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Abstract

A robust and efficient background modeling algorithm
is crucial to the success of most of the intelligent video
surveillance systems. Compared with intensity-based ap-
proaches, texture-based background modeling approaches
have shown to be more robust against dynamic backgrounds
and illumination changes, which are common in real life
videos. However, many of the existing texture-based meth-
ods are too computationally expensive, which renders them
useless in real-time applications. In this paper, a novel effi-
cient texture-based background modeling algorithm is pre-
sented. Scale invariant local states (SILS) are introduced
as pixel features for modeling a background pixel, and a
pattern-less probabilistic measurement (PLPM) is derived
to estimate the probability of a pixel being background from
its SILS. An adaptive background modeling framework is
also introduced for learning and representing a multi-modal
background model. Experimental results show that the pro-
posed method can run nearly 3 times faster than existing
state-of-the-art texture-based method, without sacrificing
the output quality. This allows more time for a real-time
surveillance system to carry out other computationally in-
tensive analysis on the detected foreground objects.

1. Introduction

Background modeling has always been one of the key re-
search topics in computer vision over the past few decades
[1, 2, 6, 7, 9]. It is primarily used for foreground object
extraction in video analysis [4, 8, 10].Since the output of
background modeling is often subjected to analysis by other
higher level processes (such as object tracking, behavior
analysis, video profiling, face detection, etc.), a good back-
ground modeling algorithm should be as efficient as possi-
ble so as to reserve more computational time and power for
the later possesses. A slow background modeling method
is simply not useful, especially in a real-time system. How-

ever, background modeling is never an easy task in com-
plicated real life scenarios. For instances, dynamic back-
grounds (such as waving trees and rippling water surfaces)
and illumination changes are two major challenges in back-
ground modeling. A common approach for tackling these
problems is by adopting a mixture of distribution models
to adaptively learn the underlying multi-modal background
model.

Stauffer and Grimson [9] proposed using a mixture of
Gaussians (MoG) in the color space to model a background
pixel. Their method has been widely used for extraction
of moving foreground regions in video surveillance. How-
ever, such a color-based method is extremely sensitive to il-
lumination changes. Their method cannot handle highly dy-
namic backgrounds well with a limited number of Gaussian
distributions, and performs even worse in handling soft-
shadows. Texture-based methods [1, 3, 5], on the other
hand, are more tolerable to dynamic backgrounds and il-
lumination changes. In spite of that, texture-based methods
often require more computational power as well as memory
space than color-based methods. Heikkilä and Pietikäinen
[2] modeled a background pixel using a histogram of local
binary pattern (LBP) computed over a window centered at
the pixel. Although LBP is a simple and effective feature
for texture analysis, it is not stable in homogeneous regions
where neighboring pixels have very similar intensities. Tan
and Triggs [10] proposed to include an additional buffer-
ing state to solve the instability problem of LBP, and intro-
duced the local ternary pattern (LTP) as a robust extension
of LBP. Liao et al. [6] proposed the scale invariant local
ternary pattern (SILTP) to make LTP more robust under dif-
ferent lighting conditions. They also introduced the pattern
kernel density estimation (PKDE) technique to model the
probability density function (pdf) of a background pixel in
the discrete pattern space.

In this work, a texture-based pattern-less probabilistic
background modeling framework is proposed. Compared
with other texture-based methods, the proposed framework
is more efficient in terms of memory space and computa-
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tional power required. Experiments show that the proposed
framework not only produces results comparable to state-
of-the-art PKDE [6], but also runs nearly 3 times faster
than PKDE. In summary, this paper first introduces scale
invariant local states (SILS) as a pixel feature. Based on
this SILS feature, a pattern-less background model is de-
veloped which models a background pixel by the discrete
probability density functions of the individual components
of the SILS feature. A probabilistic measurement is then
derived to estimate the probability of a pixel being a back-
ground pixel based on its SILS. An adaptive background
modeling framework for a multi-modal background is also
proposed to adaptively update the pattern-less background
model. Extensive experiments have been carried out and the
results show that the proposed method is very efficient and
robust under extremely challenging video scenarios such as
sudden changes of illumination and rippling water surfaces.

The rest of the paper is organized as follows. Section 2
introduces the scale invariant local states (SILS) pixel fea-
ture. Section 3 presents the pattern-less background model
and introduces the probabilistic measurement for estimating
the probability of a pixel being a background pixel. Sec-
tion 4 gives the details of the adaptive background modeling
framework for a multi-modal background. Experimental re-
sults are presented in Section 5, followed by the conclusions
in Section 6.

2. Scale Invariant Local States

Figure 1. Examples of SILTP codes and the corresponding SILS
with 4-connected neighbors and τ = 0.1: SILTP code = 10000100
and SILS = {10, 00, 01, 00}.

In [6], Liao et al. proposed the robust SILTP feature for
modeling a pixel. As shown in figure 1, this feature is con-
structed by comparing the intensity of a pixel with that of
its neighbors and packing the 2-bit patterns representing the
comparison results into one single long bit pattern. Given a
pixel located at (x, y) with intensity I , its SILTP is defined
as

SILTPτ (x, y) =
⊕
n∈NR

sτ (I, In) (1)

whereNR is the set of neighbors within a region of radiusR
centered at the pixel, In is the intensity of its n-th neighbor,

and
⊕

is the bit-packing operations. sτ (I, In) is defined as

sτ (I, In) =

{ 10 if In > (1 + τ)I
01 if In < (1− τ)I
00 otherwise

(2)

where τ is a scale parameter to make the SILTP more robust
under different lighting conditions.

Although SILTP feature is simple and has shown to
be tolerable to illumination changes and dynamic back-
grounds, its discrete nature makes the representation as well
as updating of a background model much more compli-
cated. In [6], Liao et al. proposed the pattern kernel density
estimation (PKDE) to model and update the background us-
ing pdf in the pattern space. Although good results have
been reported, their model has a huge demand on memory
space and computational power. For instance, suppose N
neighbors and K background models are used in model-
ing a background pixel. Their PKDE background modeling
framework would require O(3NK) memory space to store
and O(3NK) operations to update the background model
for one single pixel. Such an exponential order in complex-
ity prohibits their framework from using more neighbors in
encoding a pixel using SILTP. The high memory and oper-
ations requirements also make their model not feasible in
real-time embedded systems which have limited memory
and computational power.

In order to overcome the weakness of using discrete pat-
terns, this paper proposes to keep track of the discrete like-
lihood of the individual components of the scale invariant
local states (SILS) instead of the code pattern itself. For-
mally, SILS is defined as

SILSτ (x, y) = {sτ (I, In) : n ∈ NR}. (3)

From (3), it can be seen that SILS is in fact defined as a
set of local states instead of a single bit pattern. The n-th
state corresponds to the local state of the n-th neighbor (see
figure 1).

3. Pattern-Less Background Modeling
In this section, a pattern-less background model is pro-

posed based on the SILS feature introduced in the previous
section. A probabilistic measurement is then developed to
estimate the probability of a pixel being a background pixel
based on its SILS and the current background model.

3.1. Pattern-Less Background Model

Traditionally, a background model of a pixel is built from
the history of its pixel features {p0, . . . ,pt−1}. To deter-
mine whether a pixel observed at time t belongs to back-
ground or foreground, its feature pt at time t will be com-
pared against the current background qt. Besides, pt will



also be used to update the background model from qt to
qt+1 for determining the background/foreground state of
the pixel at time t + 1. In [6], SILTP is employed as the
pixel feature pt and the background model qt is represented
as a discrete pdf of SILTP. The probability of a pixel being
background can be directly obtained from the pdf and de-
cision on whether the pixel is a background or foreground
pixel can be made accordingly.

In this paper, the SILS introduced in (3) is employed as
the pixel feature pt, and the background model qt is repre-
sented by the discrete likelihood of the individual compo-
nents of the SILS as

qt = {Stn : n ∈ NR} (4)

where
Stn = {ρtn,c : c ∈ {00, 01, 10}}. (5)

Here, ρtn,c is the likelihood of the n-th neighbor having a
local state c given the pixel is a background pixel. This
ρtn,c will be adaptively updated according to the previous
pixel features {p0, . . . ,pt−1}. The details of the updating
process will be described in the following subsection.

3.2. Probabilistic Measurement

In this subsection, a probabilistic measurement is intro-
duced to determine the probability of a pixel observed at
time t with feature pt being a background pixel. Given the
current background state qt as defined in (4), the measure-
ment φ(pt,qt) is defined as

φ(pt,qt) =
( ∏
n∈NR

∑
c∈{00,01,10}

(
δ(stn, c)ρ

t
n,c

)) 1
N

(6)

where stn ∈ pt is the state of the n-th neighbor as defined
in (3), δ is a delta function such as δ(a, b) = 1 when a = b
or 0 otherwise, ρtn,c is as defined in (5), and the power term
(.)

1
N is used for normalization. This measurement measures

the likelihood of a pixel having a pixel feature pt given it
is a background pixel. Assuming the prior probabilities of
a pixel being foreground and background are equal, then
(6) gives a measure of the probability of the pixel being a
background pixel given its pixel feature pt.

An adaptive update mechanism is applied to update the
background model qt such that it is able to tolerate changes
in the background from time to time. This can be done by
simply updating state likelihoods ρtn,c of qt according to the
following equation:

ρt+1
n,c = (1− α)ρtn,c + αδ(stn, c) (7)

where α is the learning rate ranging from 0 to 1.

4. Multi-Modal Background Modeling

In this section, an adaptive background modeling frame-
work for a multi-modal background will be described. De-
tails about how to classify a pixel as background or fore-
ground, as well as how to update the multi-modal back-
ground model will be given.

4.1. Background Determination

Similar to other state-of-the-art background modeling
approaches [6, 9], this paper also suggests to use a mixture
of distribution models to model a multi-modal background.
By keeping multiple hypotheses for a background pixel, the
background model can better represent a multi-modal back-
ground under challenging scenarios such as dynamic back-
grounds and illumination changes. In this paper, K models
are used for background modeling, and a weight ωtk is asso-
ciated with the k-th model at time t. Furthermore, at each
time instance t, the K models are sorted by their associated
ωtk in descending order.

Given a pixel with a pixel feature pt and the current
background state Qt = {qtk : k ∈ {1, 2, . . . ,K}}, the
probability of the pixel being a background pixel is given
by

P (pt|Qt) =
1

λ

∑
k<Mt

ωtkφ(p
t,qtk) (8)

where λ is a normalization factor, and M t is the number of
models that are currently considered as background. M t is
the maximum number less than K such that∑

k<M

ωtk < Tb (9)

with Tb being a user-defined threshold. A pixel can then be
considered as a background pixel if P (pt|Qt) is larger than
a user-defined threshold Ts.

4.2. Adaptive Background Update

After the classification of a pixel as either a foreground
or a background pixel, its pixel feature pt is used to update
the current background model Qt. The model qth with the
highest probability φ(pt,qth) > Th among all K models is
selected for the update, where Th is a user-defined thresh-
old. The state likelihoods of qth are updated according to
(7). The weights of all the K models are also adaptively
updated according to the following equation:

ωt+1
k = (1− α)ωtk + αδ(k, h) (10)

On the other hand, if there does not exist a model qth
with φ(pt,qth) > Th, the model qtl with lowest weighting
ωtl is then selected and replaced by a new model with state



likelihoods ρn,c initialize according to the following equa-
tion:

ρt+1
n,c =

{ Ti if stn = c
0 otherwise

(11)

where Ti is a user defined value.

4.3. Memory Space and Operations Requirement

For each modeling pixel, there are 3 possible states
for each of the N neighbors, and therefore, the proposed
pattern-less probabilistic measurement (PLPM) requires to-
tally O(3NK) memory space for storing and O(3NK) op-
erations for updating the likelihoods ofK models. Compar-
ing to PKDE [6], which requires O(3NK) memory space
for storing and O(3NK) operations for updating 3N possi-
ble codes in each model, the proposed PLPM requires much
less memory space and performs much faster.

5. Experimental Results
Similar to [6], the same block-based fusion technique

is also applied to the proposed method for comparisons.
The fusion is performed by downsampling the frame by
scale r with each pixel value being the mean of the cor-
responding block with size r x r. Local states are then
generated using (3), and the same background modeling
is performed in the downsampled frame. The resulting
probabilities are then upsampled bilinearly to the original
space, and then compared with the threshold Ts for the fi-
nal background decisions. Furthermore, [6] also suggested
to combine the multi-scale fused background probabilities
by Final P = (

∏n
i P̂ri)

1/n where P̂r is the background
probabilities defined in (8) with fusion scale r.

In the experiments, the proposed PLPM method to-
gether with state-of-the-art MoG [9] and PKDE [6] ap-
proaches were evaluated using nine challenging video se-
quences which are made publicly available by [5]. The
proposed PLPM method was evaluated with fusion tech-
nique using scales 1, 2, and 3 respectively (labeled as
PLPMr=1, PLPMr=2, and PLPMr=3 respectively). Multi-
scale fused PLPM with three scales 1, 2, and 3 (de-
noted as PLPMr=1+2+3) was also evaluated. Similarly,
the same fusion technique was also applied when evaluat-
ing PKDE denoted as (PKDEr=1, PKDEr=2, PKDEr=3,
and PKDEr=1+2+3 respectively). The nine testing videos
include six indoor scenes (AirportHall, Bootstrap, Curtain,
Escalator, Lobby, and ShoppingMall), and 3 outdoor scenes
(Fountain, Trees, and WaterSurface). AirportHall, Boot-
strap, and ShoppingMall contain crowds with moving soft-
shadow scenarios. Lobby is for testing the background
models under sudden lighting changes. Curtain, Escalator,
Fountain, Trees, and WaterSurface are the scenarios with
highly dynamic backgrounds. Snapshots of the videos are
shown in figure 2 (a). The corresponding ground truths and

the background/foreground segmentation results are shown
in figure 2(b)-(e). Similar to [6], no morphological oper-
ations were applied to the resulting foregrounds. Instead,
a commonly used OpenCV post-processing technique was
applied in order to eliminate small foreground regions and
fill holes inside the regions. For both PKDE and PLPM,
4-connected neighbors were used for generating SILTP and
SILS respectively. Since the number of neighbors N was
fixed to 4 during the experiments, the normalization power
term (.)

1
N in (6) for PLPM was not necessary, so that the

speed of the proposed method could be even faster. Fur-
thermore,K = 5 models were used for all MoG, PKDE, and
proposed PLPM. The parameters used for MoG and PKDE
were set as suggested in [9] and [6] respectively. For the
proposed PLPM, we set Tb = 0.7, Ts = Th = 0.015,
Ti = 0.5, and the learning rate α = 0.0005 for both (7)
and (10).

As shown in figure 2(c), the color-based MoG al-
ways suffered from errors caused by soft-shadows, and
the method was sensitive to lighting changes, expecially
in video sequences: AirportHall, Bootstrap, Escalator, and
Trees. Due to the limited paper space, only the results of
PKDEr=1+2+3 and PLPMr=1+2+3 are shown in figure 2(d)
and (e) respectively. As expected, both texture-based PKDE
and PLPM were insensitive to lighting changes, and effec-
tively handled soft-shadows. They produced similar back-
ground/foreground segmentation results. However, these
two methods sometimes generated holes in homogeneous
foreground objects, especially for large objects. Fortu-
nately, this ”hole” problem can be relieved by further hole-
filling mechanisms.

F-score quantitative evaluation method [6] is also used
to evaluate the modeling techniques, and it is defined as

FScore =
2TP

2TP + FN + FP
(12)

where TP, FN, and FP are true positive, false negative, and
false positive respectively. 20 labeled frames from each
testing video sequence with manually marked ground truths
were selected for calculating the corresponding F-score as
shown in table 1. The results show that the proposed PLPM
generated comparable F-scores as PKDE, and outperformed
MoG in most of the testing videos except the WaterSurface.
The final average F-score of the proposed PLPM was even
slightly better than PKDE. For the WaterSurface sequence,
all three methods produced similar F-scores. The MoG had
the highest F-score since the colors of the foregrounds were
sharply differentiable from the background, and the texture-
based PKDE and proposed PLPM had the ”hole” problems
for large homogeneous foreground objects. However, MoG
was not able to handle soft-shadows and was sensitive to
lighting changes, and therefore, performed the worst on av-
erage.



(a) Snapshots of testing videos: AirportHall, Bootstrap, Curtain, Escalator, Fountain, Lobby, ShoppingMall, Trees, and WaterSurface, respectively.

(b) Ground truths of the testing videos with the masked background regions.

(c) MoG [9] background/foreground segmentation results.

(d) PKDE [6] background/foreground segmentation results with fusion: PKDEr=1+2+3.

(e) The proposed PLPM background/foreground segmentation results with fusions: PLPMr=1+2+3.

Figure 2. (a) Testing video snapshots, (b) ground truths, and the background/foreground segmentation results of (c) MoG, (d) PKDE and
(e) the proposed PLPM.

MoG[9] PKDE[6] PKDE[6] PKDE[6] PKDE[6] PLPM PLPM PLPM PLPM
r=1 r=2 r=3 r=1+2+3 r=1 r=2 r=3 r=1+2+3

AirportHall 63.31 70.48 65.67 64.23 71.28 74.12 69.27 66.19 72.10
Bootstrap 59.32 81.99 78.03 69.95 80.92 81.39 77.55 69.16 80.22
Curtain 89.97 90.68 87.08 87.62 90.92 91.46 86.06 87.97 90.56
Escalator 31.83 64.46 70.83 66.84 75.38 67.81 69.62 63.81 73.67
Fountain 77.78 71.23 79.51 71.33 85.38 72.13 80.64 73.85 85.28
Lobby 76.47 85.57 71.83 69.46 84.47 84.91 76.60 71.31 85.05
ShoppingMall 71.38 80.28 77.50 76.39 81.32 80.51 78.90 76.64 80.29
Trees 23.39 37.74 68.97 67.75 70.83 47.75 63.05 66.96 74.61
WaterSurface 87.93 73.23 72.16 83.96 86.33 78.45 82.61 83.04 87.38
Average 64.60 72.85 74.62 73.06 80.76 75.39 76.03 73.21 81.02

Table 1. F-Scores of the background modeling (row 2-10). The last row shows the average F-scores of the testing videos.

The machine used for the experiments was a Dell note-
book PC with Windows 7 OS, Intel Core 2 Duo CPU (2.40
Hz x 2) and 2 Gb memory. All the methods were imple-
mented using C++ in VS .Net 2008 with no particular opti-
mizations. The processing framerates of the testing videos
are listed in table 2. Note that the processing overheads
for generating the SILTP and SILS for PKDE and proposed

PLPM, respectively, are also counted. Results show that the
proposed PLPM was nearly 3 times faster than the PKDE
approach when 4-connected neighbors (N=4) and 5 models
(K=5) were used for the background modeling. In partic-
ular, PKDEr=1 was only running at 8 fps for processing
the ShoppingMall sequence (320 x 256 resolution). This is
far from the real-time applcation requirement (25 fps). The



Resolutions MoG[9] PKDE[6] PKDE[6] PKDE[6] PKDE[6] PLPM PLPM PLPM PLPM
r=1 r=2 r=3 r=1+2+3 r=1 r=2 r=3 r=1+2+3

AirportHall 176x144 156.19 25.78 100.84 222.27 17.31 73.50 272.94 567.85 42.74
Bootstrap 160x120 200.25 34.48 135.84 301.07 23.01 95.28 363.19 752.00 55.46
Curtain 160x128 212.22 31.83 126.04 284.86 21.59 96.14 363.35 753.14 54.80
Escalator 160x130 187.33 32.71 126.85 281.93 21.60 99.46 398.07 810.48 54.92
Fountain 160x128 204.18 31.81 123.32 278.49 21.49 91.10 350.42 754.69 52.94
Lobby 160x128 209.05 31.76 125.47 282.68 21.48 95.83 366.22 749.39 55.11
ShoppingMall 320x256 48.20 8.21 32.12 71.70 5.44 25.02 95.79 196.18 14.23
Trees 160x128 187.61 32.49 123.97 277.53 21.35 85.12 327.90 695.51 50.47
WaterSurface 160x128 207.00 32.86 125.25 285.07 21.91 91.51 354.92 753.57 53.27

Table 2. The processing framerates of the testing videos measured in frame per second (fps).

proposed PLPMr=1, on the other hand, fulfills the requre-
ment. If a more accurate background modeling is needed,
the proposed PLPMr=1+2+3 (running at 14 fps) can be also
used by skipping every odd frames which does not affect
most of the real-time applications (e.g., tracking) too much.
For the other videos with lower resolutions, the proposed
PLPM at all fusions were running much faster than the real-
time requirement, and thus, reserve more rooms for further
complicated analysis of the foreground objects.

6. Conclusions

This paper proposed a robust an efficient and robust
pattern-less probabilistic measurement (PLPM) based on
the scale invariant local states (SILS) for background mod-
eling. Unlike previous state-of-the-art texture-based back-
ground modeling, the proposed framework models the
background as the probabilistic SILS instead of a single
code pattern. Therefore, the background modeling frame-
work can be constructed in a much simpler and efficient
way. The memory space and operations required can also be
dramatically reduced. Suppose N neighbors and K back-
ground models are used, the memory space and operations
required for the proposed framework are only O(3NK)
comparing to Liao et al.’s framework [6] which requires
O(3NK). This improvement allows the proposed method
to reserve more rooms for further complicated analysis of
the foreground objects, especially in the embedded real-
time system in which the memory and the processing power
are limited. Experimental results show that the proposed
framework also produces comparable background results as
[6] but being much faster in speed and uses less memory
space.
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