
Guided Image Completion by Confidence Propagation∗

Xiao Tana, Changming Sun†b, Kwan-Yee K. Wonga, Tuan D. Phamc

aThe University of Hong Kong, Pokfulam, Hong Kong.
bCSIRO Computational Informatics, Locked Bag 17, North Ryde, NSW 1670, Australia.
cAizu Research Cluster for Medical Engineering and Informatics, The University of Aizu,

Fukushima 965-8580, Japan.

Abstract

This paper presents a new guided image completion method which fills any
missing values by considering information from a guidance image. We develop
a confidence propagation scheme that allows the filling process to be carried
out globally without the need of deciding the filling order. We conduct
experiments in several applications where the problem can be formulated
into a guided image completion problem, such as interactive segmentation
and colorization. The experimental results show that our method provides
good results and succeeds in situations where conventional methods fail. In
addition, as all building blocks are parallel processes, our method is much
suitable for hardware acceleration.

Keywords:

Confidence propagation, Image completion, Image segmentation,
Colorization

1. Introduction

Many computer vision and graphics applications involve an image com-
pletion process to restore damaged parts of an image or to infer pixel values
in the unknown parts based on the known parts, so that the resultant im-
ages look natural. Such techniques are often used in applications for filling
holes which are left behind after removing objects from photographs, or for
colorizing images based on some color strokes provided by users.

∗This work was mainly carried out while the first author was with CSIRO Australia.
†Corresponding author

Preprint submitted to Pattern Recognition July 1, 2015

A specific case of image completion is the application of image inpainting
where nothing is known about the missing regions, and the missing regions
are therefore filled according to some hypothesizes, e.g., the consistency in
the pixel values and/or the gradients values (pixel based inpainting) or the
consistency in the textural structure (texture based inpainting) between miss-
ing regions and neighboring regions. To address the pixel based inpainting
problem, Bertalmio et al. [1] employed the idea of anisotropic diffusion to en-
sure that the filling process can transport the smoothness information along
the isophotes direction which is perpendicular to image gradients. A faster
technique employs the fast marching method to determine the inpainting
order based on a distance map which is progressively updated as the filling
boundaries move forward. Some other techniques [1, 2, 3, 4] address the pixel
inpainting problem by propagating both the gradient directions and the in-
tensity values of the surrounding pixels into the missing regions. However,
these techniques do not convey texture information in the missing regions.
One direct solution is adding synthetic texture to the regions [5]. How-
ever, this method fails to propagate strong oriented structures. To solve this
problem, an exemplar-based texture inpainting method is proposed by intro-
ducing the strength of the gradient along the boundary into consideration.
Additional related techniques include those in [6, 7, 8].

1.1. From Image Inpainting to Guided Image Completion

All the conventional image inpainting methods mentioned above fill values
in the missing regions based on the inpainting input image only. Guided
image completion, on the other hand, takes advantage of a given guidance
image to aid the completion process. For example, filling missing values in a
depth map under the guidance of a color image of the same scene, and filling
missing values in chrominance channel under the guidance of the luminance
channel. In these applications, when neighboring pixels have similar values in
the guidance image, the values of these pixels in the image being completed
are usually similar, and thus it is natural to exploit the guidance image during
the completion. More formally, a guided image completion process involves a
guidance image I, an input image being completed P , and an output image
Q. The pixels whose values in P are given beforehand in some regions are
denoted by Θ (Θ ⊂ P). The goal of the guided image completion is to fill the
values of pixels in P\Θ under the guidance of I. We formulate this process

2

as

Q (i) =

{

P (i) i ∈ Θ
U (i) otherwise

(1)

where U is the resultant image determined by the guided image completion
algorithm.

Similar to the texture inpainting methods, some guided image completion
methods, such as those in [7, 9], involve a texture synthesis step during the
filling process to hallucinate texture in the filled region. While methods
proposed for applications such as depth map completion or colorization often
take into account the similarity of pixel values. In this paper, we focus on
the pixel value based guided image completion problem where the consistency
of pixel values in P roughly indicates the consistency in Q regardless of the
noises existing in the known region of Q. A good algorithm for addressing the
pixel value based guided image completion problem is expected to be (1) edge
preserving (edges in U are coincident with those in I); (2) content preserving:
pixels in homogenous regions (pixels having similar color or texture) of the
guidance image are filled with similar values in U (in this paper we only
consider color similarity); and (3) robust against unreliable pixels in Θ.

1.2. Literature Review

Previous studies have developed a variety of techniques to solve specific
graphics problems which are viewed as particular cases of the image comple-
tion problem. One of the most popular methods is the quadratic function
minimization based scheme as used in [10, 11, 12], where the completing is
done by minimizing a quadratic function:

E (U)=
∑

i∈I

(

U (i)−
∑

k∈Ni

wkiU (k)

)2

(2)

where U (i) is the value to be assigned to pixel i; Ni is a set of pixels around
i; wki is a weighting function which is defined such that

∑

k∈Ni

wki = 1. The

weighting function measures the similarity of pixels according to the guid-
ance image, which reaches a high value in homogenous regions and reduces
rapidly at the color/intensity boundaries. The functionality of weights aims
to assign similar pixel values in homogenous regions while keep the edges in
U coincident with those in I. There are many ways to define the weighting
function. For example, it can be defined based on normalized correlation [13],

3

squared difference [10, 12], or the “matting affinity” [11, 14]. As any con-
stant vector is a trivial solution to Eq. (2), E (U) is minimized subject to
an additional constraint: U (i) = P (i), ∀ i ∈ Θ. The closed-form matting
algorithm in [11] takes user inputs (the pixels in Θ) as soft constraints in-
stead of hard constraints [12, 10]. Minimizing Eq. (2) involves inverting a
sparse graph Laplacian matrix. However, the complexity of inverting this
sparse matrix grows rapidly with the increase of non-zero elements. Such
algorithms therefore often define Ni as a small neighborhood, e.g., 3 × 3 or
5× 5 squared windows.

Some other techniques perform guided image completion by filling pixels
sequentially in a similar manner as conventional inpainting methods [7, 4].
Superior to the conventional inpainting methods, these techniques modify
the sampling process or the filling order by considering the color similarity of
neighboring pixels in the guidance image. This modification enables pixels
with similar color of the neighboring known pixels to be filled earlier, and
thus being likely to assign similar pixel values in the homogenous region.

Yatziv and Sapiro used the geodesic distance to measure how pixels are
related and proposed using a weighted blending method to carry out the
guided image completion [15]. They applied this approach in the image
and video colorization. Since blending all pixel values from known regions
is computationally expensive, only serval known values with high weights
are used during the blending to compute the filling value for a given pixel.
Another popular practise of the guided image completion is the interactive
segmentation where users provide some strokes on different objects and the
algorithms will automatically segment the image into different parts. Carsten
formulated this problem as an energy minimization problem over a Markov
random field (MRF) model, which is solved using the graph-cuts energy
minimization method [16].

The main shortcoming of these approaches is the fact that they may
struggle when the guidance image contains interleaving homogenous regions
(see Fig. 1). There are multiple reasons for this. Some are caused by the
inefficiency of the model, for example the 3 × 3 or 5 × 5 neighborhoods
in Eq. (2) fail in propagating values from the known region to unknown
regions far away. Some lie in the inappropriate filling scheme, for example the
weighted averaging filling scheme in [4] will cause trailing or fatting artifacts.
This paper proposes a new guided image completion method by introducing
a self-evaluate mechanics called confidence propagation which evaluates how
a pixel is filled after each filling step and exploits the evaluation to make the

4

filling process bias towards those reliably filled pixels and thus provides more
convincing results. Moreover, it is easy for parallel acceleration since the
pixels are processed independently in each filling step. Previous approaches
are designed for one or two specific problem(s) and may work (well) only
for problem(s). For example, the method proposed in [16] works only with
discrete filling values but not with continuous filling values. By contrast,
our method provides an unified framework to formulate different graphic
problems, which will be shown later in the experimental section of this paper.

(a) (b)

(c) (d) (e)

Figure 1: Guided image completion on a synthetic image. (a) Guidance image. (b) input
image for completion. Regions to be filled are marked in red. (c) Results by sequentially
filling method [4]. (d) Results by minimizing a quadratic function [10, 11]. (e) Our results.

2. Method

We define the following notations in our algorithm: the confidence of the
assigned value at pixel i is defined as Ci; the set of neighboring pixels in a
squared window centered at i with size 2r + 1 as Ni.

Our algorithm iteratively performs the following two steps in an interleave
manner until the terminating criterion meets: (1) filling step: fill or update
values of pixels in missing regions; and (2) propagation step: update the
confidence values of pixels.

2.1. Computing Filling Values Using Confidence

We assume that the confidence value of pixels after the previous iteration
are known. In the filling step, a value is assigned to pixel i at the tth iteration

5

by a filtering-like process:

U t (i) = F
(

i, Qt−1,W
)

(3)

Here, Qt−1 is the completion results in the (t− 1)th iteration. F (i, Qt−1,W)
is the output of adaptive filtering at pixel i with W being the weights and
Qt−1 being the inputs. For example, the weighted average filtering at i is
explicitly expressed as:

F
(

i, Qt−1,W
)

=

∑

k∈Bi

WkiQ
t−1 (k)

∑

k∈Bi

Wki

(4)

where Bi ⊆ Ni are pixels with known values (pixels in Θ or pixels whose
values have been filled perviously before the tth iteration). Unlike conven-
tional filtering methods which define W only by the local property around a
pixel, our method incorporates a term called confidence for helping fill values
globally. Wki is defined here as the product of two terms:

Wki = wki

(

Ct−1
k

)γ
(5)

where Ct−1
k is the confidence value at pixel k in the (t− 1)th iteration, and

γ is a non-negative constant controlling the strength of the confidence; wki is
a weight of k to i computed from their pixel value similarity in the guidance
image. In this study, wki is defined using the bilateral filtering kernel [17]
with Gaussian functions:

wki = exp

(

−
|Ii − Ik|

2

σ2
r

)

exp

(

−
|i− k|2

σ2
s

)

(6)

Here Ii is the value of i in I. In general, the confidence measures how sure of
assigning a value to pixels in the previous iteration. The weighting function
wki pulls the filling results towards those pixels which are close to i and whose
are similar to that of i in the guidance image I. By using the confidence and
the weighting function together, our method favors assigning value to i with
the values of pixels having high confidences and being similar to i in I.
2.2. Confidence Propagation

Confidence propagation is carried out with the steps of the filling process.
Before describing confidence propagation, we introduce a reliability map R

6

which contains the initial confidence value of the pixels in Θ. The reliability
map, an optional input, is defined based on some application dependent a
priori. For example, in depth completion where the scene is usually piecewise
smooth, the reliability of a pixel can therefore be defined based on the number
of pixels which have the similar depth values around it (see Section 3.1 for
details). The reliability ranges from 0 (unreliable) to 1 (reliable). As the
value of pixel i ∈ P\Θ is not given, its reliability is 0. The reliability map
enables us to incorporate additional information or hypothesis for achieving
robust image completion. If there is no such information or hypothesis, we
can just set R (i) to 1 for all i in Θ. The reliability of a pixel is fixed after
the assignment.

Figure 2: Path sinking at pixel i ∈ P\Θ. The red pixel s is the source, and the black
pixel i is the sink. The path is colored in yellow, and the pixels on the path are colored
in green. The reliability of the source is Rt

i
= R (s), and mt

i
, the minimum value of all

weights on the edges of the path, is given by mt

i
= min (wik1

, wk1k2
, wk2k3

, wk3s
).

Suppose that for a pixel of interest i, we find a path where the source
is a pixel in Θ and the sink is i. This path is recursively constructed and
updated as the completion process goes. Denote the path we find in the tth
iteration by P t

i . For any two neighboring points p and q along the path, we
compute the weight wpq between them based on the similarity measured from
the guidance image. For simplicity, this weight is also computed by using
Eq. (6). We introduce mt

i to denote the minimum weight among all weights
along P t

i (see Fig. 2 for details). The confidence value of i in the tth iteration
is defined as:

Ct
i =

{

R (i) i ∈ Θ
mt

iR
t
i otherwise

(7)

where Rt
i is the reliability value of the source of P t

i . According to the defini-
tion, we could see that mt

i is large only if pixels on the path are similar with

7

each other or, in other words, all pixels along the path are in the homoge-
nous region of the guidance image. That is to say if the path crosses region
boundaries, mt

i will be small. An alterative for defining mt
i would be the

geodesic distance or shortest path based method as used in [15]. However,
it does not perform well for propagating the confidence over long distances
when noises exist in the guidance image, because geodesic distance accumu-
lates the distance between neighboring two pixels along a path, and hence
the impact of the noise will also be accumulated. Unlike the method in [15],
our method defines mt

i based on the minimum value, and the two neighbor-
ing pixels on the path are not limited to be 4 or 8 connected. Therefore, as
will be shown in our experiments, our method performs well even where the
homogenous regions are interleaving with each other in the guidance image.
The confidence for i ∈ Θ is defined by its own reliability and is fixed. For
i ∈ P\Θ, its confidence updates with the change of its path configuration
which is being updated as the iteration goes.

During initialization, each pixel in Θ is assigned one path and pixels
in P\Θ are not assigned to any path. To show how to update the path
configuration, we focus on a single iteration. Suppose the path for pixel i
is being updated. Qt−1 (filling results in the previous iteration) are known,
and U t (i) have already been computed by using the method as described
in Section 2.1. The path is updated in such a way that the filled values
of two neighboring pixels on a path are similar, and the confident value of
the path is high. For this purpose, we add i to the path of another pixel j
chosen from pixels whose filling results in the previous iteration are similar
to U t (i). More specifically, denote the minimum difference between U t (i)
and the filling results of its neighboring pixels by ∆t

i=min
k∈Bi

|Qt−1 (k)− U t (i)|.

The set of candidates is given by:

Φi =

{

k

∣

∣

∣

∣

k ∈ Bi ∧
∣

∣Qt−1 (k)− U t (i)
∣

∣ < ∆t
i + δ

}

(8)

where δ controls the selection of candidates and is set to 1 by default when
the filling values are integers (see Fig. 3). To some extent, δ allows the
changing of filled values of pixels along the path. We pick a pixel among the
candidates in Φi such that

j = argmax
k∈Φi

(

m̂t
kR

t−1
k

)

(9)

where
m̂t

k = min
(

wki,m
t−1
k

)

(10)

8

4 4

5 4 3

5 5 4.8 5

5 6 6 6 6

6 4 5 4 3

Figure 3: Diagram of candidates in Φi out of a 5 × 5 neighborhood. Pixel i is colored
in blue and U t (i) = 4.8. Filled values in the previous iteration (Qt−1) are shown in the
grid. ∆t

i
= 5− 4.8 = 0.2. Pixels whose values have not been filled yet are denoted in red.

Candidates in Φi for δ = 1 are colored in green.

For all pixels in P\Θ, m̂0
i is initialized to be 0. If j computed from Eq. (9)

has a higher m̂t
j value than m̂t−1

i , we will add i to the path of j from behind,
and call j the preceding pixel of i; otherwise we do nothing to i. Recall that
m̂ is initialized to be 0, and thus if i is not involved in any path, it will be
involved by the first path passing through its neighborhood; however when
another path passing through the neighborhood with a higher confidence
value, i may be attached to this path and be removed from the old path.
Once the (new) preceding pixel of i is found, we accept the new confidence
value. That is,







Rt
i=Rt−1

j , m
t
i=m̂t

j if Rt−1
i mt−1

i < Rt−1
j m̂t

j

Rt
i=Rt−1

i , m
t
i=mt−1

i otherwise
(11)

and
Ct

i = mt
iR

t
i (12)

This updating rule is simple and makes it possible to compute the confi-
dence value of a pixel without explicitly computing the configuration of the
path. This is similar to using the dynamic programming or the Dijkstra al-
gorithm [18, 19, 20] for computing the geodesic weight which is defined by
the shortest path, and these methods compute the weight without explicitly

9

computing the path. However, if one does want to know the path configura-
tion of a pixel, it can be achieved by recursively tracing the preceding pixel

until a pixel in Θ is reached, and the pixel found in Θ is the source of the
path. In addition, since wki in Eq. (10) is the same as that used in Eq. (5),
we can therefore reuse the weights when computing Eq. (10).

2.3. Implementation Issues and Algorithm Steps

The complexity of our algorithm consists of two parts: performing the
value filling (Eq. (3)) and finding the pixel which has the maximum confidence
(Eq. (9)). In general, the complexity of both operations for one pixel in one
iteration is approximately O (|N |), so the complexity of the algorithm is

O

(

|N |
∑

i∈I

Ti

)

where Ti is the number that pixel i has been visited until the

algorithm stops.
We propose two schemes to reduce the algorithm complexity by reducing

the number of visits to a pixel. The first scheme is based on the fact that the
value of a pixel i inside the missing region cannot be estimated when no pixel
in Ni is filled. This observation implies that when filling values we do not
need to visit all pixels in P\Θ but only visit those near the filling boundaries.
Thus, we only consider pixels within 3-pixel-distance to the filling boundary
in each iteration. A similar approach called the “onion peel” method has
been used in previous exemplar-based inpainting works [6]. However, in
their studies the pixels or patches are filled sequentially using best pixel (or
patch) first method [4, 7, 21] and the value is fixed once filled.

In addition, we notice that most pixels whose values stay unchanged in
two sequential iterations will keep unchanged in all following iterations un-
less the filling values and the confidence values of its neighboring pixels are
both changed. This observation follows from the fact that the confidence
and filling values of a pixel is computed from those values of pixels within its
neighborhood using Eq. (4) and Eq. (11). Hence, if there is no value change
happened within its neighborhood, the values of this pixel will not change.
On the other hand, when value change happens within the neighborhood of a
pixel, we will revisit this pixel to check whether the value change affects this
pixel by recomputing Eq. (4) and Eq. (11). Therefore, after the assignment
to a pixel, we do not revisit it unless there is at least one neighboring pixel
(within 3-pixel distance) whose filling value and confidence value are both
changed during the previous iteration. These two schemes greatly reduce the

10

total number of visits to a pixel. Denote pixels to be visited at the tth iter-
ation by Ωt. Recall that the confidence value is updated in a non-decreasing
manner, which means that if a pixel being revisited has a high confidence
value, its (confidence and filling) value is likely to be kept unchanged, while if
it has a low confidence value, it is likely to be modified. Since the filling value
for a pixel with low confidence value is usually incorrect, our method is likely
to correct this value when the pixel is revisited in subsequent iterations.

Recall that we do not revisit a pixel if no confidence value or no value
assignment of its neighboring pixel is changed. Therefore, once the filling
results in two sequential iterations are equal: Q (i)t−1 = Q (i)t for all i, our
algorithm will stop. However, it is not guaranteed that there is a certain t so
that Q (i)t−1 = Q (i)t for all i. Fortunately, it is guaranteed that confidence
values of all pixels will be fixed after a certain number of iterations, because
the confidence value of a pixel is computed in a non-decreasing way during
the propagation (Eqs. (11) and (12)). In addition, the confidence value is not
greater than 1. As a result, the value of confidence is a bounded monotonic
sequence whose value will be fixed at its limit.

Algorithm 1 shows the steps of the proposed method.

Algorithm 1. Steps of Guided Image Completion:

Inputs: guidance image I, input image for completion P with partially
known values for pixels in Θ, a weighting function w, a filtering function F ,
a reliability map R (optional).

Parameters: the radius of the squared window r, the strength of confi-
dence γ.

Outputs: Guided completion output Q.

1. Initialize t = 1 and set the confidence value C0
i = R (i).

2. Select pixels (Ωt) to be updated by picking the pixels within 3-pixel-
distance to the filling boundary or to the pixels whose filling values and
confidence values are changed in the previous iteration.

3. For each i in Ωt

a. compute the value U t (i) using Eq. (3).
b. find the pixel that maximizes the confidence from neighboring

pixels using Eq. (9).
c. update the confidence value by Eqs. (11) and (12).

11

4. If there is at least one pixel whose confidence value and filling value are
both changed during step 3, then t := t+1 and go to step 2; otherwise
go to step 5.

5. Output results: Q (i) =

{

P (i) i ∈ Θ
U t (i) otherwise

3. Experiments and Applications

We tested our algorithm on a wide variety of computer vision and graphics
applications. All experiments were run on a 32 bits PC with a 3.0 GHz CPU
and 4.0 GB RAM under the standard C++ implementation without using
any optimization or acceleration techniques. Furthermore, unless otherwise
specified, the reliability of pixels in Θ was initialized to 1. In all the following
experiments, we used constant parameters: γ = 7.0, r = 9, σr = 0.1, and
σs = 11.

Codes of our algorithm will be released with the publication of this article.

(a) (b) (c) (d) (e)

Figure 4: Results of depth map completion for Kinect cameras. (a) Color image. (b)
Depth map from the Kinect cameras. (c) Corresponding reliability map calculated from
Eq. (14) which is normalized such that the maximum value equals 255 and the minimum
value equals 0. (d) Results by the sequentially filling method [4] (note that the depth of
the chair is incorrectly filled). (e) Our results.

3.1. Depth Map Completion

In depth map completion, a depth map (P) with missing regions and a
color image (I) of the same scene are given beforehand. In this application,
the weighted median filter is chosen as F for obtaining sharp boundaries.
The weighted median filter starts with building a histogram for the pixel of
interest i by summing up weights over Bi, where the bin of the histogram is

12

(a) (b) (c) (d)

Figure 5: Results of depth map completion using sparse control points. (a) Groundtruth
depth map. (b) Sparse control points. Pixels containing noises are colored in blue. (c)
Results from [12] (error pixels: 2.41%). (d) Our results (error pixels: 1.98%).

indexed by the pixel (depth) value. The value of this histogram in the lth
bin is given by [22]:

H (i, l) =
∑

k∈Bi

Wkiδ (Q (k)− l) (13)

where l ranges from valid depth values, and δ (·) is a Dirac delta function.
The median filter accumulates this histogram until it reaches the median
value of the summation over all bins, that is to find l′ such that

∑

l<l′
H (i, l) <

1
2

∑

l

H (i, l), and
∑

l≤l′
H (i, l) ≥ 1

2

∑

l

H (i, l). The median filter then outputs l′

at pixel i. Now consider defining the reliability map. Take the application
of completing depth map from the Kinect [4] as an example, where the color
image is used as a guidance image. As the depth map provided by the Kinect
cameras contains noises, we define the reliability of pixel i ∈ Θ as:

R (i) =
1

|Ni|

∑

k∈Ni

exp

(

−
|Ii − Ik|

2

σ2
r

)

δ
(

P (i)−P (k)
)

(14)

This reliability map is shown in Fig. 4(c). The sequential filling method which
is based on the best pixel first manner does not perform well in regions with
a large area of missing values, while our method is able to recover these
regions (see Fig. 4). All results are filtered by guided filtering [14] for better
performance at boundaries.

Another type of depth map completion as proposed in [12] is using a set of
sparse ground control points for leveraging stereo matching based on the least
squared method. The result of our method and that of [12] are provided in
Fig. 5. For quantitative evaluation, if the difference between the filling result

13

of a pixel and the ground truth depth value is larger than 1, we will regard
the pixel as an error pixel. As demonstrated in Fig. 5, our method is more
robust to erroneous ground control points and provides better results than
that of [12]. To compare with the fast marching method in [4] (FMM) and
the quadratic minimization based method [12] (QMM), we carried out more
experiments on the Middlebury datasets [23]. In this experiment, we ran-
domly selected regions to be completed and removed the depth information
there. The completion results were checked against the ground truth depth
maps to calculate the rate of error pixels. The quantitative results are listed
in Table 1, and the visual comparison with different methods are given in
Figs. 6 and 7. From Table 1, we see that our method provides quantitatively
better results in most datasets. In Figs. 6 and 7, we find that our method
outperforms the other two methods at object boundaries.

Table 1: The comparison on the rate of error pixels (the best performance is colored in
red). The average errors over all 20 datasets are provided in the last entry.

Methods Methods
Images QMM [12] FMM [4] Ours Images QMM [12] FMM [4] Ours

Aloe 0.291 0.154 0.123 Baby1 0.291 0.109 0.107
Baby2 0.041 0.024 0.046 Baby3 0.163 0.112 0.091

Bowling1 0.203 0.173 0.251 Bowling2 0.228 0.120 0.142
Cloth1 0.034 0.108 0.183 Cloth2 0.420 0.126 0.131
Teddy 0.280 0.282 0.050 Lampshadel1 0.274 0.125 0.070

Lampshade2 0.356 0.214 0.054 Midd1 0.340 0.216 0.099
Monopoly 0.143 0.061 0.041 Plastic 0.109 0.073 0.012
Rocks1 0.377 0.364 0.128 Rocks2 0.097 0.088 0.087
Moebius 0.091 0.054 0.056 Dolls 0.093 0.096 0.092
Reindeer 0.185 0.139 0.123 Flowerpots 0.201 0.150 0.166

Averaging 0.211 0.139 0.103

3.2. Colorization

In image colorization, color information is added to pixels through some
color strokes provided by users. In this application, a gray scale luminance
image is used as the guidance image and the chrominance channels are the
completion inputs. The colorization is performed on the Y UV color space,
where Y contains the luminance information, while U and V channels en-
code the color. In this application, we adopt the weighted averaging filter
as F . In this experiment, we used strokes picked from a color image and

14

(a) (b) (c) (d) (e) (f)

Figure 6: Results of depth map completion on Middleburry datasets [23] (to be continued
in Fig. 7). (a) Color image. (b) Impaired depth map. (c) Ground truth (depths in dark
points are missing). (d) Results from QMM [12]. (e) Results from FMM [4]. (f) Our
results.

15

(a) (b) (c) (d) (e) (f)

Figure 7: Results of depth map completion on Middleburry datasets [23] (continue from
Fig. 6). (a) Color image. (b) Impaired depth map. (c) Ground truth (depths in dark
points are missing). (d) Results from QMM [12]. (e) Results from FMM [4]. (f) Our
results.

16

used the luminance channel of the color image as the guidance image. To
quantitatively evaluate the results, we compared the results with the original
color image under the measure of normalized mean square error (NMSE)

which is given by: 1
{I}

∑

i∈I

‖Ui−Ii‖
‖Ui‖+‖Ii‖

where Ui and Ii are the vector of “RGB”

value at pixel i in the resultant image of colorization and the original image
respectively, and {I} is the number of pixels in the image. The smaller the
NMSE value is, the better the result will be. We compared our method with
the quadratic minimization based approach [10] (QMM) and the geodesic
weights based approach [15] (GEO). See Fig. 8 for visual comparison and
Table 2 for quantitative comparison.

Because method in [10] performs colorization by minimizing a constrained
quadratic function, and the computational complexity of inverting a huge
sparse matrix grows rapidly with the size of its non-zero elements, this
method can only handle small size neighborhoods (e.g., 3× 3 or 5× 5 neigh-
borhoods). Unfortunately, small neighborhoods usually lead to the“bleeding”
artifact at weak boundaries. This artifact also exists in the results from the
geodesic blending method proposed in [15]. This artifact is demonstrated in
the test image “Mountain” in Fig. 8 where our method does a much better
job in suppressing this “bleeding” artifact. Besides, the method in [10] fails
to correctly assign values to pixels which are far from strokes. For example,
the blue strokes locating at the top of the background near the words in test
image “Mountain” only contributed to its neighboring pixels. Many pixels
of the sky are incorrectly colored in red due to the failure of propagating
the value of the blue strokes to them. In addition, test image “Flower” in
Fig. 8 illustrates another case that we believe to be challenging for competing
methods. Here, the challenge is the region where the guidance image varies
dramatically while the completion results should not vary. Let us look at
the test image “Flower”: the luminance values of pixels on leafs and stems
vary a lot over the image, while their color is approximately constant (green
color). Our method has better performance in these regions compared with
methods in [10, 15], since our method groups non-connecting pixels which
have a similar luminance value into a path and filling them with a similar
color.

17

(a) (b) (c) (d) (e)

Figure 8: Results of colorization (better viewed in the electronic version). From the top
to the bottom are test images: Mountain, Flower, Rose, Sport. (a) Gray-scale image with
color strokes, (b) Reference color image, (c) Results from [10], (d) Results from [15], and
(e) Our results. The background pixels on the blue sky in the“Mountain” image in (c) are
incorrectly colored because they are far from the blue strokes. The green grass in yellow
squares in (c) and (d) are incorrectly colored in blue due to the “bleeding” artifact.

Table 2: The comparison on the NMSE value (the best performance is colored in red).

Methods
Images QMM [10] GEO [15] Ours

Mountain 0.097 0.021 0.018
Flower 0.148 0.131 0.077
Rose 0.078 0.028 0.027
Sport 0.049 0.025 0.019

Averaging 0.093 0.051 0.035

18

3.3. Interactive Segmentation

In interactive segmentation, an image I is given with some known labels
U (i) = lj (lj ∈ L = {l1, l2, · · ·, ln}) indicating the segment where pixel i
belongs. Typically, n = 2 for the foreground and background segmentation
as in [16] and [24]. The interactive segmentation can also be formulated
into the guided image completion framework where the completion value is
the label of a pixel. In this problem, the label indicates the classification of
pixels and does not have numerical meaning. Therefore, the weighted mode
filter [25, 26] is suitable. In this filter, the output of i is determined by
maximizing a histogram: H (i, U t−1,W) where its lth bin is given by:

H
(

i, U t−1,W, l
)

=
∑

k∈Ni,U t−1(k)=l

Wki (15)

and the output of the weighted mode filter at i is:

F
(

i, U t−1,W
)

= argmax
l∈L

H
(

i, U t−1,W, l
)

(16)

The energy based methods as in [16, 24] and [27] currently lead the fashion of
interactive segmentation. Another alterative way of performing interactive
segmentation is the cost volume filtering [28]. In these methods, a data term
is first computed from the Gaussian mixture model (GMM) or the color his-
togram. A filtering-like process is then carried out on the cost volume [28],
or a cost function which incorporates the data term and the smoothness
term for penalizing the boundary disagreement is minimized [27, 16]. How-
ever, minimizing an energy function which penalizes boundary disagreement
is particularly prone to boundary shrinking. The cost volume filtering, on
the other hand, does not always provide globally reliable results because of
its locally optimizing characteristic. Moreover, the accuracy of these two
methods highly depends on the data term. In our implementation, we do
not restrict n = 2, and we also try to segment the image into more regions,
i.e., n = 3. See Fig. 9 for typical foreground and background segmentation
cases (n = 2), and Fig. 10 for n = 3 cases. The data term is computed using
GMM as described in [16]. The method in [16] successively recomputes the
GMM after each iteration, while this GMM model is fixed in other methods.
For comparison fairness, we disabled the model re-computation step and used
the results from one iteration. Our method provides better results than the
other two methods and does not require computing the data terms.

19

(a) (b) (c) (d) (e)

Figure 9: Results for foreground and background interactive segmentation. Figure courte-
sies from [29]. (a) Original image and strokes provided by users. (b) Results by applying
winner-take-all method on the data term. (c) Results by using GraphCuts (one iteration
of [16]). (d) Results by [28]. (e) Our results. Note that our method produces correct
segmentation results and preserves object boundaries very well.

20

(a) (b) (c) (d) (e)

Figure 10: Comparison of interactive segmentation results for n = 3. Figure courtesies
from [29]. (a) Original image and strokes provided by users. (b) Results by applying
winner-take-all method on the data term. (c) Results by using GraphCuts (one iteration
of [16]). (d) Results by [28]. (e) Our results. Note that our method produces correct
segmentation results and preserves object boundaries very well.

21

3.4. Discussions

iter:35 iter:50 iter:70

Figure 11: Confidence propagation on a synthetic image. From the left to the right are
results in iteration: 35, 50, and 70. First row: pixels in Θ are colored in gray, pixels in
P\Θ are colored in white, and pixels in Ωt (pixels to be updated) are colored in black.
Second row: confidence maps where higher intensity indicates higher confidence. Last
row: filling results where pixels that have not been visited until the current iteration are
colored in red. The guidance image, input image for completion and the final results are
given in Fig. 1.

We have demonstrated the advantage of our method with several experi-
ments. To better understand why our method performs well and also to show
the effectiveness of confidence propagation, an experiment on a synthetic im-
age with 30000 pixels being filled carried out (see Fig. 1). The intermediate
result, the confidence map, and the pixels to be updated in each iteration are
given in Fig. 11. We noticed a distinguishing property of our guided image
completion: it performs very well in regions which correspond to interleaving
homogenous regions of the guidance image. The reason is as follows. First,
recall that the confidence value of a pixel is updated according to the confi-
dence value of a neighboring pixel which is filled with a similar value and has
the maximum confidence value (Eq. (9)). This enforces confidence propagat-
ing along the path where pixels are filled with similar values. Second, the
confidence value increases with the increase of the color similarity between
two neighboring pixels in the guidance image. As a result, it is expected that
pixels with a high confidence value, are those whose values are similar not
only in the guidance image I but also in the completion results. Therefore, an

22

(a) (b) (c) (d)

Figure 12: Effect of parameter γ. (a) Guidance image. (b) Input depth map for completion
(red regions are missing). (c) Results by γ = 7.0, r = 9, σr = 0.1, and σs = 11. (d) Results
by using γ = 1.0. Note that large γ is robust to noise-like textures on the background
wall.

incorrectly filled pixel whose confidence value is usually low will be corrected
as the confidence is propagated from pixels with high confidence values. For
example, two circles in Fig. 11 which are initially filled by incorrect values
will be corrected when high confidence values propagate into pixels of these
circles.

Our method took 10 seconds on the test image in Fig. 1, which is lower
than the method of solving a sparse linear system (1.2 seconds) and sequen-
tially filling method (3 seconds). However, our method fills values in a parallel
manner which is ideal for execution on parallel architectures compared with
the other two methods.

Our method has 4 parameters: σr, σs, r, and γ. The effects of σr and
σs are similar to that in bilateral filtering. Large values for σr and σs make
results smooth but may lead to ambiguity around boundaries, whereas small
values yield clear boundaries but may cause noise like isolated regions in the
results. Parameter r decides the search range of homogenous regions. For
example, if the two circles in Fig. 1 are further away from the boundary,
r should be increased to cover the distance between circles and boundaries
so that the circles can be filled correctly. A large γ helps to find strong
boundaries globally and prevents the algorithm from being trapped by weak
boundaries or noises (see Fig. 12).

One limitation is with the situation of filling the same value to regions
with homogenous texture rather than with homogenous color in the guidance
image. An example is shown in Fig. 13.

23

(a) (b) (c) (d)

Figure 13: Limitations. (a) Guidance image and strokes. Different objects are discrim-
inated by texture rather than color values around the head of the solider. (b) Fuzzy
boundaries will be obtained around the head of the solider. (c) Moving strokes closer to
desired boundary improves the results. (d) Improved results.

4. Conclusion and Future Work

This paper presented a novel method for addressing a generic guided im-
age completion problem which is widely used in computer vision and graphics
fields. The proposed method introduces confidence to evaluate completion
results and carries out the completion process via updating the confidence.
Our method has the property of preserving local details and filling values
globally. That is, pixels within homogenous regions in the guidance image
are filled with similar values even when they are far from each other. In
addition, the process of our method is carried out on individual pixels in-
dependently in each iteration. This attribute makes our method ideal for
execution on parallel architectures. Experimental results have demonstrated
that our method outperforms state-of-the-art methods in many applications.

Since the proposed guided image completion is a type of edit propagation
method, we would like to apply advanced patch based model into confidence
propagation to achieve texture based image completion in future studies. We
also would like to incorporate current studies on constant filtering [30, 31, 14]
to reduce the complexity of filtering-like filling process from O (|N |) to O (1).

References

[1] M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image inpainting, in:
Proceedings of the 27th Annual Conference on Computer Graphics and

24

Interactive Techniques, 2000, pp. 417–424.

[2] M. Bertalmio, A. L. Bertozzi, G. Sapiro, Navier-Stokes, fluid dynamics,
and image and video inpainting, in: IEEE Conference on Computer
Vision and Pattern Recognition, Vol. 1, 2001, pp. 355–362.

[3] A. Telea, An image inpainting technique based on the fast marching
method, Journal of Graphics Tools 9 (1) (2004) 23–34.

[4] X. Gong, J. Liu, W. Zhou, J. Liu, Guided depth enhancement via a fast
marching method, Image and Vision Computing 31 (10) (2013) 695–703.

[5] M. Bertalmio, L. Vese, G. Sapiro, S. Osher, Simultaneous structure and
texture image inpainting, IEEE Transactions on Image Processing 12 (8)
(2003) 882–889.

[6] R. Bornard, E. Lecan, L. Laborelli, J.-H. Chenot, Missing data correc-
tion in still images and image sequences, in: Proceedings of the 10th
ACM International Conference on Multimedia, 2002, pp. 355–361.

[7] L. Wang, H. Jin, R. Yang, M. Gong, Stereoscopic inpainting: Joint
color and depth completion from stereo images, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[8] Z. Xu, J. Sun, Image inpainting by patch propagation using patch spar-
sity, IEEE Transactions on Image Processing 19 (5) (2010) 1153–1165.

[9] D. Doria, R. J. Radke, Filling large holes in LiDAR data by inpainting
depth gradients, in: IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2012, pp. 65–72.

[10] A. Levin, D. Lischinski, Y. Weiss, Colorization using optimization, ACM
Transactions on Graphics 23 (3) (2004) 689–694.

[11] A. Levin, D. Lischinski, Y. Weiss, A closed-form solution to natural
image matting, IEEE Transactions on Pattern Analysis and Machine
Intelligence 30 (2) (2008) 228–242.

[12] L. Wang, R. Yang, Global stereo matching leveraged by sparse ground
control points, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2011, pp. 3033–3040.

25

[13] A. Torralba, W. T. Freeman, Properties and applications of shape
recipes., in: IEEE Conference on Computer Vision and Pattern Recog-
nition, 2003, pp. 383–390.

[14] K. He, J. Sun, X. Tang, Guided image filtering, in: European Conference
on Computer Vision, 2010, pp. 1–14.

[15] L. Yatziv, G. Sapiro, Fast image and video colorization using chromi-
nance blending, IEEE Transactions on Image Processing 15 (5) (2006)
1120–1129.

[16] C. Rother, V. Kolmogorov, A. Blake, GrabCut: Interactive foreground
extraction using iterated graph cuts, ACM Transactions on Graphics
23 (3) (2004) 309–314.

[17] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in:
IEEE International Conference on Computer Vision, 1998, pp. 839–846.

[18] J. J. Helmsen, E. G. Puckett, P. Colella, M. Dorr, Two new methods
for simulating photolithography development in 3D, in: SPIE’s 1996
International Symposium on Microlithography, International Society for
Optics and Photonics, 1996, pp. 253–261.

[19] J. A. Sethian, A fast marching level set method for monotonically ad-
vancing fronts, Proceedings of the National Academy of Sciences 93 (4)
(1996) 1591–1595.

[20] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories,
Automatic Control, IEEE Transactions on 40 (9) (1995) 1528–1538.

[21] A. Criminisi, P. Perez, K. Toyama, Object removal by exemplar-based
inpainting, in: IEEE Conference on Computer Vision and Pattern
Recognition, Vol. 2, 2003, pp. 721–728.

[22] Z. Ma, K. He, Y. Wei, J. Sun, E. Wu, Constant time weighted me-
dian filtering for stereo matching and beyond, in: IEEE International
Conference on Computer Vision, 2013, pp. 49–56.

[23] http://www.vision.middlebury.edu/stereo/ (2013).

[24] Y. Boykov, G. Funka-Lea, Graph cuts and efficient ND image segmen-
tation, IJCV 70 (2) (2006) 109–131.

26

[25] J. Van de Weijer, R. Van den Boomgaard, Local mode filtering, in: IEEE
Conference on Computer Vision and Pattern Recognition, Vol. 2, 2001,
pp. 428–433.

[26] D. Min, J. Lu, M. N. Do, Depth video enhancement based on weighted
mode filtering, IEEE Transactions on Image Processing 21 (3) (2012)
1176–1190.

[27] Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary &
region segmentation of objects in ND images, in: IEEE International
Conference on Computer Vision, Vol. 1, 2001, pp. 105–112.

[28] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, M. Gelautz, Fast cost-
volume filtering for visual correspondence and beyond, in: IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2011, pp. 3017–3024.

[29] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hi-
erarchical image segmentation, IEEE Transactions on Pattern Analysis
and Machine Intelligence 33 (5) (2011) 898–916.

[30] F. Porikli, Constant time O(1) bilateral filtering, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[31] Q. Yang, K.-H. Tan, N. Ahuja, Real-time O(1) bilateral filtering, in:
IEEE Conference on Computer Vision and Pattern Recognition, 2009,
pp. 557–564.

27

