
Fast Trajectory Matching
Using Small Binary Images

Wei Zhuo1,2, Dirk Schnieders1, and Kwan-Yee K. Wong1

1 Department of Computer Science, The University of Hong Kong, Hong Kong
2 School of Electric and Information Engineering, Xian Jiaotong University, China

Abstract. This paper proposes a new trajectory matching method us-
ing logic operations on binary images. By using small binary images we
are able to effectively utilize the large word size offered in modern CPU
architectures, resulting in a very efficient evaluation of similarities be-
tween trajectories. The efficiency is caused by the fact that all bits in the
same word are processed in parallel. Representing trajectories as small
binary images has other advantages, such as a low space requirement and
good noise resistance.
The proposed method is evaluated on a publicly available dataset, and
is compared to the more sophisticated Longest Common Subsequence
(LCSS) method. In addition, synthetic experiments show the good effi-
ciency and accuracy of the proposed method, enabling real time trajec-
tory retrieval on databases with millions of trajectories.

Keywords: Trajectory Matching, Video Surveillance, Image Processing

1 Introduction

Governments and private institutions capture and store large quantities of video
surveillance footage for later retrieval. Video surveillance has received great at-
tention in past decades and robust object segmentation and tracking methods
are available. The motion path that an object takes in time, i.e. its trajectory,
can be accurately determined from video surveillance footage. Trajectories pro-
vide a rich source of information and can be used to classify an object’s behavior
and discover objects that followed a certain motion characteristic or moved in
a similar way. For instance, by comparing trajectories of newly tracked objects
with those trajectories previously obtained, abnormal behavior can be detected.
In these types of applications it is crucial to query large quantities of tracking
data both quickly and accurately.

In this paper, we propose a novel trajectory matching method using logic
operations on binary images. Instead of using raw object trajectory data, i.e. a
sequence of image points, we approximate trajectories with small binary images.
By doing so we are able to save significant cost in both time and space at
the expense of negligible loss in accuracy. The cost saving in time is achieved
because binary images allow us to design an effective cost function for comparison
of trajectories which effectively utilizes a large word size in modern hardware

2 Fast Trajectory Matching

architectures. On current hardware architectures, 64 pixels in the binary images
are compared to a query binary image in parallel. As a result, we are able
to quickly estimate similarities between trajectories. The cost saving in space
follows from the fact that the raw trajectory representation typically requires
significantly more space compared to our small binary image representation.

The rest of this paper is organized as follows. Sect. 2 reviews the existing liter-
ature on trajectory matching and discusses the differences between existing work
nd the proposed method. In Sect. 3, we introduce the trajectory representation
and in Sect. 4 we propose the similarity measure. In Sect. 5 we present experi-
mental results on synthetic and real data, followed by conclusions in Sect. 6.

2 Literature review

The most widespread prior trajectory representations include chain codes, piece-
wise linear approximations, polynomials and splines. Chain code [1] is a simple
representation of trajectories, consisting of piecewise linear segments encoded
with 8 basic directions. Other representations, like splines and polynomial inter-
polation, are more sophisticated, however often require a more complex compu-
tation and are therefore less efficient. Others attempt to represent motion trajec-
tory in a feature space. For example, Bashir et al. [2] segmented each trajectory
into multiple atomic sub-trajectories and characterized each sub-trajectory by
its principle component. Zhou et al. [3] extracted features using tensor subspace
analysis and then performed standard mean shift to cluster the trajectory fea-
tures. Chen et al. [4] introduced null-space representation which is invariant to
viewpoints. Chen and Chang [5] proposed a wavelet-based approach that decom-
posed a trajectory into sub-trajectories which were described by a feature vector
that includes the acceleration, initial velocity, arc length, order and multi scale
edge points. In contrast to the existing work above, we represent a trajectory as
a small binary image.

To retrieve similar trajectories, a proper matching technique and similarity
metric should be developed. The similarity metric will depend on the trajec-
tory representation. Several types of trajectory matching methods have been
proposed in the literature, and we will briefly discuss the following: Dynamic
Time Warping (DTW), Longest Common Subsequence (LCSS), vector match-
ing and statistical matching. DTW [6] is a dynamic matching technique that
uses dynamic programming and has the advantage of being conceptually very
simple, but unfortunately is quite sensitive to noise. LCSS [7] has been shown
to achieve a very high accuracy and we will use it for experimental compari-
son in this paper. Vector matching techniques perform matching using a sim-
ilarity metric. Commonly used distances include Euler-distance, city-distance
and Minkowski-distance. Other methods, such as [8] and [9], employ statistical
matching techniques to find appropriate trajectories.

The existing methods in the literature achieve quite remarkable trajectory
matching accuracy and are suitable to obtain similar (scale, translation and ro-
tation invariance) trajectories on small databases. However with the increasing

Fast Trajectory Matching 3

amount of tracking information, comparing millions of database items quickly
is very desirable. To achieve such a high performance we assume scale, trans-
lation and rotation variance in our approach, which is of particular interest in
video surveillance where the camera is stationary. A strong robustness to noise
is achieved by utilizing relatively small binary images.

3 Trajectory Representation

Let a raw trajectory be given as a sequence of absolute 2D points in an image
of size m′ × n′

Γ = [x0 y0], [x1 y1], . . . , [xe ye]. (1)

We represent this trajectory as an 8-adjacent path in a small m×n binary image

I =

I0 I1 . . . In−1
In In+1 . . . I2n−1
...

...
...

I(m−1)n I(m−1)n+1 . . . Imn−1

 . (2)

To consistently transfer a trajectory from the modality in Eq. (1) to our modality
in Eq. (2), we assume a constant aspect ratio, i.e. m/n = m′/n′. In our
approach, hardware bit-level parallelism is effectively exploited by representing
I as a bit vector

T =
[
w0 w1 . . . wk

]
, (3)

which consists of k words of length w given by

wi =
[
Iwi . . . Iw(i+1)−1

]
0 < i < k. (4)

To avoid internal fragmentation we letmn be a multiple of w. This representation
is motivated by the fact that on modern hardware w is usually quite large, i.e.
on 64-bit architectures w = 64, resulting in the following key benefits of our
approach:

1. a relative small number of words per trajectory, and
2. an efficient computation by processing w bits in parallel.

4 Trajectory Matching

A simple approach for matching a query trajectory T to a target trajectory T′

is to maximize the overlapping trajectory segments. This can be achieved by
formulating a similarity measure

s(T,T′) = |T ∧T′| (5)

= |w0 ∧w′0|+ . . .+ |wk ∧w′k|,

4 Fast Trajectory Matching

where |w| represents the population count operation, i.e. the number of set bits
in the word w, and ∧ represents the bitwise AND operator. This equation is
motivated by the fact that both bitwise AND and population count are available
on modern microprocessors enabling us to evaluate Eq. (5) quickly. We find the
trajectory that maximizes this similarity measure as

T̂ = max
T′

s(T,T′). (6)

Unfortunately, the dissimilarity measure in Eq. (5) is not optimal because it will
only measure the length of overlapping trajectory segments but it completely
ignores non-overlapping trajectory segments. Alternatively, we may formulate a
dissimilarity function

d(T,T′) = |T⊕T′| (7)

= |w0 ⊕w′0|+ . . .+ |wk ⊕w′k|,

where

wi ⊕w′i = (wi ∨w′i) ∧ ¬(wi ∧w′i) (8)

represents bitwise exclusive disjunction. Note that Eq. (7) measures how long
the non-overlapping trajectory segments are, i.e. it measures the absolute length
of those paths which appear in T′ or T but not in both. This measurement is
also known as the Hamming distance and determines the minimum number of
bit substitutions required to transform T to T′ or vice versa.

To find the best matched trajectory we minimize this dissimilarity function

T̂ = min
T′

d(T,T′). (9)

Unfortunately, the similarity measure in Eq. (7) is also not optimal because
it measures the absolute number of bit substitutions required. It does not di-
rectly take into account overlapping path segments and two paths that are non-
overlapping may achieve a lower dissimilarity score than two paths that are
partially overlapping. To overcome this problem we propose to indirectly take
the overlapping path segments into account. Note that the dissimilarity function
in Eq. (7) satisfies the following inequality

0 ≤ d(T,T′) ≤ |T ∨T′|, (10)

where ∨ represents bitwise OR. In this paper, we propose to optimize for the
largest ratio between non-overlapping and all paths and find the best matched
trajectory as follows

T̂ = max
T′

d(T,T′)

|T ∨T′|
. (11)

Fast Trajectory Matching 5

240x320 96x128 48x64 24x32 12x16

(a)

12x16 24x32 48x64 96x128

2

4

6

8

10

12

x 10
6

image size

o
p

e
ra

ti
o

n
s
 /

 s

Eq. (7)
Eq. (11)

12x16 24x32 48x64 96x128
0

50

100

150

200

n
u

m
b

e
r

o
f

w
o

rd
s

image size

(b) (c)

Fig. 1. Efficiency of the proposed method (a) Raw trajectory rendered on image
obtained from a surveillance camera [10] and four binary images used in the proposed
method (plotted to scale). (b) Theoretical efficiency of Eq. (7) and Eq. (11) using the
binary images shown in (a) as the query. (c) Number of words used per binary image
against image size.

5 Experimental Evaluation

5.1 Synthetic Data

We first measure the efficiency of the proposed method by measuring the number
of times the matching function can be executed per second. This theoretical
efficiency is expected to be very high due to the simplicity of the matching
function and the availability of hardware implementations. We have implemented
Eq. (5), Eq. (7), Eq. (11) and measured their efficiency on an Intel i7 CPU
system that natively supported population count. We measured the performance
in number of evaluations per second and plot results for different image sizes in
Fig. 1. Since we found the performance of Eq. (5) and Eq. (7) to be equivalent
we have only plotted the performance of Eq. (7). As expected, the efficiency of
Eq. (11) is slightly less than Eq. (7) due to the additional operations performed.
Nevertheless, it can be seen that Eq. (11) can be evaluated around 10 million
times per second for small binary images of size 12 × 16. This large number
follows from the fact that a binary image of size 12 × 16 just required k = 3
words.

In a second experiment we synthetically generated 30 original trajectories
and generated 50 noisy variations for each of these trajectories. To generate
noisy trajectory from a given raw trajectory, we first add uniformly distributed
noise to the points of the trajectory. The magnitude of this noise was 20% of the
standard deviation of all the trajectory points. A bezier-spline was subsequently
fitted to these noisy trajectory points. Fig. 2 shows an example of an original
trajectory and a synthetically generated noisy trajectory. The generated binary

6 Fast Trajectory Matching

180 230 280
50

100

150

200

250

x

y

Original trajectory

Generated noisy trajectory

(a)

12 × 16 24 × 32 48 × 64 96 × 128

(b)

12 × 16 24 × 32 48 × 64 96 × 128

(c)

Fig. 2. Noisy trajectory generated for the synthetic experiment (a) An ex-
ample of an original and noisy raw trajectory from the synthetic experiment. (b) The
original trajectory represented as binary images. (c) The noisy trajectory represented
as binary images.

12 × 16 24 × 32 48 × 64 96 × 128

Eq. (5) 87% 91% 92% 89%
Eq. (7) 88% 86% 67% 41%
Eq. (11) 94% 97% 96% 95%

(a)

12 × 16 24 × 32 48 × 64 96 × 128

Eq. (5) 89% 95% 99% 98%
Eq. (7) 98% 97% 82% 54%
Eq. (11) 98% 100% 100% 100%

(b)

Fig. 3. Accuracy of the proposed method (a) Percentage of top 50 noisy retrievals
that belong to the same set as the query trajectory. (b) Percentage of top 10 noisy
retrievals that belong to the same set as the query trajectory.

Fast Trajectory Matching 7

images are also shown for reference. There are a total of 1500 noisy trajectories
that are clustered into 30 groups. We randomly selected a trajectory from the
set of original trajectories and query the database to select the top 50 retrievals
based on Eq. (5), Eq. (7) or Eq. (11). To test the accuracy of the proposed
method, we determined how many retrievals belong to the same cluster as the
query trajectory. We repeated this experiment for different sizes of the binary
images. The results are shown in Fig. 3. The experiment has also been repeated
using just the top 10 retrievals. It can be seen that reasonable good results can
be obtained with a very small 12× 16 binary image size and that results obtain
by Eq. (11) are consistently better than those obtained by Eq. (7) and Eq. (5).
This follows from the fact that neither Eq. (7) nor Eq. (5) perform normalization
and only compare absolute similarity and dissimilarity respectively. We conclude
that a small binary image of size 12 × 16 results in high accuracy and quick
computation.

5.2 Real Data

We evaluated the proposed method on 3206 public available trajectories from
the database reported in [10]. Given the high efficiency and accuracy, we gener-
ated small binary images of size 12× 16 for all the trajectories in the database.
Fig. 4 shows the top 10 retrieval results using Eq. (7), Eq. (5) and Eq. (11) for
a specific query. To query the whole database took just ∼ 0.5 milliseconds when
using Eq. (11), whereas LCSS required several seconds. It can be seen that the
results obtained by Eq. (7) and Eq. (11) are good and the latter performs supe-
rior because overlapping as well as non-overlapping trajectories are considered.
Results retrieved by Eq. (5) are not as good because just overlapping trajectory
segments are considered. Similarly, LCSS focuses on finding the longest common
subsequence and does not always return desirable results.

6 Conclusions

In this paper, we presented a novel trajectory matching method using logic
operations on small binary images. By approximating the trajectories using this
novel representation, we were able to save significant cost in both time and space
at the expense of retrieval accuracy that is negligible in many applications.

References

1. Kaneko, T., Okudaira, M.: Encoding of arbitrary curves based on the chain code
representation. Transactions on Communications 33 (1985) 697–707

2. Bashir, F., Khokhar, A., Schonfeld, D.: Segmented trajectory based indexing and
retrieval of video data. In: ICIP. (2003)

3. Zhou, H., Tao, D., Yuan, Y., Li, X.: Object trajectory clustering via tensor analysis.
In: ICIP. (2009)

8 Fast Trajectory Matching

(a)
Rank Eq. (5) Eq. (7) Eq. (11) LCSS[7]

1

2

3

4

5

6

7

8

9

10

(b)

Fig. 4. Experimental results on real data: Retrieval results obtained on a query
trajectory (a), and top 10 retrieval results using binary images of size 12 × 16 and
Eq. (5), Eq. (7), Eq. (11) and LCSS[7] (b).

Fast Trajectory Matching 9

4. Chen, X., Schonfeld, D., Khokhar, A.: Robust null space representation and sam-
pling for view-invariant motion trajectory analysis. In: CVPR. (2008)

5. Chen, W., Chang, S.: Motion trajectory matching of video objects. In: Electronic
Imaging, International Society for Optics and Photonics (1999) 544–553

6. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object
motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics 34
(2004) 334 –352

7. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional
trajectories. In: International Conference on Data Engineering. (2002)

8. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event
recognition. Image and Vision Computing 14 (1996) 583–592

9. Porikli, F.: Trajectory distance metric using hidden markov model based repre-
sentation. In: ECCV Workshops. (2004)

10. Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly
detection and improved object detection. In: CVPR. (2008)

