

+ 1

2
α1 (Sc + SP∆P − Vc)

T
T1T

T
1 (Sc + SP∆P − Vc)

+ 1

2
α2 (Sc + SP∆P − Vc)

T
T2T

T
2 (Sc + SP∆P − Vc)

= 1

2
(Sc + SP∆P − Vc)

T
NNT (Sc + SP∆P − Vc)

+ 1

2
α1 (S − Vc)

T
T1T

T
1 (S − Vc)

+ 1

2
α2 (S − Vc)

T
T2T

T
2 (S − Vc)

= 1

2
[(S − Vc)

T N ]2 + 1

2
α1[(S − Vc)

T T1]
2

+ 1

2
α2[(S − Vc)

T T2]
2

= 1

2
f̂2

SD,k, (25)

which, up to a constant multiple, is the second
order approximation of the squared distance given
in (5). Thus the SD error term defined in (6) is
derived from the Newton iteration after removing
negative eigenvalues from the full Hessian by setting
the negative coefficients in (5), if any, to zero.

When we compute the gradient and Hessian of
the global function with respect toP, we treatP
as basic variables andU as dependent variables.
Furthermore, the dependence betweenU andP is
expressed by the way we compute the gradient in
(16) and the Hessian using the local linear relations
(22) and (23). In fact, this local linear dependence
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SC

T

Fig. 14. Constraint surface and its tangent plane.

betweenU andP represents the tangent planeΠT

to the constraint hypersurfaceSC defined by the
constraints in (13). Therefore, the iterates used by
TDM and SDM essentially move on the planeΠT ,
according to their respective approximations to the
Hessian (see Fig. 14).
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