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Abstract. Face recognition has always been a challenging task in real-
life surveillance videos, with partial occlusion being one of the key factors
affecting the robustness of face recognition systems. Previous researches
had approached the problem of face recognition with partial occlusions
by dividing a face image into local patches, and training an independent
classifier for each local patch. The final recognition result was then de-
cided by integrating the results of all local patch classifiers. Such a local
approach, however, ignored all the crucial distinguishing information pre-
sented in the global holistic faces. Instead of using only local patch clas-
sifiers, this paper presents a novel multi-level supporting scheme which
incorporates patch classifiers at multiple levels, including both the global
holistic face and local face patches at different levels. This supporting
scheme employs a novel criteria-based class candidates selection process.
This selection process preserves more class candidates for consideration
as the final recognition results when there are conflicts between patch
classifiers, while enables a fast decision making when most of the classi-
fiers conclude to the same set of class candidates. All the patch classifiers
will contribute their supports to each selected class candidate. The sup-
port of each classifier is defined as a simple distance-based likelihood
ratio, which effectively enhances the effect of a “more-confident” clas-
sifier. The proposed supporting scheme is evaluated using the AR face
database which contains faces with different facial expressions and face
occlusions in real scenarios. Experimental results show that the proposed
supporting scheme gives a high recognition rate, and outperforms other
existing methods.

1 Introduction

Over the last decade, many mature algorithms have been developed for face
recognition [1–5]. These algorithms often demonstrate promising results with
high recognition rates on face image captured under ideal conditions such as
frontal faces in passport photos. On the other hand, face recognition has always
been a challenging problem in real-life surveillance videos where faces are always
non-frontal, occluded, and in low resolutions. In particular, recognizing partially
occluded or disguised faces is one of the key issues in enhancing the robustness
of face recognition in real-life videos.
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Currently, there are not many effective and efficient methods to handle face
recognition with occlusions. Some common approaches to tackle the problem
include face occlusion detection [6–9] and face division into local patches [9–13].

In [6], the occluded parts of a face were first detected according to the residual
values, and a new face classifier was trained using the training samples with all
the occluded parts being masked-out. Although this approach can effectively ig-
nore the effect of the occluded parts, the recognition is extremely time-consuming
since a new classifier has to be trained in run-time for every recognition. Fidler
et al. [8] proposed a subspace recovering method for recovery the faces from oc-
clusions. Their method reconstructed occluded parts of a face from the trained
subspace before performing the recognition. The recognition correctness, how-
ever, is lowered due to the recovery errors, especially when the individual is not
included in the training set. Jia and Martinez [14] suggested to use faces with
occlusions as training samples to train a SVM classifier. This approach, however,
is risky when the occlusion scenarios are not included in the training samples.
Oh et al. [9] proposed a selective-LNMF classifier. Their method first divides and
locates the occluded face patches, and re-projects the training samples to the
selective-LNMF space, in which the LNMF bases belonging to the occluded face
patches are excluded. The recognition stage of this method, however, can be very
time-consuming when the face database grows large. Moreover, this method re-
quires occlusion detection which was trained by partially occluded face samples,
therefore, the method cannot solve the unseen occlusion case.

Instead of using occlusion detection and face recovery, Martinez [11] sug-
gested to divide a face into 6 local patches, and weight each local patch according
to a new training face set. This method then votes for the final recognition re-
sults according to the weightings of the local patches. Such a local face patches
approach enhances the face recognition rate since it reduces the effect of the
occluded parts in the recognition. However, the distinguishing information in
the holistic face is also crucial in face recognition. If only local face patches are
considered, the distinguishing information of the holistic face may be ignored.
Kim et al. [13] suggested to combine local features and global holistic face infor-
mation in the recognition. In their method, local-feature patches, including eyes,
nose, month, are first located by local feature detectors. The final recognition is
then decided by combining the local and global holistic face recognition results.
They showed that their combination method outperforms both the global holis-
tic approach as well as the local-patch approach. However, Kim et al. did not
elaborate their method on occluded faces where the local face features might be
occluded, and might not be easy to locate.

This paper proposes a novel multi-level supporting scheme which integrates
the recognitions of global holistic face and multi-level local face patches. The
main contributions of this paper include: 1) a novel multi-level supporting scheme
which incorporates the decisions of multi-level patch classifiers, 2) a simple and
effective distance-based likelihood ratio to enhance the weightings of “more-
confident” patch classifiers, and 3) a criteria-based class candidates selection
process which preserves more class candidates for consideration as the final



A M-L. Supporting Scheme for Face Recog. under Partial Occls. and Disg. 3

recognition result when there are conflicts between patch classifiers. In sum-
mary, our method first divides a face image into local patches at different levels
(figure 1). For each patch, including the global face image, a fisherface subspace
classifier [15] is trained. In the testing stage, a testing face image is also divided
into local patches as in the training stage. A multi-level supporting scheme is
then applied to integrate the recognition results of the local patches. The scheme
first selects potential class candidates according to the matching likelihood ra-
tio between the testing and training faces. Each local patch classifier is then
invited to give its support to these selected candidates. The final recognition
result is decided according to the supports from all patch classifiers. The pro-
posed scheme is efficient since it requires neither re-training nor re-projection
of the training faces. The supporting scores contributed by the patch classifiers
depend on a simple likelihood ratio which will be discussed in detail in Section
2. The proposed likelihood ratio measures how likely a testing patch belongs to
the same class of a particular training face patch, and effectively decreases the
effects of those patches with low confidence. Furthermore, the discriminant infor-
mation on multi-level patches, including the global holistic face and local smaller
patches, are all being considered and integrated. The proposed recognition is,
therefore, more robust to partial face occlusions and facial expression changes.
The proposed scheme is evaluated using the AR face database [16] which con-
tains faces with different facial expressions and real occlusions. Experimental
results shown in Section 3 shows the proposed scheme gives a high recognition
rate, and generally outperforms existing state-of-the-art methods.

The paper is organized as follows. Section 2 describes in detail the proposed
multi-level supporting face recognition scheme. Experimental results are then
presented in Section 3, followed by the conclusions in Section 4.

2 Multi-Level Supporting Scheme

Face images are first divided into patches at different levels with slight overlap-
ping (about one-eighth of the width/height) as shown in figure 1. In the exper-
iments presented in this paper, each face image is divided into 2x2, 4x1, 1x4,
4x2 and 2x4 patches. Together with the original holistic 1x1 face image, there
are in total 29 image patches. For each image patch, an independent classifier is
trained as described in following sections.

2.1 Fisherface Subspace Classifiers

This section describes the subspace classifier for a single image patch. The clas-
sifiers for all the other image patches, including the global holistic face patch,
are trained in the same way. For each face image patch, an independent fish-
erface classifier [15] is trained. Suppose there are N training face sample. An
image patch of the i-th training sample is represented as a 1-D vector xi in
single grey channel. The vector xi is projected to an eigenface subspace using
principle component analysis (PCA) [15]:
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(a) (b) (c) (d)

(e) (f)

Fig. 1. Faces are divided into slightly overlapped patches at different levels: (a) manu-
ally cropped 1x1 holistic face, (b) 2x2 face patches, (c)(d) horizontal 4x1 and vertical
1x4 face patches, and (e)(f) horizontal 4x2 and vertical 2x4 face patches.

x̂i = UK
T (xi −m) (1)

where m is the mean vector of all training patch vectors x, UK = [u1, ...uK ] is
a matrix whose columns are the K eigenvectors with the largest eigenvalues of
the scatter matrix ST :

ST =

N∑
i=1

(xi −m)(xi −m)T (2)

The set containing N faces in the fisherface subspace Ŷ = {ŷ1, ..., ŷN} is
then constructed by projecting the corresponding x̂i to the fisherface subspace
using linear discriminant analysis (LDA):

ŷi = W T (x̂i − m̂) (3)

where m̂ is the mean vector of all training patch vectors x̂ in PCA subspace. W
contains the bases of the LDA subspace which is calculated by maximizing the
between-class scatter matrix Sb and minimizing the within-class scatter matrix
Sw. The optimal Wopt is defined as:

Wopt = arg max

∣∣∣∣W TSbW

W TSwW

∣∣∣∣ (4)

Sb =

C∑
i=1

ni(m̂i − m̂)(m̂i − m̂)T (5)
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Sw =

C∑
i=1

∑
x̂k∈X̂i

(x̂k − m̂i)(x̂k − m̂i)
T (6)

where C is the total number of training classes. ni is the number of samples of
the i-th class. m̂i and m̂ are the mean of the i-th class and the mean of all PCA
samples respectively, and X̂i = {x̂k} contains all PCA samples in the i-th class.
As suggested in [1], this paper directly calculates the optimal Wopt = [w1, ...wK̂ ]

as the first K̂ eigenvectors of S−1w Sb with the largest eigenvalues.

2.2 Matching Likelihood Ratio

During the training stage, the mean µintra and variance νintra of the intra-class
distances are calculated as:

µintra =
1

N intra

C∑
ck=1

∑
ŷi∈Ŷck

i<j∑
ŷj∈Ŷck

di,j (7)

νintra =
1

N intra

C∑
ck=1

∑
ŷi∈Ŷck

i<j∑
ŷj∈Ŷck

(di,j − µintra)2 (8)

where C is the total number of classes, di,j = [(ŷi− ŷj)
TΣ−1(ŷi− ŷj)]

1/2 is the

Mahalanobis distance between ŷi and ŷj , Ŷc = {ŷi : ŷi ∈ class c} contains all

the faces of class c in fisherface subspace, and N intra is the total number of the
intra-class combinations.

Similarly, the mean µinter and variance νinter of inter-class distances are
defined as:

µinter =
1

N inter

C∑
ck=1

∑
ŷi∈Ŷck

ck<ct≤cN∑
ŷj∈Ŷct

di,j (9)

νinter =
1

N inter

C∑
ck=1

∑
ŷi∈Ŷck

ck<ct≤cN∑
ŷj∈Ŷct

(di,j − µinter)2 (10)

where N inter is the number of inter-class combinations.
With the means and variances of intra- and inter-class distances, the match-

ing likelihood ratio Li,j is defined based on the distance di,j between ŷi and
ŷj :

Li,j =
pintra(di,j)

pinter(di,j)
(11)

where pintra(d) and pinter(d) are the probability density functions (pdf) of intra-
and inter-class distances respectively. pintra(d) and pinter(d) are implemented as
a slightly modified Gaussian functions:
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pintra(d) =
1√

2πνintra
e

−(tintra−µintra)2

2ν (12)

pinter(d) =
1√

2πνinter
e

−(tinter−µinter)2
2ν (13)

where µintra and νintra are intra-class distance mean and variance specified
in (7) and (8) respectively, and µinter and νinter are inter-class distance mean
and variance specified in (9) and (10) respectively. tintra = max(d, µintra) and
tinter = min(d, µinter) are the modified distance terms for pintra and pinter

respectively. As illustrated in figure 2, these two terms ensure the likelihood
ratio L obeys the similarity rule. The distance d is assumed to give equal intra-
class probability pintra(d) when d < µintra, and give equal inter-class probability
pinter(d) when d > µinter.

Fig. 2. An illustration of the likelihood functions. The likelihood L is large when the
distance belongs to intra-class distance (dintra), and L decreases dramatically when the
distance approaches the inter-class distance (dinter) or the outlier distance (doutlier).

Given the distance di,j , p
intra(di,j) measures how likely ŷi and ŷj belong to

the same class, whereas pinter(di,j) measures how likely these two faces belong
to different classes. Therefore, the larger the likelihood ratio defined in (11), the
more likely the faces belong to the same class. Furthermore, an ω term is also
added in the denominator of (11) to fix the likelihood ratio L:
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Li,j =
pintra(di,j)

pinter(di,j) + ω
(14)

This ω term is used to prevent the likelihood ratio Li,j of a particular
patch classifier becoming too large when the corresponding distance di,j is too
small, and therefore, preventing such patch classifier dominating the final recog-
nition result. As illustrated in figure 2, this formulation effectively enhances
the likelihood ratio when a face patch is matching with an intra-class patch,
and the ratio decreases dramatically when the face patch is matching with an
inter-class patch or an outlier/occluded patch with reasonable assumption that
dintra < dinter < doutlier.

2.3 Class Candidates Selection

In the recognition stage, a testing face image is divided into patches in the
same way as the training images shown in figure 1. Each patch then undergoes
classification matchings with the corresponding patches of the training samples.
For a patch classifier p, the matching likelihood ratio Lp,c,k of the k-th training
sample in class c is calculated as in (14). After that, a set of class candidates
is selected based on a criteria-based majority voting. The class candidate set is
constructed in two stages: 1) First, a set of class votes V = {vc} is constructed
by a criteria-voting, where vc is the number of votes for class c. Each patch
classifier p votes for c whenever there exists a training sample k belonging to c
with a matching likelihood ratio Lp,c,k larger than a pre-defined threshold τ . 2)

The class candidate set Ĉ is then constructed as:

Ĉ = {c : vc > λ} (15)

where λ is a loose-to-fine variable threshold. In the experiment, τ is set to 0.9,
and λ is set to M/2 at first where M is the total number of patch classifiers. λ
is then iteratively decreased by halving its value at each step until Ĉ 6= ∅. This
variable λ preserves more class candidates when there is more conflicts between
classifiers. On the other hand, a faster decision can be made when majority of
the classifiers are supporting to certain classes.

2.4 Multi-Level Supporting

For each potential class candidate selected, the supporting is initiated by ask-
ing the support sp,c for the corresponding class c from each patch classifier p.
The support from the p-th patch classifier is simply defined as the maximum
likelihood ratio of the samples belonging to class c:

sp,c = max.Lp,c,k for all sample k ∈ class c (16)

The final support Sc for a class c is then defined as the weighted sum of sp,c:
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Sc =
∑

αpsp,c (17)

where αp is the corresponding weighting of the patch classifier p. In the experi-
ment, the weightings αp of all patch classifiers are set to equal-value, and so the
supports from all classifiers are equally weighted.

3 Experimental Results

The proposed method is evaluated using the AR database [16] with real occlusion
scenarios and different facial expressions. The database contains 134 individuals
including 76 males and 58 females. For each individual, there are several face
categories in which faces are in different facial expressions and occlusions (figures
3). In the experiments, the face categories normal (figure 3(a)(g)), smile (figure
3(b)(h)) and angry (figure 3(c)(i)) are used for training. The face categories
scream (figure 3(d)(j)), sun-glasses (figure 3(e)(k)) and scarf (figure 3(f)(l)) are
used for testing the proposed scheme with real occlusions and in different facial
expressions. In addition, the normal face category is made synthetically occluded
by random masks (figure 4). This set is used for evaluating the proposed scheme
under synthetic occlusions. All the faces for training and testing are manually
cropped, aligned by eyes, and resized to 48x64.

3.1 Synthetic Occlusions

The faces in the normal category were occluded by synthetic black masks at
random positions as shown in figure 4. The dimensions of these black boxes were
also randomly selected with approximate size of 16%, 25%, 36%, 49% and 64%
of the whole face image respectively. The occluded face images were then used
to evaluate the proposed method.

Table 1. Face recognition results with synthetic occlusion masks

Recognition Rate (%)
16% Occl. 25% Occl. 36% Occl. 49% Occl. 64% Occl.

Prop. ML-Support 100.0 100.00 98.51 90.30 72.39

Local-Vote(4x2) 100.0 98.51 84.33 67.91 53.73

ML-Vote 100.0 97.01 76.12 56.72 38.06

Fisher [15] 88.06 56.72 26.87 14.93 7.46

Table 1 shows the recognition results of the proposed multi-level supporting
scheme (Prop. ML-Support). The recognition results of fisherface (Fisher) [15],
majority voting of local patches (Local-Vote) and majority voting of patches at
all levels (ML-Vote) are also listed in the table. Note that the testing samples are
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Face samples in the AR database which contains faces with different facial
expressions and occlusion scenarios. The first two rows show the faces of a particular
individual in different face categories. The next two rows show other individuals’ faces
which belong to the corresponding categories as the first two rows. The face categories
include: (a)(g) normal, (b)(h) smile, (c)(i) angry, (d)(j) scream, (e)(k) sun-glasses and
(f)(l) scarf.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Cropped faces in category normal with synthetic occlusions of about: (a)(f)
16%, (b)(g) 25%, (c)(h) 36%, (d)(i)49% and (e)(j)64%.

selected from one of the face categories used for training with synthetic occlusions
added. The Local-Vote approach takes the advantages under heavy occlusions
since the non-occluded patches should match exactly with the corresponding
training patches, and thus outperforms the ML-Vote approach whose results are
affected by the patches in the higher levels under heavy occlusions. The proposed
supporting scheme, on the other hand, is able to enhance the leverage of the
non-occluded patch classifiers, and incorporate those “more-confident” patches
at different levels. The results show that the proposed scheme outperforms the
fisherface and other majority voting approaches, and is able to enhance the
recognition rate up to nearly 90% and 72% under extremely heavy occlusions of
about 49% and 64%, respectively.

3.2 Facial Expression Changes and Real Occlusions

Table 2. Face recognition results with real occlusion

Recognition Rate (%)
Scream Sun-glasses Scarf

Prop. ML-Support 92.54 92.54 93.28

Local-Vote(4x2) 88.81 82.09 92.54

ML-Vote 90.03 85.07 89.55

Fisher [15] 67.16 59.70 32.84

Sub-Recovery [8] 87.00 84.00 93.00

Occl-SVM [14] – 57.0 57.0

sLNMF [9] 44 90 92
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Table 2 lists the recognition rates of the proposed Multi-Level supporting
scheme (Prop. ML-Support) with real occlusion scenarios (figure 3 (e)(k) sun-
glasses and (g)(l) scarf) and different facial expressions (figure 3 (d)(j) scream).
Similar to the synthetic occlusion experiments, the recognition results of fish-
erface (Fisher) [15], majority voting of local patches (Local-Vote) and majority
voting of patches at all levels (ML-Vote) are also listed in the table. Further-
more, the recognition rates presented in [8] (Sub-Recovery), [14] (Occl-SVM)
and [9] (sLNMF) are also included for comparisons. The results show that the
proposed supporting scheme outperforms the traditional holistic and majority
voting approaches under real occlusions and facial expression changes.

The performance of the proposed scheme is also generally better than the
previous methods [8, 14, 9]. Unlike sLNMF [9], the proposed scheme not only
tackles recognition under partial occlusions, but also tolerates facial expression
changes. The recognition rate of the proposed scheme is much better than Jia
and Martinez’s method (Occl-SVM) [14]. Note that Jia and Martinez used the
occluded faces (sun-glasses and scarf categories) as training samples, and another
set of sun-glasses and scarf face categories, which were taken separately, is used
as testing samples. It is expected that the results of the proposed supporting
scheme will be even better if such occluded face sets are also used for the training.
The proposed scheme demonstrates slightly better results than Fidler et al.’s
recovery approach [8] for the scarf samples, and outperforms their method for the
scream and sun-glasses samples. Note that the proposed scheme does not require
complicated iterative face recovery process, and therefore, is more efficient.

4 Conclusions

This paper introduces a novel multi-level supporting scheme for face recognition
under partial occlusions and disguise. This scheme effectively incorporates the
face discriminant information at multiple face levels with the proposed match-
ing likelihood ratio for each face patch. This likelihood ratio is designed to en-
hance the effect of well-matched patches while making the effect of bad-matched
patches negligible. This approach allows the best-matched patch classifiers to
give more contributions since they are the “most-confident” classifiers. In addi-
tion, the candidate selection scheme also allows more individual candidates to be
considered at the initial recognition stage when there exist conflicting classifiers,
and thus enhancing the final supporting results. Experimental results show the
proposed method provides a more robust and effective face recognition system,
especially when the faces are under occlusions, and it can tolerate different facial
expressions. The results also demonstrate the proposed method outperforms the
previous methods under such scenarios.
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