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Abstract

This paper addresses the problem of recovering the un-
known poses of a moving reference plane for specular shape
recovery. Given the initial pose of the reference plane with
respect to the camera, a closed form solution is derived to
recover its subsequent poses directly from its reflections on
the specular surface observed in the image sequence. With
the estimated poses of the reference plane, the specular sur-
face can then be easily recovered using any existing ray tri-
angulation method. The proposed method greatly simpli-
fies the calibration problem in specular shape recovery. Ex-
perimental results on both synthetic and real data are pre-
sented, which demonstrate the effectiveness of the proposed
method.

1. Introduction

The problem of shape recovery for diffuse surfaces has been
well studied, and many sophisticated methods [21, 23, 20,
22] have been developed over the past few decades. Unlike
a diffuse surface whose appearance is viewpoint indepen-
dent, a specular surface does not have a unique appearance
of its own but instead reflects its surrounding environment.
Based on this special property, many researchers tried to
recover the shape of a specular object by exploring the re-
lationship between its surface geometry and its surrounding
environment [2, 24, 12, 8]. Methods for specular shape re-
covery usually introduce motion to the surrounding environ-
ment and observe the changes in the reflections produced
on the surface. Based on the assumptions made on the en-
vironment, existing state-of-the-art methods can be broadly
classified into two approaches, namely shape from specular
flow (SFSF) methods [13, 1, 7, 14] and shape from specu-
lar correspondences (SFSC) methods [18, 4, 5, 15, 16, 11].
SFSF methods often assume an unknown distant environ-
ment under a known continuous motion. These methods
often suffer from problems in tracking dense specular flows
and solving partial differential equations (PDE). When the

Figure 1. General setup for specular shape recovery. (a) The cam-
era and the reference plane are put side-by-side to produce a good
view of the reflection of the plane on a specular spoon. (b) Reflec-
tions produced on the spoon surface under two different poses of
the reference plane.

surrounding environment is known and close to the object,
SFSC methods can be derived. Like SFSF methods, SFSC
methods also assume the motion (which may be discrete
though) of the environment being known a prior in order
to infer surface shape from the observed reflections. Com-
monly, a reference plane with a known pattern is used as the
known environment in SFSC methods, and it is placed in at
least two different poses for recovering the specular surface.
In order to produce a good view of its reflection on the spec-
ular surface, the reference plane is often placed side-by-side
with the camera (see Fig. 1). This results in the camera
not being able to see the reference plane directly, making
the calibration of the setup non-trivial. Traditional methods
calibrate the poses of the reference plane by introducing an
auxiliary plane into the field of view of the camera, and cal-
ibrating its pose with respect to the camera. An auxiliary
camera is then used to take an image of both the reference
plane and the auxiliary plane to recover their relative poses.
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The pose of the unseen reference plane with respect to the
camera then follows. In [19], Sturm and Bonfort used a pla-
nar mirror to allow the camera seeing the reference plane
through reflection, and each pose of the reference plane can
be obtained by placing the auxiliary mirror in at least three
different positions. Note that in practice, it requires placing
the reference plane in a large number of distinct poses to
recover a complete specular shape using ray triangulation,
and calibrating all the poses of the reference plane requires
a tedious work. How to recover the poses of the reference
plane easily and automatically hence becomes an appealing
problem in specular shape recovery.

The literature becomes comparatively sparse when it
comes to automatic pose estimation of the reference plane
in specular shape recovery. Liu et al. [10] proposed an auto-
matic motion estimation method by constraining the motion
of the reference plane to a pure translation, with the assump-
tion that the initial pose of the plane is known a prior. Al-
though they can achieve a simple closed form solution for
the motion estimation problem, their method cannot handle
the general motion case. In [3], Bonfort proposed a method
to calibrate the poses of the two reference planes by ob-
serving their reflections on the specular surface. However,
their method is quite sensitive to noise, making it not quite
applicable in practice. In this paper, we propose a novel
and practical solution for estimating the poses of a refer-
ence plane based on observing its reflections on a specular
surface. Given the initial pose of the reference plane with
respect to the camera, a closed form solution is derived to
recover its subsequent poses directly from its reflections on
the specular surface observed in the image sequence. Un-
like [10], however, the reference plane is not constrained to
undergo a pure translation. With the estimated poses of the
reference plane, the specular surface can then be easily re-
covered using any existing ray triangulation method. The
proposed method greatly simplifies the calibration problem
in specular shape recovery.

The major contributions of this paper are

• A novel and practical method for automatically recov-
ering the poses of a reference plane in specular shape
recovery. In particular, the proposed method does not
require the use of any auxiliary reference plane, cam-
era nor mirror and can directly recover the poses from
the observed reflections of the reference plane on the
specular surface.

• A closed form solution for recovering the poses of a
reference plane undergoing a general motion.

The rest of the paper is organized as follows. Section 2
describes the physical configuration of our proposed ap-
proach and introduces a motion constraint based on the ob-
served reflections of a moving reference plane. Based on
such a constraint, a closed form solution for recovering the

poses of the reference plane is derived in Section 3, together
with an analysis on the degenerate cases. Section 4 de-
scribes implementation issues related to the extraction of
the sparse reflection correspondences and recovery of the
specular surface given the estimated poses of the reference
plane. Experimental results on both synthetic and real data
are presented in Section 5, followed by discussions and con-
clusions in Section 6.

2. Geometric Constraint
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Figure 2. A pinhole camera centered at O is viewing a specular
object S which reflects a nearby reference plane Π0 to the im-
age I . Π1 denotes the plane at a new pose after undergoing an
unknown rigid body motion. X0 and X1 are points on Π0 and
Π1 respectively which are reflected at a point P on S to the same
image point x on I . They are referred to as reflection correspon-
dences. X0 and X1 define the incident ray. V denotes the visual
ray. Both the incident ray and visual ray lie in the plane Γ called
the reflection plane.

Consider a pinhole camera centered at O observing the
reflection of a reference plane Π0 produced on a specular
object S (see Fig. 2). Let X0 be a point on Π0 which is
reflected at a point P on S to a point x on the image I .
Suppose now Π0 undergoes an unknown rigid body motion,
and let Π1 denote the reference plane at its new pose. Let
X1 be a point on Π1 such that it is collinear with X0 and
P . According to the law of reflection, X1 will also be re-
flected at P to the same image point x on I . As shown in
[18, 5], the 3D position of P can be obtained by intersect-
ing the incident ray (defined by X0 and X1) with the visual
ray (defined by O and x). In order to construct the inci-
dent ray, the 3D positions of both X0 and X1 are needed,
and their accuracies would directly affect the accuracy of
the estimated position of P . The local positions of X0 and
X1 on the reference plane can be resolved relatively eas-
ily by encoding a grid pattern on the reference plane using
Gray code and observing the intensity patterns at x. In or-



der to recover the 3D positions of X0 and X1, the poses of
Π0 and Π1 with respect to the camera must also be known.
When the reference plane is directly visible in the image,
the calibration of its pose is trivial. As mentioned previ-
ously, however, the camera usually cannot see the reference
plane directly in the general setup for specular shape recov-
ery. In [19], Sturm and Bonfort showed how the pose of a
reference plane without a direct view in the image can be
recovered with the help of an auxiliary planar mirror.

In this paper, Π0 is assumed to have been calibrated
against the camera initially. We would like to estimate the
pose of Π1 by deriving constraints using the observed re-
flections of both Π0 and Π1 on the unknown specular sur-
face. Consider the reflection plane Γ defined by the incident
ray and the visual ray at P (see Fig. 2). Let N be a unit nor-
mal vector to Γ. Note that since both OX0 and Ox lie on Γ,
N can be expressed as

N =
Ox × OX0

||Ox × OX0|| . (1)

Note that Ox is simply the visual ray constructed through
the image point x. Given the pose of Π0, the 3D position
of X0 can be readily obtained from the Gray code pattern
observed at x, and OX0 can then be constructed. Hence, N
can be recovered even when point P and the surface normal
at point P are not known a prior. By definition, X0X1 lies
on Γ. It follows that

X0X1 · N = 0. (2)

The above constraint will be used in the next section to de-
rive a closed form solution for recovering the pose of Π1.

3. Recovering the Unknown Pose
Consider again the configuration shown in Fig. 2, and as-

sume the world coordinate system coincides with the local
coordinate system defined on Π1. Let X0 and X1 denote,
respectively, the position vectors of X0 and X1 in the cam-
era coordinate system, and N denote the unit normal vector
to the reflection plane in the camera coordinate system. The
constraint in Eq. (2) can be rewritten as

(X1 − X0) · N = 0. (3)

It follows directly from Eq. (1) that

X0 · N = 0. (4)

Substituting Eq. (4) into Eq. (3) simplifies the constraint to

X1 · N = 0. (5)

Let X̂ = (x̂, ŷ, 0)T denote the coordinates of X1 in the
world coordinate system, and R and T denote the rota-
tion matrix and translation vector, respectively, relating the

world coordinate system to the camera coordinate system,
such that

X1 = RX̂ + T. (6)

Substituting Eq. (6) into Eq. (5) gives

(r1x̂ + r2ŷ + T) · N = 0, (7)

where ri = (r1i, r2i, r3i)T, i ∈ {1, 2}, denotes the ith col-
umn of R. Given an image point x, the vector N can be
obtained using Eq. (1). The unknowns in Eq. (7) are there-
fore r1, r2 and T, which have nine degrees of freedom in
total if the constraints on the elements of R are ignored.
Since one image point will define one linear constraint in
the form of Eq. (7), the pose problem can be solved when at
least nine image points showing the reflections of the mov-
ing reference plane are available. Given the reflections ob-
served at m ≥ 9 image points xi, the pose of Π1 relative to
the camera can be estimated by solving the following over-
constrained system:⎛

⎜⎜⎜⎝
x̂1NT

1 ŷ1NT
1 NT

1

x̂2NT
2 ŷ2NT

2 NT
2

...
x̂mNT

m ŷmNT
m NT

m

⎞
⎟⎟⎟⎠

⎛
⎝ r1

r2

T

⎞
⎠ = 0, (8)

where (x̂i, ŷi, 0)T denotes the world coordinates of the re-
flection correspondence of xi on Π1, and Ni denotes the
unit normal vector to the reflection plane of xi. Eq. (8) can
be succinctly expressed as⎛

⎜⎜⎜⎝
X̄T

1 ⊗ NT
1

X̄T
2 ⊗ NT

2
...

X̄T
m ⊗ NT

m

⎞
⎟⎟⎟⎠

⎛
⎝ r1

r2

T

⎞
⎠ = 0, (9)

where X̄i = (x̂i, ŷi, 1)T and ⊗ denotes the Kronecker prod-
uct. A linear least squares solution can be obtained by per-
forming a singular value decomposition (SVD) on the m×9
coefficient matrix in Eq. (8). Constraints on the rotation
matrix R can then be applied to ensure it is an orthogonal
matrix. The pose of Π1 can be further improved by a nonlin-
ear optimization, in which the optimization parameters are
the three parameters defining the rotation matrix and three
parameters defining the translation vector. Note that there
exists some degenerate cases which will be described below
in Proposition 1.

Proposition 1 If the matrix composed of the normals of the
reflection planes is not of full rank, the rotation matrix R
and translation vector T cannot be determined uniquely us-
ing the proposed theory.

Proof. Consider the matrix

Ñm×3 =
(

N1 N2 · · · Nm

)T
(10)



composed of the normals of the reflection planes, and sup-
pose rank(Ñ) ≤ 2. Let

X̃m×3=
(
X̄1,X̄2,· · · ,X̄m

)T
, (11)

Am×9=
(
X̄1 ⊗ N1,X̄2 ⊗ N2,· · · ,X̄m ⊗ Nm

)T
. (12)

Since A is a sub-matrix of X̃ ⊗ Ñ, it follows that
rank(A) ≤ rank(X̃ ⊗ Ñ). It has been proved in [9] that
rank(X̃ ⊗ Ñ) = rank(X̃)rank(Ñ). Since rank(X̃) ≤
3 and rank(Ñ) ≤ 2, rank(A) ≤ rank(X̃ ⊗ Ñ) =
rank(X̃)rank(Ñ) ≤ 6.

Let ni = (n1i · · ·nmi)T, i ∈ {1, 2, 3}, denote the ith
column of Ñ. When rank(Ñ) = 2, n3 can be expressed as
a linear combination of n1 and n2, i.e.,

n3 = an1 + bn2. (13)

Eq. (8) can be re-written as BQ = 0, where

B =

⎛
⎜⎜⎜⎝

x̂1n11 x̂1n12 ŷ1n11 ŷ1n12 n11 n12

x̂2n21 x̂2n22 ŷ2n21 ŷ2n22 n21 n22

...
...

...
...

...
...

x̂mnm1x̂mnm2ŷmnm1ŷmnm2nm1nm2

⎞
⎟⎟⎟⎠ ,

Q = (Q1, Q2, Q3, Q4, Q5, Q6)T,

Q1 = r11 + ar31,

Q2 = r21 + br31,

Q3 = r12 + ar32,

Q4 = r22 + br32,

Q5 = tx + atz,

Q6 = ty + btz,

and T = (tx, ty, tz)T. It is noted that rank(B) ≤ 6. When
rank(B) = 6, Q = 0 and this provides six constraints
on the unknowns (i.e., four on r1 and r2, and two on T).
Three more constraints on r1 and r2 can be derived from
the fact that R is an orthogonal matrix. This allows the re-
covery of r1 and r2, and r3 can be obtained readily from the
cross product r1×r2. It is, however, not possible to recover
the translation vector T from the remaining two constraints.
Similar proof goes to the case where rank(B) < 6. When
rank(Ñ) = 1, rank(B) ≤ 3 and there are not enough
constraints for solving R and T.

Corollary 1 If the specular object is composed of a single
plane or a surface of revolution with its revolution axis
passing through the camera center (e.g., a sphere), the
matrix formed from the normals of the reflection planes will
have a maximum rank of two and therefore the pose of the
reference plane cannot be uniquely determined using the
proposed method.

4. Reflection Correspondences
As mentioned before, a simple way to establish reflec-

tion correspondence between an image point and a point on
the reference plane is by encoding a grid pattern on the ref-
erence plane using Gray code and observing the intensity
pattern at the image point. In practice, a computer monitor
is commonly used as a reference plane by displaying a set
of binary images constructed from Gray code patterns, once
original and once inverted [17]. The total number of im-
ages taken under each pose of the reference plane is there-
fore twice the binary resolution in each direction. As stated
in [19], the resolution of the codes and the width of the low-
est order stripes must be chosen according to the shape of
the specular object and the resolution of the camera. Too
high resolution codes tend to be blurred out and become
unusable, whereas too coarse ones lack in precision. Binary
images taken under the same pose of the reference plane are
combined into a single image from which the Gray code for
each pixel can be retrieved. Generally, a patch of pixels in
the image corresponds to a patch of points on the reference
plane with the same Gray code. In order to obtain more ac-
curate reflection correspondences, we first extract grid cor-
ners up to sub-pixel accuracies in each of the combined im-
ages. The 2D positions of their reflection correspondences
can be obtained with a high accuracy. Note that, however,
an image point which corresponds to a grid corner in one
combined image will generally not correspond to a grid
corner in another combined image. In this paper, the 2D
position of the reflection correspondence of such a point is
obtained by interpolation using the detected grid corners in
the same combined image. The reflection correspondences
of all the detected grid corners can then be used to estimate
the pose of the reference plane. For specular shape recov-
ery, dense reflection correspondences can be obtained in a
similar manner by considering all the image points.

5. Experimental Results
5.1. Synthetic Experiment

The specular surface used in the synthetic experiment
was composed of two spheres, with parametric equations{

x2
1 + y2

1 + (z1 − 10)2 = 9
(x2 + 1)2 + (y2 + 0.5)2 + (z2 − 11)2 = 9

. (14)

The perspective camera used had a focal length of 24mm
and an image resolution of 1600 × 1200, and was cen-
tered at the world origin. Fig. 3(a) shows the reference
plane Π0 at its initial pose as well as the reference plane
Π1 resulting from a rigid body motion of Π0. The av-
erage distance between Π0 and Π1 was 4.3943cm. The
software Pov-ray was used to render the images capturing
the reflections of the reference plane on the specular sur-



face. Four different grid resolutions, with square patches
having a side of 0.4cm, 0.6cm, 0.8cm and 1.0cm respec-
tively, were used in encoding 2D positions on the refer-
ence plane using Gray code. To simulate the effects of
noise, a normally distributed noise with a standard deviation
σ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} (in pix-
els) was added independently to each of the extracted grid
corners in the images. 150 independent trials were carried
out for each of the eleven noise levels and each of the four
grid resolutions respectively. Fig. 4 shows three plots of
pose estimation error (averaged over the 150 trials) against
noise level for each of the grid resolutions. Fig. 4(a) shows
the rotation angle error r ang err = rot ang(RT

e Rg)
where Re and Rg are the estimated rotation matrix and the
ground truth respectively, and rot ang(R) returns the rota-
tion angle of the rotation matrix R. Fig. 4(b) and (c) show
the translation angle error t ang err = arccos( Te·Tg

‖Te‖‖Tg‖ )

and the translation scale error t sca err = ‖Te−Tg‖2

‖Tg‖2 re-
spectively, where Te and Tg are the estimated translation
vector and the ground truth respectively. Note that small er-
rors still existed in the estimated poses even when the noise
level was zero. This can be explained by the inaccuracies
in the 2D positions of the reflection correspondences on the
reference plane caused by the limited resolution of the Gray
code. As expected, the pose estimation errors decreased
with the size of the square patches of the encoding grid pat-
tern (i.e., a higher grid resolution and smaller errors in the
2D positions of the reflection correspondences). Using a
grid with square patches having a side of 0.4cm and under
a noise level of σ = 1.0 pixel, the average pose estimation
errors are r ang err = 0.4574◦, t ang err = 0.3081◦,
and t sca err = 0.55%. Fig. 3(b) shows a histogram of
distance errors between reflection correspondences on Π1

and Πe (i.e., the estimation of Π1). It can be seen that over
82.0594% of the correspondences have a distance error less
than 0.08cm, which demonstrates the accuracy of the esti-
mated pose.

5.2. Real Experiment

A specular spoon and a polished metallic sphere were
used as the specular objects in the real experiment (see
Fig. 5(a)). A 17-inch LCD monitor displaying a set of
Gray code pattern images together with their negative im-
ages was used as the reference plane. The encoding square
patches had a side of 0.59cm, which was chosen to max-
imize the Gray code resolution while ensuring its distin-
guishability in the images. A Canon 40D digital camera
equipped with a 24mm lens was used to capture the reflec-
tions of the reference plane on the spoon and the sphere.
The image resolution used was 3888 × 2592. In order to
obtain the ground truth data for evaluation, another Nikon
D3100 digital camera was used to calibrate the poses of
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Figure 3. Synthetic experiment. (a) Configuration of the synthetic
experiment. Π0 and Π1 denote the poses of the reference plane
before and after the rigid body motion respectively. Πe denotes
the estimated pose of the reference plane after the rigid body mo-
tion. (b) Histogram of distance errors between reflection corre-
spondences on Π1 and Πe.

the reference plane. The intrinsic parameters of both cam-
eras were calibrated using [6]. Fig. 5(b) shows an im-
age of the spoon and the sphere reflecting the finest Gray
code pattern. The pose of the reference plane after its rigid
body motion was estimated using the reflection correspon-
dences of the extracted grid corners in the images. Us-
ing the same error measures defined in Section 5.1, the
errors in the estimated pose were r ang err = 0.8398◦,
t ang err = 0.2863◦, and t sca err = 0.6625% respec-
tively. The specular spoon and sphere are reconstructed by
using ray triangulation without making use of the spheri-
cal information for the sphere. In order to validate the pose
estimation error on shape recovery, we fit a sphere to the
recovered sphere points. Over 87.6997% of the 1252 re-
covered points were less than 0.05cm away from the fitted
sphere and 74.7604% less than 0.02cm. The approximate
radius of the reconstructed sphere was 3.15cm, resulting in
a 1% error compared with the ground truth. Fig. 5(c) and (d)
show the normal maps of the spoon and the sphere, respec-
tively, recovered using the estimated pose of the reference
plane. (e) and (f) show the normal maps of the spoon and
the sphere using the pose of the reference plane calibrated
by the auxiliary camera. Fig. 5(g) shows the reconstructed
surfaces of both the spoon and the sphere, together with the
reference plane at its initial pose, its estimated new pose by
the proposed method , and its pose calibrated by the auxil-
iary camera.

6. Conclusions and Discussions
This paper introduces a novel and practical method for

estimating the unknown poses of a reference plane in spec-
ular shape recovery. Unlike existing methods, it does not
require the use of any auxiliary reference plane, camera
or mirror, and allows the reference plane to undergo unre-
stricted general motion. Given the initial pose of the refer-
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Figure 4. Three plots of pose estimation error (averaged over 150 independent trials) against noise level for four different encoding grid
resolutions. (a) Relative rotation angle between the estimated rotation matrix and the ground truth. (b) Angle between the estimated
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Figure 5. Real experiment. (a) A specular spoon and a polished metallic sphere. (b) An image of the spoon and the sphere reflecting
the finest Gray code pattern. (c)-(d) Normal maps recovered for the spoon and sphere by using the estimated pose. (e)-(f) Normal maps
constructed by using the pose calibrated by the auxiliary camera. (g) rendered setting. The blue rectangle denotes the reference plane in
its initial pose. The green rectangle denotes the reference plane at its estimated new pose (our method). The red rectangle denotes the
reference plane at the pose calibrated by the auxiliary camera. Oc indicates the camera position.

ence plane with respect to the camera, the proposed method
gives a closed form solution for recovering its subsequence
poses directly from its reflections on the unknown specu-
lar surface observed in the image sequence. It greatly sim-
plifies the calibration problem in specular shape recovery.
With the estimated poses of the reference plane, the specu-
lar surface can then be easily recovered using any existing
ray triangulation method. Experimental results demonstrate
that the poses of the reference plane can be estimated with
high accuracy.

It is noted that the accuracy of the pose estimation will

greatly depend on the accuracy in locating the 2D positions
of reflection correspondences on the reference plane. How-
ever, most of the practical encoding strategies, if not all,
cannot achieve a point-to-point correspondence between the
image and the reference plane. In our experiments, in order
to improve the accuracy, we considered using interpolation
to achieve approximate point-to-point correspondences at
grid corners. As for the future work, we are now trying
to solve the reconstruction problem of a complete specular
object.
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