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Abstract— We present a complete framework for com- From the optimization point of view, the surface
puting a subdivision surface to approximate unorganized fitting problem is aseparablenonlinear least squares
point sample data, which is aseparable nonlinear least problem. In principle, we need to minimize an
squares problem. We study the convergence and stability .0 ive function consisting of a geometric error
of three geometrically-motivated optimization schemes ah t d thi ¢ Th tri
reveal their intrinsic relations with standard methods (€fM and a sSmoo Ilflg erm. e geometric (_arror
for constrained nonlinear optimization. A commonly-used t€rm can be approxmatepl by different funCUQr.‘S
method in graphics, called point distance minimization, Mmeasuring the squared distance between a fitting
is shown to use a variant of the gradient descent step surface and the target shape. These error functions
and thus has only linear convergence. The second method,|egd to different local quadratic models of the ob-

called tangent distance minimization, which is well-known qtive function and result in different optimization
n Computer vision, IS shown to use the Gauss-Newton Step’EﬁICIEncy

and thus demonstrates near quadratic convergence for zero
residual problems but may not converge otherwise. Finally,
we show that an optimization scheme calledsquared

distance minimization, recently proposed by Pottmann et A. Our Work

al., can be derived from the Newton method. Hence, with  Thjs paper is an extension to our work [1]
proper regularization, tangent distance minimization and presented at Pacific Graphics 2004. We present
squared distance minimization are more efficient than a general and complete framework for computing

point distance minimization. We also investigate the effds bdivisi f . . int fitti
of two step size control methods — Levenberg-Marquardt a subdivision surface via geometric point fitting.

regularization and the Armijo rule — on the convergence Specifically, we focus on convergence analysis of
stability and efficiency of the above optimization schemes. optimization schemes for solving this surface fitting
problem. Suppose that the shape to be fitted, called
Index Terms— subdivision surface, fitting, optimization, the target shape is defined by unorganized data
squared distance. points. To start the fitting process, an initial subdivi-
sion surface is first generated from the point cloud
by applying the dual marching cubes method [2].
|. INTRODUCTION : h S
The control points are then optimized by minimizing
Shapes represented by 3D unorganized geomegif objective function through iterative quadratic
points are now readily available as the widespreaginimization. New control points are added pro-
use of 3D scanning devices for shape acquisitigfiessively in order to better capture the features of
becomes a common practice. For geometric prgre target shape; this gives rise to a multi-staged
cessing, we often need to fit a surface to such poitimization problem. Although we use Loop’s sub-
samples. Subdivision surface is a preferred repiivision surface [3] to handle triangular meshes, the
sentation because of its compactness and abilfsbposed algorithmic flow can naturally apply to
to accommodate general control mesh connectivibther types of subdivision surfaces based on linear
K.S. D. Cheng, W. Wang, K.-Y. K. Wong, H. Yang and Y. Liu areSChemeS' . . .
with the Department of Computer Science, the University ohgt VW€ consider three geometrically-motivated meth-
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and CAD/CAM for curve and surface fitting. ItThese include fitting methods based on optimiza-
has monotonic descent but converges slowly. Thien [9], [10], [11], [12], [13], [14], active surface
second method uses a point-to-tangent distance emmthods [15], [16], [17], and other approaches [18],
metric, thus calledangent distance minimization[19], [20], [21]. Among parametric surfaces, subdi-
This has been used in the computer vision fieldsion surface has gained popularity because of its
for model registration [5]. In general, it convergeability to deal with general object topology as well
much faster than point distance minimization, but ss arbitrary connectivity of the control mesh [22].
unstable for a target shape with sharp features. Theme works are closely related to the problem
third method, calledgquared distance minimizatipnaddressed in this paper. In Hoppe et al.'s method [9],
has been recently proposed by Pottmann et al. gmesh surface is computed to fit unorganized points
for B-spline curve and surface fitting. via optimization of an energy function. In [11],
Our contribution is the systematic study on thEl2], a (non-iterative) linear least squares problem is
convergence behaviors of the above optimizati@elved to produce a fitting surface composed of B-
methods in the setting of subdivision surface fittingpline surfaces for quadrangle patches and Catmull-
The derivations of these methods in the literatufdark surfaces for extraordinary corner patches.
are only based on geometric arguments. We d8-[13], a Loop’s subdivision surface is computed to
tablish their equivalences to three well-understodii a mesh surface by iterative quadratic optimiza-
optimization methods steepest descent, the Gaus#ion, using a simplification of the input mesh as
Newton method, and the Newton methogspec- the initial control mesh. All these methods use the
tively — for nonlinear constrained optimization.  point distance (PD) error functioio approximate
This connection to well-known optimization techthe geometric error between the fitting surface and
niques helps explain or understand the practidfle target shape in each iteration. This is essentially
behaviors of these three methods in surface fittifigle parameter correction method by Hoschek [4],
The steepest descent method is well known to haét we will refer this scheme apoint distance
a linear convergence rate, thus explaining the sldwnimization or PDM for short. PDM belongs to
convergence of point distance minimization. Thiée category of the alternating method [23], [7] for
Gauss-Newton method has quadratic convergerfg8ving separable nonlinear least squares problems;
for zero residual problems, but it converges only has only linear convergence rate and converges
linearly or may not converge at all for pr0b|em§|OW|y in practice, as we will demonstrate later in
with a large residue — this also conforms witthis paper.
the observed behavior of tangent distance mini- Tangent distance minimization, abbreviated as
mization. Squared distance minimization is a sim-DM, uses another error function, callede TD
ple geometric incarnation of the Newton methodror term based on a point-to-tangent distance,
thus explaining its observed superior convergendgd it has been used in computer vision for 3D
in the general case. Based on this interpretatidgnodel registration by Chen and Medioni [5] and
we apply the Levenberg-Marquardt regularization &¢ctive curve fitting by Blake [15]. In the extension
tangent distance minimization and squared distari@etheir work in [13], Marinov and Kobbelt apply
minimization to ensure monotonic decrease of tffecombination of the PD error term and TD error
objective function, thus improving the robustness ¢¢rm to improve the efficiency of their surface
their convergence. Details about these basic opiftting method [24], without considering the issues
mization techniques can be found in standard tex@sconvergence analysis and step size control.
on optimization (e.qg., [7], [8]). Squared distance minimization, or SDM for short,
uses the so-callesijuared distancéSD) error term,
which is first considered in [25] and further inves-
tigated in detail from a geometric point of view
The problem of computing a compact surfadey Pottmann et al. [26] with applications to shape
representation of a target shape defined by unordi&ting with B-spline curves and surfaces [6], [27].
nized data points has many applications in computdowever, they did not give convergence analysis or
graphics, CAD, and computer vision. Numerous apensider step size control for ensuring convergence.
proaches have been proposed over the past decadéds this work we emphasize on the convergence

B. Related Work



behaviors of PDM, TDM, and SDM in the settingvhich is a linear function ofP. This leads to the
of subdivision surface fitting from an optimizatiorfollowing commonly-used optimization strategy in
point of view, and investigate the step size contrglurface fitting: given an initial fitting surface with
schemes as applied to these methods. Our resthis sample points,, one first computes that foot
provide new and useful insights to the practical supointsV (uy, vx). With &/ being known, one updates
face fitting procedures used in computer graphidbe control pointsP by minimizing F'(P,U) over
A variant of the SDM method, along with TDMthe control pointsP; this is done by solving a linear
and PDM, has been recently studied in [28]. Th&/stem of equation, sindé(P, () is quadratic inP
connections of our work here to that of [28], as weldnd/ has been fixed. The above two steps of foot-
as their differences, are elaborated in Section V. point computation and control point computation
1. EITTING ALGORITHM are iterated to further improve the fitting error until
, convergence.
A. Problem Formulation This commonly-used iterative fitting method

Suppose that input data points, definingagget is called thepoint distance minimizatiofPDM)
shapel’, are sampled from an underlyingrget method. Because of the separate treatments of vari-
surfacel'r, which is a manifold surface of arbitraryables? and ¢/, the optimization problem defined
genus. For convergence analysis, the second orite(1) is also called a separable variable problem.
differentiability of ' is assumed. Our goal is to re\We will also consider two other more efficient local
construct the surfacEér by computing a subdivision optimization schemes based on the same framework,
surface froml". i.e., TDM and SDM.

Let P(s,t) be alocal parameterization of a fitting An initial fitting surface is needed to start the
surface S. The fitting error betweenS and the above iterative procedure. It is natural to begin with
target surfacé'r is measured by the sum of squaredn initial fitting surface having the same topology
distances from a set of dense sample point§do as the target shape and a simple control mesh.
I'r. Denote these sample points By = P(sk,t;), Control points need to be inserted progressively as
which are linear combinations of the control pointsptimization proceeds to make the fitting surface
P, k=1,2...,m, of a Loop’s subdivision surfacebetter capture the fine features of the target shape.
S. We assume that: is much greater than, the This means that we need to consider a multi-staged
number of control points, so that the fitting probleroptimization problem, with proper scheduling of
is properly constrained. Lét, = V(u,v,) € I'r adding new control points.
be the closest point from the sample pa$ton the .
fitting S to the target surfac&;. The fitting error B- Algorithmic Flow
at Sy, is then given byf, = ||Sk — V(ux, vx)||- The  Our proposed fitting procedure has the following
point V (uy, v;) € I'r is called thefoot pointof S,. main steps:

Denote’? = {F}iL, andU = {(ux,vi)}i2;- (1) Normalization Normalize the target shape by

The control pointsP of the best fitting surface uniform scaling to fit it within the cubé), 1)°.

are computed by solving the following optimization2) Precomputation Pre-compute the distance

problem, field, as well as the tangential and curvature
min F(P,U) = F.(P,U) + Fy(P), (1) information of the target surfack for setting

up error terms.
whereF, = 15" f2=1%"" [|Sk—V (u,ve)||*  (3) Initial mesh Compute an initial control mesh

is the L, fitting error, andF(P) is a regularization using the dual marching cubes method [2].
term that is a quadratic function of the control point¢4) Points sampling Generatem dense sample
‘P. The variables in the functioR are control points points S? on the current fitting surface using
P = {F,}, and the parameter valubs= {(uy, vx)}. the method in [29], [30].

Clearly, F' is quadratic inP, but is, in general, a (5) Error function setup Use the sample points
highly nonlinear function ot/. generated in step (4) to set up the error function

We may treat? as basic variablesand U/

as dependent variablessince it is required that Fi(P) = 1 ZFL,k(P) + F(P), (2
V (ux, vx) be the foot point of the sample poifst, mi=



(6)

(7)

(8)

where Fy, ,(P) is one of the three error terms start
to be introduced in Section II-D.
Minimization Update control points by mini- P———
mizing the quadratic functiord',(P). This is O G iatures
done by solving a linear system of equations

using the conjugate gradient (CG) method.
Error evaluation

Sample new pointsS} on the fitting surface
with updated control points, and compute their
foot points V;'. Next compute the maximum
error E,, and the root-mean-square eriay,,,
where

A ]

Sample Points on the
Fitting Subdivision

Refine Control Mesh
Surface

¥ yes
Form Local Quadratic no
Models of the Goal Need to refine the
Function Control Mesh?
no

Evaluate Fitting Error

E, = mgx{llSé — Vi |2}
and

1
2
Flg. 1. work flow.

1
k

Here||S; — V}!||. is called the local error. TheV, ;. A local coordinate frame avj can then be
algorithm is terminated, if£,, or E,,. falls defined by the principal curvature directions and the
below a pre-specified error threshold, or theormal direction which are the eigenvectors of the
number of iterations reaches some limit. If theovariance matrixCV given by

fitting error has been reduced significantly in

this step by the current iteration (but still larger CVY = ZW’W = Vi) (Viy = Vieo) "

than the threshold), go to Step 4 to start the J

next iteration. Otherwise, go to St&p whereV, . is the centroid of/;’s neighboring points.
RefinementNew control points are inserted inA polynomial z = k2% + kyy? is then fitted to the
the regions of large fitting errat,,,. Go to step neighboring points/,; ;) in this local frame and the
4 for the next iteration. principal curvatures are simply set 2&,; and 2k;.

The flowchart is shown in Fig. 1. Note that We use the dual marching cubes method devised

remeshing could be used in step (3) to reduce thg Schaefer and Warren [2] to compute the initial
number of extraordinary vertices whose valences dentrol mesh from the dual grid of cells of an

not Ssix.

C. Preprocessing and Initialization

adaptive octree partition of the target data set. The
meshes generated by this method are topologically
faithful, adaptive to curvature or features of the

To quickly obtain the foot points}” of the sample target shape, and therefore more desirable than
pointsS?, we pre-compute an adaptive distance fiellose generated by the ordinary marching cubes
of the target shape using the idea in [31]. Thaethod [32], which tends to produce too many
pre-computed information, such as distances aftdgmented triangles, even in flat regions of the
foot points, are stored at the corners of adaptit@rget shape, as observed in [1].
octtree cells. During the optimization process, the
foot point of a sample poinf5) is computed by D. Error Functions

trilinear interpolation from the stored values at the
corners of the smallest cell containiis.

The normal vector and the principal curvatures
the target surfacé'r at V}, are also pre-computed
from the point cloud” for setting up the TD error A
functions and the SD error functions. For a given
target pointV,, we first find its neighboring points

1) PD Error Term: Suppose that the fitting sur-
face has been sampled by the poirft§ whose
?ilot points areV)?. Let S, be the variable points
of S?, depending on the variable control poirfs
simple error term is given by

fl%D,k = ||Sk - vk0||27 (3)



which is called thepoint distance(PD) error term ellipsoid in Fig. 2 shows an iso-distance surface of
becausefrp . is the distance betweefi, and V. the SD error term for the case > 0 anday > 0;
The optimization scheme resulting from using thine SD error term reduces to the TD error term
PD error term forFy .(P) in (2) is calledpoint if a; = 0 anday = 0. The optimization scheme
distance minimizatioor PDM. resulting from using the SD error term is called
2) TD Error Term: When the target surfacér squared distance minimizatiasr SDM

is relatively flat aroundV}?, the tangent plane of
I'r at V? is a good approximation td'z in a
neighborhood ofi;. This observation leads to the
so-calledtangent distance (TD) error terndefined
as

f%D,k = |(Sk - VkO)TNk|2a (4)

where N, is a constant unit normal vector 1o at
V. Clearly, f7, ;. is the squared distance froffj to
the tangent planeX —V,?) N, = 0. The optimization Fig. 2. aniso-surace of S0 error term.
scheme resulting from using the TD error term is
calledtangent distance minimizatioor TDM.

3) SD error term :Now we consider the second
order approximation to the squared distance figm A
to I'r, as proposed in [6], [25]. Lef be the signed AVA
distance such thad| = ||S) — V{°||. Let p; and
p2 denote the principal curvature radii % at V!,
associated with the principal unit direction vectorg9- 3 Trnge sit
T, and 75. We make the following convention on
the signs ofd and p;, : = 1,2. Suppose thalv is a
normal vector to the target surfate. If the sample E. Smoothing Term

point S is on the side of'; pointed to byJN, i.e., The smoothing term in (2) is defined as
N - (S)—V?) > 0, thend > 0; otherwise,d <

0. Similarly, if the curvature center in the normal A - \T ‘
section along the tangent vectfris on the side of Fo= n z; W(E) W(E),

I'r pointed to byN, thenp; > 0; otherwise,p; < 0, )
i=1,2. where P;,, i = 1,2,...,n, are the control points

SinceV;? is locally the closest point frons? to and W (-) is a discrete version of Laplacian [33]. It
I'r, then we haved| < |p;| whend andp; have the is difficult to automatically choose an appropriate
same sign. It can be shown [25], [26] that the secoRgllue of the coefficient\ [34]; therefore, most
order approximation to the true squared dlstanceéﬁisting methods choosg in a heuristic manner.

o = ail(Sk = VOTTI? + as[(S — V) T)? Likewise, in our test examplles‘, the initigl value for

+ [(Sk—VOTNP, A is set t00.001 at the beginning, and is reduced
gradually as the optimization proceeds.

where a; = d/(d — p1) and oy = d/(d — p2). ~ We use the conjugate gradient method to mini-

The coefficienta; (or a,) becomes negative ibi i e the error function (2). This iterative solver is

(or p2) and d have the same sign. Denofe], = . : ) : :
max{a,0}. To have a non-negative error function€’minated if the relative error improvement is less
F2 & than 10~% or the number of iterations reach2g0.
fép. is modified to , ,

’ These parameters produce satisfactory results in our
fepr = loali[(Sk = V)T + [aa] £ [(Sk — Vi) o] experiments.

+ [(Sk = V)TN (6)
This term f2,, , is called thesquared distance (sD)F- Local Refinement

error term since it is derived from a second order When the fitting error remains large due to the
approximation to the true squared distance. Thasufficient number of control points, new control



points are inserted to triangles that have large lodal the Gauss-Newton method, one discards the
errors and split the triangles in a 1-to-4 manneecond-order term to use the approximate Hessian
(see Fig. 3). This step is callddcal refinement -y .

To avoid undesirable T-vertices, the neighboring Vif(z) = va(:c)vm(x) (11)
triangles are also split, following the Red-Green k

splitting scheme [35]. to replace the Hessiak?f(z.) in (8) to compute
the next iteratexr,. The Gauss-Newton method
1. OPTIMIZATION PROPERTIES has quadratic convergence for zero residual prob-
lems because the discarded tepn), 7y (z)V2rg(x)

Q8 negligible in those cases. However, the Gauss-

between the three optimization techniques intrQraton method only converges linearly or may
duced so far — PDM, TDM and SDM —and standaigy: converge at all for large residual problems

optimization techniques in optimization theory. DU 4 se the Hessian is poorly approximated in these
to space limit, we shall only discuss some basig 5tions [8].
facts that we are going to use directly; the reader is

referred to standard texts (e.g., [7], [8]) for detailed, surface Fitting as a Separable Problem

introduction to optimization theory. -
P y The surface fitting problem can be formulated as

a separable nonlinear least squares problem with the

A. Basics of Optimization following objective function,

First consider the Newton method. Given an m
objective functionf(z) : RY — R and the current F(P.U) = > Fi(P.U)+ F.(P) (12)
variable valuex. near a local minimum off(x), k=1
the next iterater, is the minimizer of the local = 5
quadratic modetn,(x) of f(z) aboutz,., where = 3D _lIS(P) = Vi, v)|* + Fu(P),

k=1
me(z) = f(xe) + Vf(ze) (@ — ) where S, is a linear function of the control points

+ @ —2)"V?f(z)(x —z.), (7) P. To simplify notation, we denote& = Si(P),
o _ (u,v) = (ug,vg), andE = S —V(u,v). ThenF, =
which is the second order Taylor expansionféf) 1gTE. In the following, we will useP, v and v

at z.. If V2f(x.) is positive definite,z. is the as subscripts to denote derivatives with respect to
unigue solution of the equation these variables.

B B 2 SinceV (u, v) is the foot point of the sample point
0=Vme(z) = V(@) + V f(2e) (24 —c). (8) S to the target surfacEr, £ is perpendicular to the

The Newton method has local quadratic convei@ngent plane of'r atV'(u,v). It follows that

gence. S_V v — BTy =0
Various iterative schemes can be obtained by ( (u’v))T Y o ’

replacing the HessiaW?f(x.) in Eqn. (7) by dif- (S =V(wv) Vo =EV,=0. (13)

ferent estimates of it. Among these, the Gausgpese two equations are constraints tieing the vari-

Newton method is preferred for solving nonlineagp|es(y, ) to the control pointsP. In fact, the two

least squares problems [8]. Consider a nonlinggfyations in (13) are also necessary conditions for

least squares problem, the objective function”” to have a local minimum,
o 9 since the partial derivatives df;, with respect tou
f@) =35 (@) ©) andv are

k
The Hessian off (z) is OF/ou = (8 —V(u,v)) E,
OF,/ov = (S —V(u,v))"E,,
\V& =) V \Y% Ty \V& .
/(@) Xk: (@) V(@) Zk:rk(x) i) and noting thatt,, = —V,, and £, = —V,,. There-

(10) fore the introduction of these constraints does not



preclude any minimizer of the original optimizatiomext step will be closer to the steepest descent
problem. direction and the step size is reduced. If the gain

We first discuss the convergence behavior adtio is large, meaning that the current model is
PDM. PDM performs the following two alternatinga good approximation to the goal function, is
steps iteratively: (1) solving a linear system aflecreased so that the next step will be closer to a
equations to obtain the variable control poidts Gauss-Newton step. By monitoring the agreement
while fixing the parameter valuds.,., v, ); and (2) between the local model and the actual objective
computing foot points to find théuy, v;,) with the function, this approach tries to get the advantages
fixed control pointsP;. The first step decreases thef both the steepest descent method and the Gauss-
value of the objective function but moves awajewton method. For all values of, called the LM
from the constraints (13). The second step movparameter, the coefficient matrix is positive definite.
the iterate back to give a feasible point satisfyinijote that both the direction and the step size are
the constraints (13). This is, in fact, tladternating modified in the LM method. In the same vein, we
method for solving a separable and constrainedill also consider the LM regularization of SDM in
nonlinear problem, and is known to have linearext section.
convergence [7]. Besides the LM method, the Armijo method [8] is

It can be shown that TDM uses a Gauss-Newt@iso commonly used for guaranteeing convergence.
step and SDM is equivalent to the Newton methodfter the direction of a step has been determined
The proofs of these facts are given in appendiceshg a particular method (PDM, SDM or TDM), the
order to have a better flow of discussion. step size is decided by performing a line search.
Although the Armijo method improves convergence,
extra goal function and gradient evaluations are
required and these increase the computational time.

The Gauss-Newton method works poorlpiferent from the LM method, only the step size is
for large residual problems, so the Levenbergsqgified in the Armijo method. The effectiveness

Marquardt method (the LM method), which is @t the LM method and the Armijo method will be
regularized version of the Gauss-Newton methOd'ifﬁ/estigated in the experiments in Section IV.

normally used [8]. The essence of the LM method
is that the local quadratic model is trusted only

within a small enough neighborhood of the current _ V. EXPERIMENTS
point z., defined by the constrainfs| < A, We will present test examples computed by PDM,
where s is the step. The selection of the valudDPM and SDM to observe and confirm the conver-

of A, depends on the degree of the agreemeiffnce behavior of the three methods, as influenced

between the local model and the objective functioRY initial control mesh specification, smoothness
The optimality condition for this constrained€ and step control methods (i.e., the LM method
optimization gives and the Armijo rule.) We will also present examples

of subdivision surface reconstruction from complex
(V2 f(ze) + vel)s = =V f(x.). (14) target shapes. All experiments were run on a PC
with Intel Xeon2.8 GHz CPU and2.00 GB RAM.
All data sets are first scaled uniformly to fit into a

V2 f(x) ~ Z Vr(2)Vre(2)" + vl (15) rectangular box with the longest side equald 1@
k

In other words s is computed by replacing2f(z.) A- Initial mesh and sharp feature
in (8) by >, Vr(2)Vrg(z)" + v.I. We first consider applying PDM, TDM and SDM

In LM regularization the gain ratio is monitoredfo a data set with two different initial control
which is the ratio of the actual decrease in thmeshes, without the smoothness term or regulariza-
objective function to the decrease predicted by thien. Here no new control points are added during
local model [36]. If the gain ratio is small, meaningptimization.
that the current model is a poor approximation Example 1:(Refer to Fig. 4.) The target shape is
to the goal function,v. is increased so that thean ellipsoid with semi-principal axes bein@5, 0.5

C. Regularization and Step Size Control

The Hessian is then approximated as



and1.0 and the initial mesh hast control points, as subdivision surface by SDM is also shown. The
shown in Fig. 4. The optimized surface by SDM isptimized surface by TDM is similar to that by
shown in Fig. 4(a); the optimized surface by TDMSDM and is therefore not shown. The error curves
is similar to that by SDM and therefore not showrof PDM, TDM and SDM are shown in Fig. 6(b). We
The error curves are shown in Fig. 4(b). see that SDM and TDM have similar convergence
behaviors, and PDM converges to a poor local
minimum with a larger residual error.

nnnnnnnnn

Flg 4, (Example 1). (a) Left: Target shape and initial mesh; Rightimized mesh and surface
by SDM. (b) Error curves. (a) (b)

g. 6. (Example 3). (a) Top: Target shape and initial mesh; Bott@mptimized mesh and surface

Example Z(REfer tO Flg 5) The same targeEyISDM(b) Error curves.
shape is used here as in Example 1, but the initial
control mesh is now farther away from the target

shape, as shown in Fig. 5(a). The surface recqs- smoothness Term and Multi-stage Optimization
structed with SDM is also shown. The error curves . . )
In this section we consider the effects of the

of PDM, TDM and SDM are shown in Fig. 5(b). .
. smoothness term on convergence behaviors and
TDM does not converge for this data set. ; . :
insertion of new control points.

Example 4:(Refer to Fig. 5(a) and Fig. 7(a).)

The data set and initial control mesh used here are

>~ the same as those in Example 2 (see Fig. 5(a)),
@ S N L where TDM fails to converge. Now we want to

SO ‘ LT observe whether the introduction of a smoothness
" - ’ Pl P term can make the convergence of TDM stable.

@ (b) The smoothness term is defined in Section II-D.

Fig. 5. (Example 2). (a) Left: Target shape and initial mesh; Ri@ptimized mesh and surface We teSted dlﬂ:erent Values Of CoeﬁICIemS: 10_i’
by SDM. (b) Error curves., ’ 1 =2,3,4,5,6, resulting in the error curves of TDM
shown in Fig. 7(a).
Discussion Examples 1 and 2 show that SDMDiscussion In this example\ = 0.001 or 0.0001
converges much faster than PDM. TDM has simildads to stable convergence with a small fitting error.
convergence rate as SDM, but may easily becoBgger values ofA make the surface too “stiff”,
unstable if the initial mesh is far away from theiving large fitting errors, while smaller values
target shape. That is because TDM, using a Gaus$-\ fail to make TDM stable. We remark that,
Newton step, discards from the Hessian the paxcept for trial-and-error or methods based on user
r(z)V?r(z) that is related to the curvature andssistance, there is currently no commonly accepted
residue; here-(z) reflects the distance between thgeneral scheme that can automatically determine the
initial fitting surface and the target shape. Therefomefficient of the smoothness term in the context of
TDM should always be used with LM regularizatiorturve or surface fitting.
for stable convergence, as will be seen shortly. Example 5:(Refer to Fig. 7(b).) Here we will
Example 3:(Refer to Fig. 6.) Here we considetest the effects of adaptively adding new control
an elongated ellipsoid with two sharp ends, withoints and reducing the smoothness coefficient pro-
semi-principal axes bein@.125, 0.25 and 4.0, as gressively at different stages of the fitting process,
shown in Fig. 6(a) with the initial mesh. We useising PDM, TDM and SDM. The target shape
this target shape to test PDM, TDM and SDNk the ball joint model containing37,062 points
in the presence of sharp features. The optimiz€gig. 9) and the initial control mesh hag8 control



TDMLM converges fast and stably. TDMLM takes
1.593s to have an¥,,,, smaller thar).002.

Example 8:(LM regularization of SDM. Refer
to Fig. 4(a) and Fig. 8(c).) Here we apply LM
regularization to SDM for the same target shape
and initial mesh as in Example 6, as shown in
Fig. 7. (a) Error of TOM for Example 4. (b) Error for Example 5. Fig. 4(a). The regularized SDM will be denoted by

SDMLM. Fig. 8(c) shows the error curves of SDM

and SDMLM, where the SDM error curve here is
points. The initial smoothness coefficient G)1. the re-scaled version of the same SDM error curve
Throughout optimization, new control points arén Fig. 4. It can be seen that the SDM error curve
inserted at regions of large errors progressivelg. actually not monotonically descending but that
The final number of control points at th&)-th of SDMLM is. SDMLM takes1.011s to getFE,,,,
iteration is202, 151 and 199 for PDM, TDM and smaller thar).002.
SDM, respectively. The smoothness coefficient is
decreased t0.001 and 0.0001 at the20* and the =~ Example 9:(LM regularization of SDM. Refer to
40™ iterations, respectively. Fig. 7(b) shows thEIg. 5(a) and Fig. 8(d).) In this example SDM and
error curves of PDM, TDM and SDM. ObviousSDMLM are applied to the same target shape and
reduction of the fitting error can be observed dugitial control mesh as in Example 7, as shown in
to the control points insertion and the smoothingig- 5(a). The error curves of SDM and SDMLM
coefficient adjustment. During each stage betwedff shown in Fig. 8(d). Again, we see that SDMLM
the insertions of control points, SDM and TDM aréeads to more stable convergence than SDM without

(a) (b)

again more efficient than PDM. regularization.
Example 10:(Refer to Fig. 5 and Fig. 8(e).) In
C. LM Regularization and the Armijo Rule this example step size control using the Armijo rule

is applied to every step of PDM, TDM and SDM.

Since TDM uses a Gauss-Newton step, it exhibige target shape and the initial mesh are the same as

instability if used without any regularization. In;, Example 2 (shown in Fig. 5). The corresponding

this section we apply LM regular_ization to TDMy ariants of PDM, TDM and SDM with step size
and also to SDM, to observe its effect on thgypiyo| are called PDMSC, TDMSC and SDMSC,
convergence of the two methods. respectively. Fig. 8(e) shows the error curves of
Example 6:(LM regularization of TDM. Refer ppyj, TpM and SDM and their variants. We see
to Fig. 4(a) and Fig. 8(a)). Here the target shape agh; the stability of TDM is improved greatly by
initial control mesh are the same as in Example étep size control, while PDMSC and SDMSC have
as shown in Fig. 4(a). No smoothing term is usedimilar convergence behavior to PDM and SDM.
Let TDMLM denote TDM with LM regularization. ppymsc has ank,.. larger than0.002 after 100
Fig. 8(a) shows the error curves for TDMLM angierations ¢.138s) while SDMSC and TDMSC just
TDM. TDMLM takes 0.551S t0 getE,n, smaller taye s jterations (.240s) and12 iterations (.812s)

than 0.002. The error curves in Fig. 8(a) indicatg obtain E,.,,,, smaller than0.002, respectively.
that TDMLM delivers both fast convergence and

monotonic descent of the fitting error, while th®iscussion From the three preceding examples we
error of TDM is not monotonically decreasing. conclude that LM regularization is helpful to the

Example 7:(LM regularization of TDM. Refer stabilization of TDM and SDM, and it ensures
to Fig. 5(a) and Fig. 8(b).) Here the target shapsonotonic decrease of fitting errors. Step size con-
and the initial control mesh are the same as usedtial by the Armijo rule is also very effective for
Example 2, as shown in Fig. 5(a). Recall that TDMDM, but much less effective for PDM and SDM,
fails to converge in that example. Now we applwhich are often already quite stable even without
TDMLM without smoothing term. Fig. 8(b) showsstep size control, though step size control does
the error curves of TDMLM and TDM. Clearly,ensure monotonic decrease of SDM.
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Flg 9. Ball Joint: (a) Point cloud.37, 062 points; dimension0.87 x 0.50 x 1) (b) Initial mesh. ¢16 control points) (c) Initial surface. (d) Final mest51 control points) (e) Final surface. (f)
Shaded subdivision surface. Max. Err.: 0.0064; RMS. Er0009.

TABLE | TABLE I TABLE 1l
TIME STATISTICS (IN SECONDY FOR TIME BREAKDOWN (IN SECONDS. COMPARISON WITH THE APPROACH IN[24] FOR THE |GEA MODEL.
PRE-COMPUTATION. THE ERRORSE;, AND E.y, s ARE EXPRESSED IN PERCENTAGE
Eqgn. Eqgn. Err. Ttl.
. setup | solving | evaluation | time OF THE DIAGONAL OF THE MODEL
‘ # of data ‘ Curvatures ‘ Distance Ball joint 38 3 31 73
points fields Igea 83 5 63 152 ) )
Ball joint 137,062 95.83s 52.51s Rocker arm 41 6 30 78 Final # of Em Erms Time taken
Igea 134,345 36.07s 215.69s Bunny 39 5 32 77 control points (%) (%) (min:sec)
Rocker arm 40,177 14.91s 70.48s Buddha 1,134 32 641 1,808 Result in [24] 1,553 0.247 0.05755 8:29
Bunny 35,201 212.74s 148.26s Our result 2,385 0.229 0.03472 2:32
Buddha 543,652 4837.67s 200.66s
TABLE IV
D. Surfaces from Complex Target Shapes
OPTIMIZATION SET UP.
In this section we will show that our fitting

‘ # of ‘ # of smooth. ‘ Epm ‘ Erms

method works effectively as well for complex tar- ter. | contr. pts. coefr
get shapes. Figures 9 10. 11. 12 and 13 show Ball joint 29 416, 551 10-2,10-% | 0.0064 | 0.0009

o Igea 14 526,2,385 | 1072,10~% | 0.0036 | 0.0005

the data sets for a ball joint, a head (|gea)’ a  Rockeram| 15 870, 950 10:2,10:2 0.0029 | 0.0003
Bunny 14 919,996 | 1072,107° | 00082 | 0.0009

rocker arm, a bunny and a buddhdaté sources: Buddha | 9 | 4662 18715| 10,107 | 00043 | 0.0003

http://www.cyberware.com (Igea, the ball joint and thekeic
arm) and http://www-graphics.stanford.edu/data/3Dsean _ ] o
(the bunny and the buddi)The figures show the initial the number of cont_rol points in the initial control
meshes, the optimized control meshes by SDM, tReeshes and the final optimized control meshes.
initial and optimized subdivision surfaces with colof & numbers insmooth. coefffield refer to the
error coding and the shaded optimized subdivisidftial and the final values for the smoothing term
surfaces. The color code of a data point is interpoefficient. Table Il shows the breakdown of the
lated in a piecewise linear manner from blue, greeine used in different tasks in the optimization.
yellow and red corresponding to local error valuekhe total time does not include the time on pre-
(c.f. Section 11-B)0.0, 0.0066666, 0.0133333, and computation. All the five examples were computed
0.02, respectively. with SDM.

Table | gives the timing data for the preprocessing
steps. Neighboring points within a distance(of3
from a data pointl}, are used for computing the
curvatures atVj,. Table IV shows the error statis-
tics. The numbers irt of contr. ptsfield refer to
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Flg 10. Igea: (a) Point cloud.1(34, 345 points; dimension0.70 x 1 x 1) (b) Initial mesh. §26 control points) (c) Initial surface. (d) Final mesl2,@64 control points) (e) Final surface. (f) Shaded
subdivision surface. Max. Err: 0.0036; RMS. Err.: 0.0005.

(@) (b) () (d)
Fig. 11.

RockerArm: (a) Point cloud.40, 177 points; dimension0.51 x 1 x 0.30) (b) Initial mesh. 870 control points) (c) Initial surface. (d) Final mesl250 control points) (e) Final surface. (f)
Optimized subdivision surface. Max. Err.: 0.0029; RMS..!
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Fig. 12.

Bunny: (a) Point cloud. 5, 201 points; dimension1 x 0.78 x 0.99) (b) Initial mesh. 019 control points) (c) Initial surface. (d) Final mesf96 control points) (e) Final surface. (f)
Optimized subdivision surface. Max. Err.: 0.0082; RMS...Bdr0009.
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Fig. 13. Buddha: (a) Point cloud.543, 652 points; dimension0.41 x 0.41 x 1) (b) Initial mesh. ¢, 662 control points) (c) Initial surface. (d) Final mesh.§715 control points) (e) Final surface.
(f) Optimized subdivision surface. Max. Erf):.0043; RMS. Err.:0.0003.



12

From Table Il we observe that the time for geneenalysis and results of [28] do not apply to the
ating entries of the matrix of the linear equations eetting in this paper. For example, here we have
substantial when compared with other parts. Noshown that the SDM method follows directly from
that the number of data points affects mainly ththe Newton method, whereas the Hessian has to
time used for the preprocessing steps, but ddes greatly simplified in order to derive the SDM
not affect much the time used in the optimizatiomethod in [28]. In addition, the present paper is
step, which is mainly determined by the number déatured by extensive experimental study of effects
control points. of many practical aspects of optimization, including

Finally, we would like to compare the fitting re-control point insertion, smoothness terms, LM reg-
sult of the Igea model in Fig. 10 with that producedlarization and the Armijo rule for step size control.
in [24]. Table Il shows that SDM obtains compa- In the three optimization methods considered
rably smallE,, and E,,,,, as by the method in [24], here, since sample points on the fitting surface
using significantly shorter period of time. (The P@re projected onto the target shape for setting up
on which we ran this experiment has the san@ror functions, they essentially assume that the
specifications as the one used in [24].) Howevdgrget shape is not very noisy or sparse so that
we note that the projection direction for fitting errothe estimated normal and curvatures are reasonably
evaluation is different from that in our approach. laccurate. The advantage of this treatment is that
[24], target data points are projected onto the fittirfgot points, normal and curvature information can be
subdivision surface. In our approach, sample poirtemputed efficiently with the aid of preprocessing
on the subdivision surface are projected onto tloé the fixed target shape. However, the drawback
target shape, following the framework in [6]. is the limit on the application of these methods to
fitting a surface to noisy and sparse data points. One
way of addressing this limitation is to use instead
the methods (PDM, TDM and SDM) presented

We have presented a comprehensive study ion24] and [28]. Note that, in that case, computation
a class of three methods for fitting subdivisioof foot points, normal and curvature information has
surfaces to 3D data points, both theoretically and be performed on an iteratively-updating fitting
experimentally, from the optimization point of viewsubdivision surface, and will therefore be relatively
There are a variety of other optimization techniquésne-consuming.
that can be applied to shape fitting and further
efforts should be made on understanding these REFERENCES
methods as well. [1] K.-S.D. Cheng, W. Wang, H. Qin, K.-Y. K. Wong, H. Yang,
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Vo)

By (17), we haveV, f.(V,fi)T = SINNTS,.

the second order Taylor expansion Bf at P,,

replacing the Hessian by, f.(V, fx)T yields,

Fu(Pe) + Vo Fy(Po)" AP + L APTV2 F (P.) AP
Fu(P.) + VpF(Pe)"AP + SAPTSINNT S, AP
2(Se = V)T(Se = Vo) + (S — Vo) T'S, AP

Q

+ $APTSINNTS.AP

= 3(5.—Vo)'NNT(S. - Vo)

+ (Sc—Vo)'NNTS,AP 4+ sAPTSINNT S, AP

= 3(Sc+SpAP —V.)'NNT (S, + Sp AP - V,)
$(S=VO)TNNT(S = Vo) = §[(S — Vo) "' N]?

= 3 x TD error term (18)

ere the last equality follows from (4). Sin¢&.—

and N above are parallel, we have made use of

S. Leopoldseder, H. Pottmann, and H. K. Zhao, “HieTree: the fact that

(Se = V)T (Se = Vo) = (S. — Vo) 'NNT (S, — V)

A Hierarchical Representation of the Squared DistancedFiel
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and Recall the notatiorp; = -1 and p, = L from
(5. V)TS.AP = fNTS,AP Section 1I-D. Substituting (24) in (19) yields
c c P - P

— iNTNNTS,AP = (S, — V)" NNTS,AP. v2p, - grg,4 32005 S DTS,

dﬂl —1 dlig -1
Hence, by (18), TDM uses a Gauss-Newton step. = ST(I-TTT - TTI)S,
STTTES STTTES
APPENDIXB: SDM AND NEWTON METHOD +dky Zﬁi _1 1 Z o+ dky Zﬁz _2 1 =
Now we are going to show that the SD error term = STNNTS, +aSITTE Sy + asSTTRTY S,

is given by the Newton iteration, after appropriate )
modification to make the Hessian positive semiWherea: =d/(d —p,) and @2 = d/(dT— p2) asin
definite. DifferentiatingVyF, in (16) vyields the Section Il-D. Here note that Ty + 15T, + NN* =
Hessian as I and d, p,, p; are signed values (see Section II-

2 T T T T D.3). .
ViF, = (Sh—VeuV,] —=VooV)Sp + E"Spp Thus we have obtained the Hess®AE),. Sub-
_ T T T stituting V< F}. in the following second order Taylor
= v ) 19 . Lk A . .
(8 = Vouly = Veol,7) S (19) approximation of the objrectlve function, noting that
Here E7S,, = 0, since the sample point is a (S.— V,)TT, = (S, — V.)'T; = 0, we obtain
linear combination of control point®.
Without loss of generality, suppose thatu, v) is Fi(Pe) + Vo Fi(Pe) AP + AP VL Fi(Pe) AP
a local regular parameterization of the target surface=  (S. — Vo)"(Se — Vo) + (S — Vo) 'S, AP
[z such thatV, = T} andV, = T, which are +1APT (STNNTS, + ar SITV TS,
the unit principal direction vectors of at the STTTTS) AP
current foot pointV,, and then there ¥V, = 0. tazop 2T2 P)T
Differentiating the constraints (13) with respect to = 5(S. — Vo) NN* (S, - Vo)

P yields +(S. = V.)TNNTS,AP + LAPTSINNT S, AP
0 =(VeuVLh +VwVI)E +1a1 (Se+ Sp AP — V)T VT (Se + S»AP — V,)
+ (SE = VeuV = VeV V, (20) 40 (Se + Sp AP — Vo) ToTY (Se + Sp AP — V)
= (ViuE = Vi{Va) Vou+ ST Vo + Vi EV v = 1(S.+ 8,AP — V)" NNT (S, + SpAP — V)
and +301 (S = Vo) " T (S - Ve)
0 =(VooVi+VouVE)E +las (S - V)" TTE (S~ Ve)
+ (SF = VouV,] = VooV )V, 1) = 3[(S-VoO'NP+ jau[(S - V)" Th]?
= (VLE-VIV,)Vev+SEV, + VLEV,u +3as[(S — V)T To)?
From (20) and (21), we obtain = $fipm (25)
Vou— 52 Vu t Ve V0 (220 Which, up to a constant multiple, is the second
Viul = ViVa order approximation of the squared distance given
and in (5). Thus the SD error term defined in (6) is

5 ’{V‘/;“;Y@f;”” (23) derived from the Newton iteration after removing
_ v vy negative eigenvalues from the full Hessian by setting
By assumption and differential geometry of Sutne negative coefficients in (5), if any, to zero.
faces, we have/, = T, Vi, = Ty, Vuu = #1N,  \When we compute the gradient and Hessian of
Voo = Ko N, B = dN, wherer,, r, are the signed yhe giobal function with respect t®, we treatP
principal curvatures av. With the substitutions in 55 pasic variables antd as dependent variables.
(22) a?d (23)1TW3 obtai, ' — V,/V,, = dri — 1 Fyrthermore, the dependence betwégmnd P is
argrd Vol = Vi) Vi, = drp — 1. Furthermore, since gypressed by the way we compute the gradient in
V., B =0, differentiating with respect to yields (16 and the Hessian using the local linear relations
VIE+VIE, =VIE - VIV, =0. (22) and (23). In fact, this local linear dependence
Therefore, V' E = VIV, = 0. Putting all these
together, it follows from (22) and (23) that
ST ST,
dlil — 17 dlig — 1

Vev = —

Veu = —

Vv =— (24)



Flg 14. constraint surface and its tangent plane.
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betweenl/ and P represents the tangent plaflg: the National Science
to the constraint hypersurfacg€. defined by the
constraints in (13). Therefore, the iterates used BS/Z
TDM and SDM essentially move on the plailg.,
according to their respective approximations to t lé/

Hessian (see Fig. 14).
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