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Figure 1. Blemished subject-driven generation with our ArtiFade and vanilla subject-driven methods. We display images generated using
ArtiFade and Textual Inversion [15] on watermark artifacts on the left, and ArtiFade and DreamBooth [44] on adversarial noise artifacts [48]
on the right. In contrast to the poor performance of Textual Inversion and DreamBooth, which are negatively affected by the visible or
invisible artifacts, ArtiFade produces much better fidelity of the subject with high-quality generation.

Abstract

Subject-driven text-to-image generation has demonstrated
remarkable advancements in its ability to learn and cap-
ture characteristics of a subject using only a limited num-
ber of images. However, existing methods commonly rely on
high-quality images for training and often struggle to gen-
erate reasonable images when the input images are blem-
ished by artifacts. This is primarily attributed to the in-
adequate capability of current techniques in distinguishing
subject-related features from disruptive artifacts. In this pa-
per, we introduce ArtiFade to tackle this issue and success-
fully generate high-quality artifact-free images from blem-
ished datasets. Specifically, ArtiFade exploits fine-tuning of
a pre-trained text-to-image model, aiming to remove arti-
facts. The elimination of artifacts is achieved by utilizing a
specialized dataset that encompasses both unblemished im-
ages and their corresponding blemished counterparts dur-
ing fine-tuning. ArtiFade also ensures the preservation of
the original generative capabilities inherent within the dif-
fusion model, thereby enhancing the overall performance
of subject-driven methods in generating high-quality and
artifact-free images. We further devise evaluation bench-
marks tailored for this task. Through extensive qualitative
and quantitative experiments, we demonstrate the general-
izability of ArtiFade in effective artifact removal under both
in-distribution and out-of-distribution scenarios.
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1. Introduction
With the rapid advancement of generative diffusion mod-
els [20, 41, 45, 47, 60], subject-driven text-to-image gen-
eration [5, 15, 25, 27, 44], which aims to capture distinct
characteristics of a subject by learning from a few images of
the subject, has gained significant attention. This approach
empowers individuals to seamlessly incorporate their pre-
ferred subjects into diverse and visually captivating scenes
by simply providing text conditions. Representative works
such as Textual Inversion [15] and DreamBooth [44] have
shown promising results on this task. Specifically, Textual
Inversion proposes to optimize a textual embedding to en-
code identity characteristics that provide rich subject infor-
mation for subsequent generation. DreamBooth shares a
similar idea but additionally fine-tunes the diffusion model
to preserve more identity semantics. Plenty of successive
efforts have been made to advance this task from various
perspectives, including generation quality, compositional-
ity, and efficiency [5, 25, 27].

Both of the above mentioned methods, along with their
follow-up works, however, rely heavily on the presence of
unblemished input images that contain only relevant iden-
tity information. This is often expensive or even unavail-
able in real-world applications. Instead, in practical scenar-
ios such as scraping web images of a desired subject, it is
common to encounter images that are blemished by various
visible artifacts such as watermarks, drawings, and stickers.
Additionally, there also exist invisible artifacts like adver-
sarial noises [48] that are not easily detectable or remov-



able using off-the-shelf tools. These artifacts can signif-
icantly impede the comprehensive learning of the subject
and lead to a catastrophic decline in performance across
multiple dimensions (see Fig. 1). This limitation arises
from the feature confusion inherent in the existing subject-
driven learning process. The process simultaneously cap-
tures subject-related features and disruptive artifact inter-
ference. It lacks the discriminative power to distinguish
these two from each other, and fails to preserve the integrity
of subject characteristics while mitigating negative effects
caused by artifacts. As blemished inputs are inevitable in
applications, a pressing challenge emerges: Can we effec-
tively perform subject-driven text-to-image generation
using blemished images? We term this novel problem (i.e.,
generating subject-driven images from blemished inputs) as
blemished subject-driven generation in this paper.

To answer the above question, we present ArtiFade, the
first model to tackle blemished subject-driven generation by
adapting vanilla subject-driven methods (e.g., Textual In-
version [15] and DreamBooth [44]) to effectively extract
subject-specific information from blemished training data.
The key objective of ArtiFade is to learn the implicit rela-
tionship between natural images and their blemished coun-
terparts through alignment optimization. Specifically, we
introduce a specialized dataset construction method to cre-
ate pairs of unblemished images and their corresponding
counterparts. These pairs can be applied to fine-tune var-
ious subject-driven approaches in the context of blemished
subject-driven generation. Besides, we also observe fine-
tuning an extra learnable embedding in the textual space,
named artifact-free embedding, can enhance prompt fidelity
in the blemished subject-driven generation.

We further introduce an evaluation benchmark that en-
compasses (1) multiple test sets of blemished images with
diverse artifacts, and (2) tailored metrics for accurately as-
sessing the performance of blemished subject-driven gener-
ation methods. A thorough experimental evaluation shows
that our method consistently outperforms other existing
methods, both qualitatively and quantitatively. Notably,
ArtiFade exhibits superb capabilities in handling out-of-
distribution (OOD) scenarios involving diverse types of ar-
tifacts that are distinct from the training data. This inherent
generalizability indicates our model can effectively learn to
discern and distinguish the patterns exhibited by artifacts
and unblemished images, instead of overfitting to a specific
type of artifacts.

In summary, our key contributions are as follows:
• We are the first to tackle the novel challenge of blemished

subject-driven generation. To address this task, we pro-
pose ArtiFade that fine-tunes diffusion models to align
unblemished and blemished data.

• We introduce an evaluation benchmark tailored for effec-
tively assessing the performance of blemished subject-

driven generation techniques.
• We conduct extensive experiments and demonstrate that

ArtiFade outperforms current methods significantly. We
show noteworthy generalizability of ArtiFade, effectively
addressing both in-distribution and out-of-distribution
scenarios with various types of artifacts.

2. Related work
Text-to-image synthesis Text-to-image generation has
attracted considerable attention in recent years by lever-
aging Generative Adversarial Networks (GANs) [16] and
diffusion models [20, 41]. Reed et al. [40] were the first
to integrate GANs into text-to-image generation. Since
then, several influential works had been proposed [8, 29,
36, 43, 54–58, 61, 62], demonstrating impressive results
with improved resolution [56, 57] and fidelity of fine de-
tails [54]. Diffusion models in text-to-image synthesis have
also yielded remarkable results owing to their ability in gen-
erating precise and customized images that better align with
individual text specifications [17, 35, 39, 41, 45].

Subject-driven generation Subject-driven generation
has gained popularity due to its ability to generate person-
alized images based on a given set of subject images and
text prompts. One prominent method in subject-driven gen-
eration is Textual Inversion [15], which involves learning
an embedding vector by minimizing the Latent Diffusion
Model loss [41] on input images. The learned embedding
vector can be effectively combined with text prompts, al-
lowing seamless integration in the text-to-image generation
process. Recent approaches [27, 33, 44] have significantly
enhanced subject reconstruction fidelity by incorporating
fine-tuning techniques.

Artifacts removal Shadow and watermark removal are
classic tasks in image processing and computer vision. At
the early stage, most approaches for shadow removal or im-
age recovery relied on the properties of intensity and illumi-
nation [1, 11–13, 19, 26, 46, 51, 52, 59]. Some methods also
incorporated color features to improve their results [19].
Deep learning techniques and Convolutional Neural Net-
works (CNNs) have played a significant role in advancing
shadow removal methods and producing impressive results
in recent years [6, 10, 14, 22, 24, 28, 32, 50, 63]. Sev-
eral studies [10, 22, 32, 50] have incorporated GANs to
further enhance the results of shadow removal techniques.
Moreover, with the increasing popularity of diffusion mod-
els in image generation, a novel diffusion-based method for
shadow removal has recently been introduced [18]. The
most widely adopted methods for recovering concealed in-
formation from watermarked images include the application
of generalized multi-image matting algorithms [9], comple-
mented by image inpainting techniques [23, 37, 53], and the
utilization of deep neural networks and CNNs [7]. Similar



Figure 2. Overview of ArtiFade. On the left, we present artifact rectification training, which involves an iterative process of calculating
reconstruction loss between an unblemished image and the reconstruction of its blemished embedding. The right-hand side is the inference
stage that tests ArtiFade on unseen blemished images. To avoid ambiguity, we (1) simplify the training of Textual Inversion into an input-
output form, and (2) use “fine-tuning” and “inference” to respectively refer to the fine-tuning stage of ArtiFade and the use of ArtiFade for
subject-driven generation.

to shadow removal, GANs and Conditional GANs [34] are
also widely used in watermark removal tasks [3, 30, 31].
Our work is closely related to these previously mentioned
studies. We are the first to address the artifact issues in the
realm of subject-driven text-to-image generation.

3. Method
Given a set of blemished input images, our objective is to
eliminate their negative impacts on the quality of subject-
driven image generation. To achieve this goal, we present
ArtiFade, an efficient framework that learns to discern and
distinguish the patterns exhibited by various types of arti-
facts and unblemished images. In this section, we focus ex-
clusively on ArtiFade based on Textual Inversion. However,
it is important to note that the ArtiFade framework can be
generalized to other subject-driven generation methods. As
shown in Fig. 2, ArtiFade based on Textual Inversion incor-
porates two main components, namely the fine-tuning of the
partial parameters (i.e., key and value weights) in the diffu-
sion model and the simultaneous optimization of an artifact-
free embedding 〈Φ〉. We begin by discussing the prelimi-
naries of the Latent Diffusion Model and Textual Inversion.
In Sec. 3.1, we elaborate our automatic construction of the
training dataset, which consists of both blemished and un-
blemished data. We then introduce Artifact Rectification
Training, a method for fine-tuning the model to accommo-
date blemished images, in Sec. 3.2. We finally present the
use of ArtiFade for handling blemished images in Sec. 3.3.

Preliminary Latent Diffusion Model (LDM) [41] is a la-
tent text-to-image diffusion model derived from Diffusion
Denoising Probabilistic Model (DDPM) [20]. LDM lever-

ages a pre-trained autoencoder to map image features be-
tween the image and latent space. This autoencoder com-
prises an encoder E , which transforms images into latent
representations, and a decoder D, which converts latent rep-
resentations back into images. The autoencoder is opti-
mized using a set of images so that the reconstructed image
x̂ = D(E(x)) ≈ x. Additionally, LDM introduces cross-
attention layers [49] within the U-Net [42], enabling the in-
tegration of text prompts as conditional information during
the image generation process. The LDM loss is defined as

LLDM := Ez∼E(I),y,ϵ∼N(0,1)

[
∥ϵ− ϵθ(zt, t, y)∥22

]
, (1)

where E encodes the image I into the latent representa-
tion z. Here, zt denotes the noisy latent representation at
timestep t, ϵθ refers to the denoising network, and y repre-
sents the text condition that is passed to the cross-attention
layer.

Based on LDM, Textual Inversion [15] aims to capture
the characteristics of a specific subject from a small set
of images. Specifically, Textual Inversion learns a unique
textual embedding by minimizing Eq. (1) on a few images
that contain the particular subject. It can produce promis-
ing generation results with high-quality inputs, but fails on
input images that are blemished by artifacts (see Fig. 1).
This problem arises from the inherent limitation of Textual
Inversion in learning shared characteristics exhibited in the
input images without the capability in differentiating arti-
facts from unblemished subjects. In this paper, we aim to
address this issue on deteriorated generation quality of Tex-
tual Inversion in the presence of blemished images.



Figure 3. Examples of training dataset D that contains both un-
blemished images and blemished counterparts.

3.1. Dataset construction
Existing subject-driven generation methods operate under
the assumption of unblemished training data, consisting of
solely high-quality images devoid of any artifacts. How-
ever, this assumption does not align with real-world applica-
tions, where obtaining blemished images from the internet
is a commonplace. To address this blemished subject-driven
generation in this paper, we first construct a training set that
incorporates both unblemished images and their blemished
counterparts that are augmented with artifacts.

Augmentation of multiple artifacts We construct our
dataset by collecting a multi-subject set C of N image sub-
sets from existing works [15, 27, 44] and a set B of L dif-
ferent artifacts:

C = {Si}Ni=1, Si = {Ii,j}Mi
j=1, B = {βk}Lk=1, (2)

where Si denotes the image subset corresponding to the ith
subject, Mi is the total number of images in Si, and βk

represents a type of artifact for image augmentation. Our
dataset D can then be constructed by applying each artifact
βk to each image I in Si separately, i.e.,

Sβk

i = {Iβk

i,j }
Mi
j=1, D = {Si, {Sβk

i }Lk=1}Ni=1, (3)

where Iβk

i,j is the counterpart of Ii,j augmented with the
specific artifact βk. Some examples of original images and
their augmented versions with distinct artifacts can be found
in Fig. 3. See Appendix for more examples.

Blemished textual embedding For each blemished sub-
set, we perform Textual Inversion to optimize a blemished
textual embedding [Vβk

i ] , i.e.,

Sβk

i Textual Inversion−−−−−−−−−−−→ [Vβk

i ],

i = 1, 2, ..., N ; k = 1, 2, ..., L
(4)

By applying Eq. (4) on N subsets with L types of artifacts,
we end up with a set of N×L blemished textual embeddings
V = {[Vβk

i ]}N,L
i=1,k=1, which will be used in the subsequent

model fine-tuning. As we have illustrated in Fig. 1, directly

prompting the diffusion model with [Vβk

i ] will lead to a sig-
nificant decrease in generation quality. Consequently, our
objective is to robustly handle blemished embeddings and
effectively eliminate the detrimental impact of artifacts. We
achieve this by devising a partial fine-tuning paradigm for
the pre-trained diffusion model on the constructed training
set D, as elaborated in the following subsection.

3.2. Artifact rectification training
After establishing the curated dataset D, we embark on
training a generalizable framework on D, capable of gener-
ating unblemished images using blemished textual embed-
dings. To this end, we propose artifact rectification training,
which consists of two key components, namely partial fine-
tuning of a pre-trained diffusion model and the optimization
of an artifact-free embedding, to eliminate the artifacts and
distortions in the generated images.

We fine-tune partial parameters related to the attention
modules, including those involved in processing the textual
conditions. This strategy allows us to optimize the relevant
components associated with the blemished textual embed-
ding [Vβk

i ]. Considering that only the key and value weights
in the diffusion model’s cross-attention layer are involved
in the processing of textual embedding, we choose to fine-
tune these two types of parameters. To further enhance the
model’s stability when handling blemished content, we also
fine-tune the key and value weights in the self-attention lay-
ers. In short, we fine-tune key and value weights (i.e., W k

and W v) across all attention modules. Moreover, we find
that optimizing an additional embedding, 〈Φ〉, in the tex-
tual space with partial parameters could improve prompt fi-
delity by retaining the textual information of the model, as
presented later in Sec. 4.5.

Training objective During each iteration, we will first
randomly sample an unblemished image Ii,j from the train-
ing set D and a type of artifact βk ∈ B to obtain the blem-
ished textual embedding [Vβk

i ] ∈ V that is optimized on the
blemished subset Sβk

i .
Specifically, given the sampled blemished textual em-

bedding [Vβk

i ], we form the prompt “a 〈Φ〉 photo of [Vβk

i ]”,
which will be input to the text encoder to acquire the text
condition yβk

i . Our optimization objective will then be de-
fined as reconstructing the unblemished image Ii,j by con-
ditioning the denoising process on the text condition yβk

i .
Thus, we can formulate the final loss for training ArtiFade
as

LArtiFade :=E
z∼E(Ii,j),y

βk
i ,ϵ∼N(0,1)[

∥ϵ− ϵ{Wk,Wv,⟨Φ⟩}(zt, t, y
βk

i )∥22
]
,

(5)

where {W k,W v, ⟨Φ⟩} is the set of the trainable parameters
of ArtiFade.



Table 1. Quantitative results - ID.

Method WM-model on WM-ID-test

IDINO↑ RDINO↑ ICLIP↑ RCLIP↑ TCLIP↑
TI (unblemished) 0.488 1.349 0.730 1.070 0.283
TI (blemished) 0.217 0.852 0.576 0.909 0.263
Ours (TI-based) 0.337 1.300 0.649 1.020 0.282

Table 2. Quantitative results - OOD.

Method WM-model on WM-OOD-test

IDINO↑ RDINO↑ ICLIP↑ RCLIP↑ TCLIP↑
TI (unblemished) 0.488 1.278 0.730 1.136 0.283
TI (blemished) 0.229 0.858 0.575 0.929 0.262
Ours (TI-based) 0.356 1.237 0.654 1.079 0.282

3.3. Subject-driven generation with blemished im-
ages

After artifact rectification training, we obtain the ArtiFade
model, prepared for the task of blemished subject-driven
generation. Given a test image set Sβ′

test in which all im-
ages are blemished by an arbitrary artifact β′, the ArtiFade
model can generate high-quality subject-driven images us-
ing blemished samples with ease.

Specifically, we first obtain the blemished textual em-
bedding [Vβ

′

test] by applying Textual Inversion on the test set
Sβ′

test. We then simply infer the ArtiFade model with a given
text prompt that includes the blemished textual embedding,
i.e., “a 〈Φ〉 photo of [Vβ

′

test]”. At the operational level, the
sole distinction between our approach and vanilla Textual
Inversion lies in inputting text prompts containing [Vβ

′

test] into
the fine-tuned ArtiFade instead of the pre-trained diffusion
model. This simple yet effective method resolves the issue
of Textual Inversion’s incapacity to handle blemished input
images, bearing practical utility.

Details of ArtiFade models We choose N = 20 subjects,
including pets, plants, containers, toys, and wearable items
to ensure a diverse range of categories. We experiment with
the ArtiFade model based on Textual Inversion trained with
visible watermark artifacts, namely WM-model. The train-
ing set of WM-model involves LWM = 10 types of water-
marks, characterized by various fonts, orientations, colors,
sizes, and text contents. Therefore, we obtain 200 blem-
ished subsets in total within the training set of WM-model.
We fine-tune WM-model for a total of 16k steps.

4. Experiment
4.1. Implementation details
We employ the pre-trained LDM [41] following the official
implementation of Textual Inversion [15] as our base dif-
fusion model. We train the blemished textual embeddings

Figure 4. Qualitative Comparison - ID. Unlike Textual Inversion
which struggles to produce reasonable generation from blemished
inputs, our method (WM-model) consistently learns the distin-
guished features of the given subject and achieves high-quality
generation without distortion.

Figure 5. Qualitative Comparison - OOD. Our method
(WM-model) is generalizable to process out-of-distribution arti-
facts that are unseen during the fine-tuning, demonstrating much
better performance than Textual Inversion. Best viewed in PDF
with zoom.

for 5k steps using Textual Inversion. We use a learning rate
of 5e-3 to optimize our artifact-free embedding and 3e-5
for the partial fine-tuning of key and value weights. Note
that all other parameters within the pre-trained diffusion
model remain frozen. All experiments are conducted on
2 NVIDIA RTX 3090 GPUs. In the main paper, we focus
on the comparison with Textual Inversion and DreamBooth
to demonstrate the efficiency of our proposed contributions.
See Appendix for additional comparisons and applications.

4.2. Evaluation benchmark
Test dataset We construct the test dataset using 16 novel
subjects that differ from those in the training set. These
subjects encompass a wide range of categories, includ-
ing pets, plants, toys, transportation, furniture, and wear-
able items. We group the visible test artifacts into two
categories: (1) in-distribution watermarks (WM-ID-test)
(i.e., watermark types same as the training data), and (2)
out-of-distribution watermarks (WM-OOD-test) (i.e., wa-
termark types different from the training data). Within the
WM-ID-test and WM-OOD-test, we synthesize 5 dis-
tinct artifacts for each category, resulting in 80 test sets.



Evaluation metrics We evaluate the performance of
blemished subject-driven generation from three perspec-
tives: (1) the fidelity of subject reconstruction, (2) the fi-
delity of text conditioning, and (3) the effectiveness of miti-
gating the negative impacts of artifacts. Following common
practice [15, 44], we use CLIP [38] and DINO [4] similar-
ities for measuring these metrics. For the first metric, we
calculate the CLIP and DINO similarities between the gen-
erated images and the unblemished version of the input im-
ages, denoted as ICLIP and IDINO respectively. For the second
metric, we calculate the CLIP similarity between the gener-
ated images and the text prompt, denoted as TCLIP. For the
third metric, we calculate the relative ratio of similarities
between generated images and unblemished input images
compared to their blemished versions, defined as

RCLIP = ICLIP/ICLIP
β RDINO = IDINO/IDINO

β (6)

where ICLIP
β and IDINO

β denote CLIP and DINO similari-
ties between the generated images and the blemished input
images respectively. A relative ratio greater than 1 indi-
cates that generated images resemble unblemished images
more than blemished counterparts, suggesting fewer arti-
facts. Conversely, a ratio less than 1 indicates that gener-
ated images are heavily distorted with more artifacts. We
use DINO ViT-S/16 [4] and CLIP ViT-B/32 [38] to com-
pute all metrics.

4.3. ArtiFade with Textual Inversion
4.3.1. Quantitative comparisons
We conduct both in-distribution and out-of-distribution
quantitative evaluations of our method and compare it to
Textual Inversion with blemished embeddings. We addi-
tionally report the results using Textual Inversion on un-
blemished images as a reference, although it is not a direct
comparison to our model.

In-distribution (ID) analysis We consider the in-
distribution scenarios by testing WM-model on
WM-ID-test. In Tab. 1, we can observe that the
use of blemished embeddings in Textual Inversion leads to
comprehensive performance decline including: (1) lower
subject reconstruction fidelity (i.e., IDINO and ICLIP) due
to the subject distortion in image generation; (2) lower
efficiency for artifact removal (i.e., RDINO and RCLIP)
due to inability to remove artifacts; (3) lower prompt
fidelity (i.e., TCLIP) since the prompt-guided background is
unrecognizable due to blemishing artifacts. In contrast, our
method consistently achieves higher scores than Textual
Inversion with blemished embeddings across the board,
demonstrating the efficiency of ArtiFade in various aspects.

Out-of-distribution (OOD) analysis We pleasantly dis-
cover that WM-model possesses the capability to han-

Table 3. Quantitative comparison with DreamBooth.

Method WM-ID-test

IDINO↑ RDINO↑ ICLIP↑ RCLIP↑ TCLIP↑
TI (unblemished) 0.488 1.349 0.730 1.070 0.283
TI (blemished) 0.217 0.852 0.576 0.909 0.263
DB (blemished) 0.503 0.874 0.738 0.939 0.272
Ours (TI-based) 0.337 1.300 0.649 1.020 0.282
Ours (DB-based) 0.589 1.308 0.795 1.083 0.284

Figure 6. Qualitative comparison with DreamBooth.

dle out-of-distribution scenarios, owing to its training with
watermarks of diverse types. We consider the out-of-
distribution (OOD) scenarios for WM-model by testing it
on WM-OOD-test, as presented in Tab. 2. Similar to ID
evaluation, all of our metrics yield higher results than Tex-
tual Inversion with blemished embeddings. These results
further demonstrate the generalizability of our method.

4.3.2. Qualitative comparisons
We present qualitative comparisons between the output gen-
erated by ArtiFade and Textual Inversion with blemished
textual embeddings, including in-distribution scenarios in
Fig. 4 and out-of-distribution scenarios in Fig. 5.

In-distribution analysis The images generated by Tex-
tual Inversion exhibit noticeable limitations when using
blemished textual embeddings. Specifically, as depicted in
Fig. 4, all rows predominantly exhibit cases of incorrect
backgrounds that are highly polluted by watermarks. By
using ArtiFade, we are able to eliminate the background
watermarks.

Out-of-distribution analysis In addition, we conduct ex-
periments with our WM-model to showcase its capability to
remove out-of-distribution watermarks, as shown in Fig. 5.
It is important to note that in the first row, the watermark in
the input images may not be easily noticed by human eyes
upon initial inspection due to the small font size and high
image resolution. However, these artifacts have a signif-
icant effect when used to train blemished embeddings for
generating images. ArtiFade effectively eliminates the ar-
tifacts on the generated images, improving reconstruction



Figure 7. Qualitative Comparison between ours and DreamBooth
when inputs are blemished by invisible adversarial noises.

fidelity and background accuracy, hence leading to substan-
tial enhancements in overall visual quality.

4.4. ArtiFade with DreamBooth
4.4.1. Visible artifacts blemished subject generation
The ArtiFade fine-tuning framework is not limited to Tex-
tual Inversion with textual embedding, it can also be gener-
alized to DreamBooth. We use the same training dataset
and blemished subsets as in the case of the WM-model
(i.e., N = 20, LWM= 10). The vanilla DreamBooth fine-
tunes the whole UNet model, which conflicts with the fine-
tuning parameters of ArtiFade. We therefore use Dream-
Booth with low-rank approximation (LoRA)1 to train LoRA
adapters [21] for the text encoder, value, and query weights
of the diffusion model for each blemished subset using Sta-
ble Diffusion v1-5. For simplicity, we will use Dream-
Booth to refer to DreamBooth with LoRA below. During
the fine-tuning of DreamBooth-based ArtiFade, we load the
pre-trained adapters and only unfreeze key weights since
value weights are reserved for DreamBooth subject infor-
mation. In Tab. 3, it is evident that our method, based on
DreamBooth, yields the highest scores among all cases. Our
method also maintains DreamBooth’s advantages in gener-
ating images with higher subject fidelity and more accurate
text prompting, outperforming ArtiFade with Textual Inver-
sion. We show some qualitative results in Fig. 6.

4.4.2. Invisible artifacts blemished subject generation
ArtiFade demonstrates exceptional performance in handling
subjects characterized by intricate features and blemished
by imperceptible artifacts. We collect 20 human figure
datasets from the VGGFace2 dataset [2]. We then use
the Anti-DreamBooth [48] ASPL method to add adversar-
ial noises to each group of images, producing 20 blem-
ished datasets for fine-tuning a DreamBooth-based Arti-
Fade model. The model is fine-tuned for 12k steps. As illus-
trated in Fig. 7, our approach surpasses the DreamBooth in

1https://huggingface.co/docs/peft/main/en/task_
guides/dreambooth_lora

differentiating the learning of adversarial noises from hu-
man face features. In contrast to DreamBooth, which is
fooled into overfitting adversarial noises, thereby generat-
ing images with a heavily polluted background, our model
reconstructs human figures in image generation while main-
taining high fidelity through text prompting.

4.5. Ablation study
We conduct ablation study to demonstrate the efficiency of
our method by comparing with three variants, namely (1)
VarA, where we solely fine-tune the artifact-free embed-
ding; (2) VarB, where we fine-tune parameters related to im-
age features (i.e., query weights W q) along with the artifact-
free embedding, and (3) VarC, where we fine-tune key and
value weights, i.e., W k and W v , exclusively. We com-
pare our WM-model with these variants by testing them on
WM-ID-test.

Effect of partial fine-tuning As shown in Tab. 4, com-
pared to VarA, our full method yields higher scores on all
metrics by a significant margin, except for RDINO. This
is reasonable as the artifact-free embedding can be easily
overfitted to the training data, resulting in generated images
that resemble a fusion of training images (Fig. 8, VarA). As
a result, the denominator of RDINO, namely the similarity
between the generated images and the blemished images, is
significantly decreased, leading to a high RDINO. Due to a
similar reason, VarA shows lowest IDINO, ICLIP, and TCLIP

among all variants, indicating that it fails to reconstruct the
correct subject. Overall, both quantitative and qualitative
evaluation showcases that solely optimizing the artifact-free
embedding is insufficient to capture the distinct characteris-
tics presented in the blemished input image, demonstrating
the necessity of partial fine-tuning.

Effect of fine-tuning key and value weights As shown in
Tab. 4 and Fig. 8, VarB yields unsatisfactory outcomes in all
aspects compared to ours. The lower RDINO and RCLIP sug-
gest that the generated images retain artifact-like features
and bear closer resemblances to the blemished subsets. Fur-
thermore, the reduced TCLIP indicates diminished prompt
fidelity, as the approach fails to accurately reconstruct the
subject from the blemished embeddings, which is also ev-
idenced by Fig. 8. These findings suggest that fine-tuning
the parameters associated with text features yields superior
enhancements in terms of artifact removal and prompt fi-
delity.

Effect of the artifact-free embedding With VarC, we ex-
clude the optimization of artifact-free embedding. In Tab. 4,
we can observe that VarC yields higher IDINO and ICLIP

but lower RDINO and RCLIP compared to our WM-model,
which indicates that the approach achieves higher subject

https://huggingface.co/docs/peft/main/en/task_guides/dreambooth_lora
https://huggingface.co/docs/peft/main/en/task_guides/dreambooth_lora


Table 4. Quantitative comparison of ablation study.

Method W kv W q 〈Φ〉 IDINO RDINO ICLIP RCLIP TCLIP

VarA ✓ 0.154 1.412 0.566 0.984 0.265
VarB ✓ ✓ 0.283 1.230 0.617 0.978 0.277
VarC ✓ 0.342 1.292 0.652 1.019 0.280
Ours ✓ ✓ 0.337 1.300 0.649 1.020 0.282

Figure 8. Qualitative comparison of ablation study.

fidelity but lower efficiency in eliminating artifacts when
generating images. Since our primary objective is to gen-
erate artifact-free images from blemished textual embed-
ding, our WM-model chooses to trade off subject recon-
struction fidelity for the ability to remove artifacts. Ad-
ditionally, this approach produces lower TCLIP than ours,
suggesting that the artifact-free embedding effectively im-
proves the model’s capability to better preserve text infor-
mation (see Fig. 8).

5. More applications
We apply our WM-model to more artifact cases, such as
stickers and glass effects, showcasing its broad applicabil-
ity.

Sticker removal In Fig. 9a, we test WM-model on in-
put images that are blemished by cartoon stickers. The car-
toon sticker exhibits randomized dimensions and is posi-
tioned arbitrarily within each image. WM-model can effec-
tively eliminate any stickers while concurrently addressing
improper stylistic issues encountered during image genera-
tion.

Glass effect removal We further test WM-model on in-
put images that are blemished by glass effect in Fig. 9b.
We apply a fluted glass effect to images to replicate real-life
scenarios where individuals capture photographs of subjects
positioned behind fluted glass. This glass can have specific
reflections and blurring, which may compromise the overall
quality of image generation when using Textual Inversion.
The use of our model can fix the distortions of the subjects
and the unexpected background problem, significantly im-
proving image quality.

Textual InversionOursInput images Textual InversionOursInput images

Preserved for more example

Preserved fo more example

(a) Sticker removal.

Textual InversionOursInput images Textual InversionOursInput images

Preserved for more example

Preserved fo more example

(b) Glass effect removal.

Figure 9. Applications. Our WM-model can be applied to remove
various unwanted artifacts in the input images, e.g., stickers and
glass effect.

6. Conclusion
We introduce ArtiFade to address the novel problem of gen-
erating high-quality and artifact-free images in the blem-
ished subject-driven generation. Our approach involves
fine-tuning a diffusion model along with artifact-free em-
bedding to learn the alignment between unblemished im-
ages and blemished information. We present an evaluation
benchmark to thoroughly assess a model’s capability in the
task of blemished subject-driven generation. We demon-
strate the effectiveness of ArtiFade in removing artifacts and
addressing distortions in subject reconstruction under both
in-distribution and out-of-distribution scenarios.
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