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Abstract

An appearance-based approach to track an object that
may undergo appearance change is proposed. Unlike re-
cent methods that store a detailed representation of object’s
appearance, this method allows an appearance feature with
a reduced dimension to be used. Through the use of a sparse
Bayesian classifier, high classification and detection accu-
racy can be maintained even if a reduced feature vector
is used. In addition, the classifier allows online-training
which enables online-updating of the original classification
model and provides better adaptability. Experiments show
that the method can be used to track targets undergo ap-
pearance change due to the change in view-point, facial ex-
pression and lighting direction.

1 Introduction

Useful vision-based applications such as video surveil-
lance system usually involve solving visual tracking prob-
lem where a moving object is located through a video se-
quence. This problem can be difficult because the appear-
ance of the moving object and the background may change
from frame to frame. These variations, however, are com-
mon in most application situations where lighting condition
and camera position are not under control.

Recently, anadaptivetracking approach (e.g. [4, 10, 5,
1, 6]) has been proposed to reduce the vulnerability of a
template-basedtracking system (e.g. [2]) to changes in ob-
jects’ appearance and background. Bycontinuously updat-
ing the appearancemodel of the object being tracked, the
object can be located reliably in a given video sequence with
reference to the ‘latest’ model (which is usually an image
patch as in [4, 10, 5]). Although this adaptive approach
can give a reliable tracking result when capturing condition
changes (e.g. there is a change in view-point), this approach
usually suffers from high computational complexity. This
is mainly because methods using this approach either work
on an image-based representation of the target or adopt a

complicated updating process. Besides, this approach may
adapt to new features while forgetting some original fea-
tures and this implies such an adaptive approach may fail
to locate the object when there is a sudden occlusion or a
sudden change in view-point.

Unlike other recent methods that use a high-resolution
image patch as a matching template, this work allows the
use of a feature1 of a lower dimensional size. The reduc-
tion in appearance information due to a lower dimensional
size is compensated by the adoption of a powerful classifier
for the matching process. The classifier used in this work
is a sparse Bayesian classifier (or a relevance vector ma-
chine) and it provides a mean to make a matching decision
based on a set of prototypical samples instead of a single
template. Incremental learning approach, which evaluates
new samples and updates classification model (i.e. the set
of prototypes) on-the-fly, is adopted to increase the adapt-
ability and efficiency of the proposed tracking system.

The proposed system performs better than previous work
in three ways. First, the low dimensional size of the ap-
pearance feature and the sparsity of the classifier provides
anefficientandfastmatching result. Second, the Bayesian
classification scheme used is morerobustandreliable than
simple matching schemes based on a single template (which
is continuously updated), especially when there is a sudden
change and recovery of appearance. Third, the incremental
learning scheme enables the classifier toadaptto long last-
ing appearance change so that it can be applied to a wider
range of environment. It is particularly useful in buildinga
general object (e.g. face) tracking system which may need
to adapt to a specific user. A detailed description on the
proposed system will be given in the next section.

2 Robust Appearance Model

2.1 Modelling by a Bayesian Classifier

Appearance-based tracking involvesmatchingbetween
a candidate image patch and a template image so that the

1A set of 50 gabor features (5 scales× 10 orientations) has been used.



likelihood of a predicted location can be estimated and this
matching process can be done by aclassifier. In this work,
a sparse Bayesian classifier or relevance vector machine
(RVM) [7] is used as the classifier to give theprobability
of an image patch containing the target.

RVM has been exploited in visual tracking in recent re-
search [9]. In their work, RVM was used as a regressor
which infers the best location of the target given an image
patch. In other words, RVM was used to model the associa-
tion between an image patch and the location parameter(s).
In this work, RVM is used as a classifier tomodelthe ap-
pearanceof the target without directly predicting the best
location. The location prediction is done separately. The
advantage of this usage of RVM is that the probability value
given by the classifier can be used in high-level inference
tasks such as object identification. In the proposed system,
this probability value is used to determine the necessity of
model updating so that the frequency of updating tasks can
be reduced.

RVM classifier is a simplebinary classifierand is used to
discriminatebetween target image patches and background
image patches in this work. Consider a training set that con-
sists ofN appearance feature vectors (e.g. pixel intensities
of an image patch) and their corresponding labels (i.e. target
class and background class),{xn, tn}N

n=1. The problem of
learning a binary RVM classifier can be expressed as that of
learning a functionf so that the input featurexn will map
onto their correct classification labeltn, and the probability
of xn being classified as the target class (i.e.tn = 1) equals
to σ(yn) = 1/(1 + e−yn)whereyn = f(xn). The function
f can be written as a sparse model whereM � N [7]:

f(xn) =

M∑
m=1

ωmφm(xn) + ω0 (1)

whereω = (ω0, ...ωM )T are the weights andφm(xn) =
K(xn,xm) with K(·, ·) being a positive definite kernel
function (Gaussian Kernel is used in our system) andxm

being a prototype (or a relevance vector) from the train-
ing set. Under the RVM framework where hyperparameters
α = {α0, ..., αM} are introduced, learningf from the train-
ing data means inferringω from the datat = {t1, ..., tN}
such that the posterior probability over the weights,p(ω |
t, α), is maximised. GivenA = diag(α0, α1, ..., αN ),
Bnn = σ{yn}[1 − σ{yn}] and Φ is the N × (N + 1)
design matrix, the optimal values of the weights can be es-
timated by using an iterative procedure [7], where the in-
verse of a Hessian matrix at ‘most probable’ weight (ωMP ),
∇∇ log p(t, ω | α)|wMP

= −(ΦTBΦ + A), have to be
computed for a current fixed values ofα at each loop. The
values ofα can be inferred from the training data such that
the marginal likelihoodp(t | α) is maximised. The itera-
tive procedure for estimatingω andα is repeated until some
suitable convergence criteria are satisfied.

In a batch-learningapproach, all training examples will
be considered as relevance vectors at the initial stage and the
irrelevance vectors will be ‘pruned’ after re-evaluation of α
in each iteration. In other words, everyαi has a finite value
at the beginning and the Hessian matrix to be computed in
each estimation loop has a size of(N+1)×(N+1) initially,
whereN is the number of training samples. Since inversion
of Hessian matrices is involved in the learning algorithm,
the overall training complexity isO(N3). This implies that
if the initial sample size is huge, the learning algorithm may
take a long time to converge.

2.2 Incremental Training Scheme

According to [8], we can also start with an initially small
model and sequentially ‘add’ relevance vectors to increase
the marginal likelihood. Considering the marginal likeli-
hood, or equivalently, its logarithmL(α):

L(α) = log p(t | α) = −
1

2
[N log 2π+log | C | +tT C−1t]

(2)
with C = B−1 + ΦA−1ΦT . From the analysis given
in [8], C can be rewritten in this way:C = B−1 +∑

m 6=i α−1
m φmφT

m + α−1
i φiφ

T
i = C−i + α−1

i φiφ
T
i , where

C−i is C without basis vectori. L(α) can be therefore
rewritten as:

L(α) = L(α−i)+
1

2
[log αi − log(αi +si)+

q2
i

αi + si

] (3)

wheresi = φT
i C−1

−i φi andqi = φT
i C−1

−i t. From [8], esti-
mation ofα, which gives maximum value of marginal like-
lihood, can be computed directly from:

αi =
s2

i

q2
i
−si

, if q2
i > si,

αi = ∞, if q2
i ≤ si,

(4)

The implication of this evaluation method forα is that
we can make discrete changes to the model while we are
guaranteed to increase the marginal likelihood. This means
we can start from an initially small model and test the ‘rele-
vance’ of each new input vectori sequentially. When vector
i is in the model (i.e.αi < ∞) but q2

i ≤ si, then vectori
should be removed (i.e.αi set to∞); When vectori is not
in the model (i.e.αi = ∞) andq2

i > si, vectori should be
added (i.e.αi set to a certain optimal value). Classification
model is thusbuilt incrementally.

By adopting this incremental training approach, compu-
tational complexity isO(M3) whereM is the number of
relevance vectors andM � N . In other words, the training
time can be reduced dramatically. In addition, this learning
approach allows any new input to be evaluated on the fly



and to be added to the model if certain criteria are fulfilled.
This property can be used to develop an adaptive tracking
system where online updating of a classification model is
needed. The full tracking algorithm will be presented in the
next section.

3 Probabilistic Tracking

3.1 Probabilistic Model

In this work, we adopt astochastictracking approach
where a particle filter is used to predict the best location
of the target from previous observations. The stochastic
approach is chosen because it allows probabilistic analy-
sis based on multiple hypotheses and therefore gives a more
robust and reliable result.

Under this approach, visual tracking can be formulated
as inferring a motion stateθt from a series of noisy observa-
tions (or raw images)I1:t = {I1, ..., It}. The state variable
used in this work describes the location and the scale of a
bounding box (Bt) containing the target and the variable
consists of four components:(Cx,t, Cy,t) representing the
centre position ofBt, rt representing the rotation angle of
Bt, andst representing the scaling factor ofBt. Given a
captured image or an observationIt, and the bounding box
Bt with a certain stateθt, a cropped imagext containing the
target can be obtained, and this image is used to represent
the observed appearance of the target in this work.

In the above context, the motion state is a hidden variable
(i.e. a variable we want to estimate) while the observations
are measurable variables. At each time framet, a motion
stateθt is associated with an observationIt and this motion
state is a state transition result from a previous motionθt−1.
Therefore, the inference task can be considered as finding
a certain state,θt, such thatp(θt | I1:t) is maximised, and
this probabilistic term can be expanded using Bayes’ rule:

p(θt | I1:t) ∝ p(It | θt)

∫
p(θt | θt−1)p(θt−1 | I1:t−1)dθt−1

(5)
In other words, the inference problem can now be tack-

led by estimating an observation likelihood term (i.e. ob-
servation model)p(It | θt), and a state transition term (i.e.
dynamic model)p(θt | θt−1) at each time frame. Particle
filter or CONDENSATION algorithm [3] can be applied to
perform the estimation from frame to frame.

In this work, a particle filter is used to approximate the
posterior distribution,p(θt | I1:t), by a set of weighted par-
ticles,St = {θ

(j)
t , γ

(j)
t }J

j=1 with
∑J

j=1 γ
(j)
t = 1. In a cer-

tain time framet−1, θ(j)
t is properly weighted with respect

to p(θ
(j)
t | I1:t−1). At time t, state samples{θ(j)

t−1}
J
j=1 are

drawn from the particle set,St−1, and each sample is prop-
agated fromθ

(j)
t−1 to θ

(j)
t with a probability ofp(θt | θt−1).

By verifying the likelihood of each sample state using the
observation model,p(It | θt), the posterior probability at
time t is updated and a new particle set is weighted again
using the updated posterior. The whole process repeats for
coming time frames.

To simplify the inference task, the dynamic model used,
p(θt | θt−1), is modelled as a Gaussian distribution with
CovarianceΨ:

p(θt | θt−1) = N (θt; θt−1,Ψ) (6)

3.2 Observation Model and Appearance
Update

The main usage of the observation model is to compute
the likelihood of a certain motion state,θt. As explained
previously, given an observation,It, and a bounding box,
Bt, with a certain state,θt, a cropped image,xt, can be
obtained. By using a pre-stored appearance model, the like-
lihood of the motion state can beapproximatedby a match-
ing score between the cropped image,xt, and a template
image from the appearance model. In this work, the match-
ing score is obtained by using the sparse Bayesian classifier
(or RVM classifier) described in Section 2.

In order to adapt to substantial and long lasting appear-
ance change, the appearance model represented in the RVM
classifier can be updated using the incremental learning
method described in Section 2.2. Since the probabilistic
output given by the RVM classifier indicates the probability
of an input image being the target class, this probabilistic
value can be used as an indicator to determine the necessity
of an appearance update. In this work, if this value lies be-
tween 0.4 and 0.6, an appearance update is performed. The
whole tracking algorithm is summarised in Algorithm 1.

4 Experimental Results

The proposed method was implemented using unopti-
mised C++ code and the OpenCV library. The experiment
was executed on a P4 2.4GHz computer with 1G memory.
In the experiment, video samples exploited in [6] were used.
The size of each sample image is 320× 240.

In the experiment, several images from the testing video
were selected randomly to train the classifier. The average
number of training samples (both positive and negative sam-
ples) used is 300 and the initial training takes around 30s.
The average number of relevance vectors (or prototypes) re-
tained in the classification model is 30. Given the average
length of the testing video is 1000 frames, the average num-
ber of re-training process invoked is 5 times. Given the av-
erage number of particles used is 50, the average time taken
for each tracking iteration (without retraining) is 63 ms (i.e.
16 frames per second) and retraining process takes around



Algorithm 1 Appearance-based Tracking Algorithm

• Initialise a sample set,S0 = {θ
(j)
0 , γ

(j)
0 = 1

J
}J

j=1

• Train a RVM classifier,f(x), using target and background patches
for t = 1 to T do

for j = 1 to J do
• Obtain a sample state,θ

(j)
t−1, from a sample setSt−1

• Obtain a propagated state,θ(j)
t , from θ

(j)
t−1 according to

p(θ
(j)
t | θ

(j)
t−1)

• Obtain a cropped image,x
(j)
t , from the current image frameIt

usingθ
(j)
t

• Evaluate the likelihood ofθ(j)
t using the classifier,f(x

(j)
t )

• Update the weight,γ(j)
t , of the state using1/(1 + e−f(x

(j)
t

))
end for
• Display a tracking box usingθ(j′)

t wherej′ = arg-maxj{γ
(j)
t }

if maxj{γ
(j)
t } within a certain thresholdthen

• Retrain the classifier using the corresponding image patch,x
(j)
t

end if
• Normalise the weight byγ′(j)

t = γ
(j)
t /

∑J

j=1
γ
(j)
t and generate

the sample Set,St, using the updated weight
end for

1 second to complete (where 1 positive and 9 arbitrary neg-
ative samples are added each time). Two sample tracking
sequences are shown in Figure 1. Figure 2 illustrates the
effectiveness of the proposed method under several difficult
conditions such as conditions involve the change in viewing
angle, facial expression and lighting direction.

#205

#0 #10 #22 #55 #109 #186

#0 #75 #119 #145 #172

Figure 1: This figure shows two sample tracking sequences
generated using the proposed method.

5 Conclusion

In this paper, a new appearance-based method is pro-
posed to track an object which may undergo appearance
change. The proposed method performs better than recent
methods in three ways. First, by reducing the dimensional
size of the appearance feature and using a sparse Bayesian
classifier to ensure high classification accuracy, this method
relaxesthe tradeoffsbetween time complexity and accu-
racy. Second, this method detects and tracks an object
based on more than one prototype, and this means it is more
robust to the appearance change of the object. Third, this

Initial frame

The sample with

of the samples

Likelihood valuesSamples
Current frame (shown as boxes)

condition

angle

viewing

lighting

Different

facial
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Different

Different

largest likelihood

Figure 2: This figure shows the likelihood histograms gen-
erated by the proposed method and the corresponding track-
ing results under several difficult conditions.

method supports incremental learning which enablesonline
updatingof an appearance model. The updating process,
however, takes longer time than the classification task and
may deteriorate tracking performance. Fortunately, givena
good initial classification model, the target can be tracked
reliably without performing any updating task. Further
investigation on relaxing this constraint will be done.
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