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Abstract. This paper addresses the problem of specular surface recov-
ery, and proposes a novel solution based on observing the reflections of
a translating planar pattern. Previous works have demonstrated that a
specular surface can be recovered from the reflections of two calibrated
planar patterns. In this paper, however, only one reference planar pattern
is assumed to have been calibrated against a fixed camera observing the
specular surface. Instead of introducing and calibrating a second pattern,
the reference pattern is allowed to undergo an unknown pure translation,
and a closed form solution is derived for recovering such a motion. Unlike
previous methods which estimate the shape by directly triangulating the
visual rays and reflection rays, a novel method based on computing the
projections of the visual rays on the translating pattern is introduced.
This produces a depth range for each pixel which also provides a mea-
sure of the accuracy of the estimation. The proposed approach enables a
simple auto-calibration of the translating pattern, and data redundancy
resulting from the translating pattern can improve both the robustness
and accuracy of the shape estimation. Experimental results on both syn-
thetic and real data are presented to demonstrate the effectiveness of the
proposed approach.

1 Introduction

Shape recovery has always been a hot topic in computer vision over the past
few decades. Traditional shape recovery methods can be classified into different
categories according to the information they employed, such as structure from
motion [1], shape from silhouettes [2], and shape from shadings [3]. Most of
the existing methods, however, can only handle diffuse objects due to the fact
that the information they exploited is derived under the assumption of a diffuse
surface. For instance, structure-from-motion methods cannot be applied to a
specular (mirror) object as the features on the object surface are the reflections
of its surrounding environment and are therefore not viewpoint independent.
Similarly, shape-from-silhouettes methods have difficulties in handling specular
objects as it is not a trivial task to extract the silhouette of a mirror object. The
underlying principle of shape-from-shadings methods states that the shadings
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of the object follow the Lambert’s cosine law, and therefore it is obvious that
specular surfaces cannot be recovered using shape-from-shading methods. In
addition, the shape of a specular object also cannot be obtained using a laser
scanner since the surface may often reflect the laser ray away from the sensor of
the scanner.

In order to allow shape recovery of specular objects, special algorithms have
to be developed under the assumption of a specular surface whose appearance
follows the law of reflection. In [4], Zisserman et al. pointed out that a mov-
ing observer can tell the physical properties, such as convexity or concavity, of
a specular surface. Fleming et al. [5] also showed that human beings have the
ability to distinguish the shape of a specular surface even when no knowledge
about the environment is available. In [6], Oren and Nayar explored the rela-
tion between the image trajectories of the virtue features induced by specular
reflection and the 3D geometry of the specular object they travelled on. Roth
and Black [7] proposed to use both optical flow and specular flow to recover an
object which is a mixture of specular and diffuse materials. In [8], Adato et al.
analyzed the valued information of the specular flow induced by the movement
of a camera, and derived a non-linear partial differential equation (PDE) to de-
scribe the relation between the 3D shape and motion of the specular object. In
[9], Canas et al. linearized this non-linear PDE in order to make it easier for
practical use. The aforementioned works are regarded as shape from specular
flow (SFSF) methods. SFSF methods generally require a dense observation of
specular flow, but dense specular flows often merge together in an undetermined
way. Besides, SFSF methods recover the specular surface by solving the PDE,
and the solution is greatly affected by the initial boundary condition. Further-
more, the motion of the specular object must be small and continuous in order
to derive the PDE. All these limitations make SFSF methods not very useful in
practice.

Great efforts have also been devoted to specular shape recovery techniques
under known surroundings. In [10, 11], Savarese and Perona demonstrated that
local surface geometry properties of a mirror object can be determined by ana-
lyzing the local differential properties of the reflection of two calibrated lines. In
[12], Bonfort and Sturm introduced a voxel carving method to recover a specular
surface using a normal consistency criterion. Seitz et al. [13] reduced the specu-
lar shape recovery problem to a light path reconstruction problem. They showed
that surface points can be obtained if the positions of two reference points are
known in space for one single view, or the position of one reference point is
known and is visible in two different views. In [14], a phase shift method was
used to determine the correspondence between a reference point in space and
its reflection on the image plane. Nehab et al. [15] reduced the shape recovery
problem to an image matching problem by minimizing a cost function based
on normal consistency. Note that calibration plays an important role in specu-
lar shape recovery methods under known surroundings. Bonfort et al. [16] used
a mirror to calibrate a reference plane after changing its position every time.
In [17], Rozenfeld et al. suggested an approach to recover the surface by using
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an empirically calculated 1D homography. Their proposed method only needs
sparse plane-image correspondences, but depends on optimization greatly.

In this paper, we adopt the approach of specular shape recovery under known
surroundings. Unlike previous methods which assume a fully calibrated environ-
ment, we propose a novel solution based on observing the reflections of a trans-
lating planar pattern. We assume a reference planar pattern is initially calibrated
against a fixed camera observing a specular surface. This pattern is then allowed
to undergo an unknown pure translation. The motion of the pattern as well as
the shape of the specular object can then be estimated from the reflections of the
translating pattern. The main contributions of this paper are 1) a closed form
solution for recovering the motion of the translating pattern, and 2) a novel
method for shape recovery based on computing the projections of the visual
rays on the translating pattern. The proposed auto-calibration method allows
an easy calibration of the translating pattern, and data redundancy resulting
from the translating pattern can improve both the robustness and accuracy of
the shape estimation. The proposed shape recovery method produces a depth
range for each pixel in which the true surface point exists. This in turn provides
a measure of the accuracy and confidence of the estimation.

The rest of the paper is organized as follows. Section 2 describes the physical
configuration of our proposed translating pattern approach. Based on geometric
constraints, a closed form solution is derived for recovering the unknown motion
of the translating pattern in Section 3. A degenerate case is also studied and
analyzed. Section 4 introduces a projection based method for specular shape
recovery using the estimated motion. Experimental results on both synthetic
and real data are presented in Section 5, followed by conclusions in Section 6.

2 Translating Planar Pattern

Consider a pinhole camera, with camera center O, looking at a specular object
S which reflects a nearby planar pattern Π to the image I (see Fig.1). Consider
now a point P on S. Let A be a point on Π which is reflected by S at P to a
point x on I. Suppose now the planar pattern undergoes a pure translation given
by an unknown translation vector T, and let Ω denotes the planar pattern at
the new location after translation. Let B be a point on Ω such that it is collinear
with A and P . According to the law of reflection, B will also be reflected by S
at P to the same point x on I.

As shown in [13, 16], the 3D position of P can be obtained by intersecting
the visual ray (defined by O and x) with the reflection ray (defined by A and
B). In order to construct the reflection ray, both the 3D positions of A and
B are needed, and their accuracies would directly affect the accuracy of the
estimated 3D position of P . The relative positions of A and B on the planar
pattern can be resolved by encoding the pattern using gray code and observing
the corresponding intensities at x. Besides, in order to obtain the 3D positions
of A and B, the relative positions and orientations of Π and Ω with respect
to O must also be known. In this paper, Π is assumed to have been calibrated



4 Miaomiao Liu, Kwan-Yee K. Wong, Zhenwen Dai, and Zhihu Chen

T

Fig. 1. Configuration of a translating planar pattern. A pinhole camera with camera
center O is viewing a specular object S which reflects a nearby planar pattern Π to the
image I. Ω is a planar pattern obtained by translating Π by an unknown translation
vector T. A and B are points on Π and Ω respectively which are reflected by S at P
to the same image point x on I.

against O initially. The problem of calibrating Ω is thus reduced the problem of
estimating the unknown translation vector T. In the next section, a closed form
solution for T will be derived based on some geometric constraints.

3 Recovering the Unknown Translation

Referring to the configuration described in the previous section, Ω and Π are
related by a pure translation given by the translation vector T. Consider a point
X on Π. Let X ′ be a point on Ω such that it has the same relative position on the
planar pattern as X (i.e., both X and X ′ are encoded by the same gray code).
X and X ′ are referred to as a pair of corresponding points, and are related
by X′ = X + T, where X and X′ denote the position vectors for X and X ′

respectively. Now referring back to Fig. 1, and recalling that A and B are points
on Π and Ω, respectively, which are reflected by S at P to the same image point
x on I. Let Q be a point on Π which is encoded by the same gray code as B
(i.e., B and Q form a pair of corresponding points). Hence, we have

B = Q + T, (1)

and the vector AB in the direction of the reflection ray can be written as

AB = AQ + T. (2)
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Consider the plane Γ formed by the visual ray and the reflection ray at P , and
let N be its unit normal vector. It is obvious that AB and N are mutually
orthogonal and therefore

AB ·N = 0. (3)

Substituting (2) into (3) gives

(AQ + T) ·N = 0. (4)

Note that Q can be inferred from the gray code of B, and the vector AQ can be
constructed from the 3D positions of A and Q on the calibrated planar pattern
Π. The unit normal vector N can be computed as the vector cross product of
Ox and OA. Hence, the only unknown in (4) is the translation vector T, which
has three degrees of freedom. Since a pair of reflections observed at one pixel
provides one linear constraint on T, T can therefore be estimated using a linear
least squares method from the reflections observed at three or more pixels:

T = −


NT

1

NT
2
...

NT
n


−1 

A1Q1 ·N1

A2Q2 ·N2

...
AnQn ·Nn

 (5)

If n > 3, matrix composed of normal vectors will be a rectangle matrix. The
symbol of inverse used in the (5) will be denoted as Moore-Penrose pseudo-
inverse. The pseudo-inverse gives the solution in a least-squared sense.

However, when the specular object is a plane or a surface of revolution, there
exist some degenerate cases which are described below in Proposition 1 and
Proposition 2.

Proposition 1. If the specular object is a plane, the translation vector T cannot
be determined by using the proposed theory.

Proof. Let S be a specular plane. Without loss of generality, let P be an arbitrary
point on S and NP be the surface normal at P . Consider now the visual ray
OP . By the law of reflection, the visual ray OP , the surface normal NP and the
reflection ray must be all lie on the same plane. Let ΓP denotes such a reflection
plane. Note all points on S have the same surface normal NP . It follows that all
the reflection planes will intersect along a line passing through the camera center
O and with an orientation same as NP , and hence their normal vectors are all
orthogonal to NP . This makes the matrix composed of the normal vectors of the
reflection planes in (5) to have a rank of at most 2, and therefore T cannot be
recovered using (5).

Proposition 2. If the specular object is a surface of revolution and its revolu-
tion axis passes through the camera center, the translation vector T cannot be
determined by using the proposed theory.
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Proof. Let S be a specular surface of revolution with its revolution axis l passing
through the camera center O. Without loss of generality, let P be an arbitrary
point on S and NP be the surface normal at P . Consider now the visual ray
OP . By the law of reflection, the visual ray OP , the surface normal NP and the
reflection ray must be all lie on the same plane. Let ΓP denotes such a reflection
plane. By the properties of a surface of revolution, NP lies on the plane defined
by P and l. Since l passes through O, it is easy to see that l also lies on ΓP . It
follows that all the reflection planes will intersect at l and hence their normal
vectors are all orthogonal to l. This makes the matrix composed of the normal
vectors of the reflection planes in (5) to have a rank of at most 2, and therefore
T cannot be recovered using (5).

Since a sphere is a special kind of surface of revolution with any line passing
through its center being a revolution axis, Corollary 1 follows immediately.

Corollary 1. A single sphere cannot be recovered by using the proposed theory.

4 Specular Surface Recovery

With the estimated translation vector T, the position of the reference planar pat-
tern after translation can be determined. If accurate correspondences between
points on the reference planar pattern and pixels on the image can be obtained,
the surface of the specular object can be recovered by triangulating the corre-
sponding visual ray and reflection ray at each pixel (see Section 2). However,
most of the encoding strategies cannot achieve a real point-to-point correspon-
dences. Usually, one pixel corresponds to one encoded area (e.g., a square on the
reference planar pattern). In [16], a dense matching of the pixels on the image
and positions on the reference plane was implemented by minimizing an energy
function which penalized the mis-encoding problem, and bilinear interpolation
was used to achieve a sub-pixel accuracy in the matching. Bilinear interpolation,
however, is indeed not a good approximation as it is well-known that ratio of
lengths is not preserved under perspective projection. Besides, the reflection of
the pattern by a non-planar specular surface would also introduce distortion in
the image of the pattern, and such a distortion depends on both the shape and
distances of the object relative to the camera and the planar pattern. In order to
obtain good shape recovery results, the resolution of the encoding pattern and
the positions of the plane need to be chosen carefully.

In this paper, the specular surface is assumed to be smooth and locally pla-
nar. After associating a gray code (and hence an encoded area on the reference
plane) to each pixel, the algebraic centers ci for pixels with the same gray code
is computed and associated with the center Ci of the corresponding encoded
area on the reference plane. This is the approximation to the point-to-point
correspondences in the underlying encoding strategy. This approximation has
been verified with experiments on synthetic data, and experimental results show
that the error distances introduced by approximating the ground truth reflection
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Fig. 2. Shape recovery of specular object. The visual ray at ci is projected onto the
translated reference plane Ω using its corresponding point Ci on the initial reference
plane Π as the projection center. The projection of the visual ray on Ω will result
in a line which will intersect the corresponding encoded area as observed at ci. This
intersection line segment can be back projected onto the visual ray and this gives a
depth range in which the surface point should exist.

points on the plane with the centers of the encoded areas are negligible. Never-
theless, this approximation can only be applied to obtain a matching between
the image pixels and points on one reference plane, as the algebraic centers ci

computed for one reference plane position will not in general coincide with those
computed for a different reference plane position. Instead of trying to locate a
point match on the translated reference plane Ω for each ci, the visual ray for ci

is projected onto the translated reference plane Ω using its corresponding point
Ci on the initial reference plane Π as the projection center (see Fig. 2). The
projection of the visual ray on Ω will result in a line which will intersect the
corresponding encoded area (which is a square) as observed at ci. This inter-
section line segment can be back projected onto the visual ray and this gives
a depth range in which the surface point should exist. If Ω is far from Π, the
depth range will be small and the midpoint can be taken as the estimated sur-
face depth. Alternatively, the depth range can be made smaller by increasing
the resolution of the encoding pattern (i.e., decreasing the size of the encoded
area). This, however, is not a practical strategy since the encoding pattern will
be blurred in the imaging process and may result in an aliasing effect.

5 Experimental Analysis

The proposed approach was tested using both synthetic and real image data.
The synthetic images were generated using the pov-ray software. For the real
experiments, images were taken by using a simple setting composed of a monitor,
a camera and a drawer. The monitor was used for displaying gray patterns. The
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camera used was a Cannon 450D with a focal length of 50mm. The drawer was
used for carrying the monitor and making it move in pure translation motions.

5.1 Synthetic Experiments

In the synthetic experiments, the scene was composed of two spheres or two
planes with different positions and orientations. Note that the cases with multiple
spheres or multiple planes are not degenerate, and the shape of the objects can
be recovered using the proposed method. In order to analyze the effect of the
translation scale on the result, the reference plane was translated with multiple
scales.

The reconstruction for a part of a sphere is shown in Fig. 3, which also gives
a comparison with the ground truth data. Fig. 4 shows the relation between
the translation scale of the reference plane and the shape recovery error. It can
be seen that, within the visible reflection range for the specular object, larger
translation scale would result in smaller reconstruction error. After experiment-
ing with a range of translation scales, 80 is chosen as the translation scale for
the second position of the reference plane. The reconstruction error is smaller
than 0.5%. The reconstruction for the plane is shown in Fig.5, which again also
gives a comparison with the ground truth data. 70 is chosen as the translation
scale and the average reconstruction error is less than 0.45%.

Fig. 3. Shape recovery result for a sphere. Left column: Ground truth observed in two
different views. Right column: Recovered shape in two different views.

5.2 Real Experiments

The real experiment was conducted to recover the shape of a small spoon. The
experiment setting was quite simple. The monitor was carried by the drawer and
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Fig. 4. Relationship between depth recovery error and translation scale. The scene is
composed of two spheres which have the same radius of 19, and the translation scale
ranges from 1 to 150. 12880 pixels are used for shape recovery. Y-axis shows the average
depth recovery error for all pixels, and X-axis represents the translation scale.

Fig. 5. Shape recovery result for a plane. Left column: Ground truth observed in two
different views. Right column: Recovered shape in two different views.
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translated on the table (see Fig. 6). The monitor displays gray pattern images
and a set of images were taken when the monitor translated in different scales.
A traditional structured light method [18] was used to get the correspondences
between a coded area on the reference plane and a pixel on the image. The
first reference planar pattern is initially calibrated. The reference plane can be
translated along a certain direction in different scale and the reconstruction
results can be obtained by choosing the best motion scale or combine the multiple
motion information together to get a better result. Although the spoon is small
and it only reflects a small area on the monitor, the shape can be well recovered
(see Fig. 7).

Fig. 6. Setting for the real experiment. Left Column: Setting used in the real experi-
ment. Right Column: sample pattern images used for encoding. The proposed method
is to recover the area reflecting the reference plane on the specular object.
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Fig. 7. Shape recovery result for a spoon. The recovered shape is the area with reflec-
tions on the spoon.
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6 Conclusions

In this paper, we have proposed a novel solution for specular surface recovery
based on observing the reflections of a translating planar pattern. Unlike pre-
vious methods which assume a fully calibrated environment, only one reference
planar pattern is assumed to have been calibrated against a fixed camera ob-
serving the specular surface, and this pattern is allowed to undergo an unknown
pure translation. The motion of the pattern as well as the shape of the specular
object can then be estimated from the reflections of the translating pattern. The
main contributions of this paper are
1) A closed form solution for recovering the motion of the translating pattern.
This allows an easy calibration of the translating pattern, and data redundancy
resulting from the translating pattern (i.e., reflections of multiple planar pat-
terns at each pixel location) can improve both the robustness and accuracy of
the shape estimation.
2) A novel method for shape recovery based on computing the projections of
the visual rays on the translating pattern. This produces a depth range for each
pixel in which the true surface point exists. This in turn provides a measure of
the accuracy and confidence of the estimation.
Experimental results on both synthetic and real data are presented, which demon-
strate the effectiveness of our proposed approach. As for the future work, we are
now trying to solve the more challenging problems in which 1) the initial ref-
erence planar pattern is also uncalibrated and 2) the motion of the reference
planar pattern is not limited to pure translation.
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