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Abstract

Hand detection has many important applications in Human-Computer Interac-

tions, yet it is a challenging problem because the appearance of hands can vary

greatly in images. In this paper, we present a new approach that exploits the

inherent contextual information from structured hand labelling for pixel-level

hand detection and hand part labelling. By using a random forest framework,

our method can predict hand mask and hand part labels in an efficient and

robust manner. Through experiments, we demonstrate that our method can

outperform other state-of-the-art pixel-level detection methods in ego-centric

videos, and further be able to parse hand parts in details.

Keywords: Hand Detection, Egocentric Vision, Random Forests, Hand Part

Labelling

1. Introduction

Hand detection has many important applications in Human-Computer In-

teractions. It enables computers to consider the flexible movement of human

hands in 3D space as a new type of high dimensional user input, and to under-

stand the natural interaction of hands with other objects in various scenarios.

However, hand detection is a challenging problem because the appearance of

hands can vary greatly in images. For instance, the shape of a hand can change
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dramatically due to the articulation of fingers as well as changes in viewpoint.

A hand can be (partially) occluded while interacting with other objects. The

colour of a hand can vary greatly under different illuminations, and a hand can

even appear to be textureless under extreme illuminations. Traditional Meth-

ods [1, 2, 3, 4] based on gradients or skin detection often cannot handle practical

unconstrained hand images well due to insufficient training data. Furthermore,

ego-centric cameras have become more and more popular. Images captured by

such cameras often have a dynamic background, which makes hand detection

even more difficult. Nonetheless, hands play a major part in these images, and it

is of great interest and importance to detect hands in detail robustly for further

higher level analysis.

In this paper, our goal is to improve pixel-level hand detection and hand part

labelling within the random forest framework. Rather than predicting per-pixel

labels independently as in [5], we aim at exploiting the inherent structure from

the label output space and predicting a patch region, which corresponds to a

binary shape mask in hand detection and a multi-class label patch in hand part

labelling. Technically, our approach is inspired by Semantic Texton Forests [27]

and recent work on semantic image labelling [28]. During their training process,

only limited number of pixels of a patch were considered in the split function.

In order to consider more pixels, we propose to use an intermediate mapping,

which groups the training patches for each node into certain amount of clusters

by means of unsupervised learning methods. As shown in Figure 1, our method

detects hand regions more robustly than previous methods and is able to parse

a hand into different parts.

Our proposed approach has the following contributions:

• We explicitly model the labelling of a pixel together with its local neigh-

borhood as a structured output to better utilize the inherent topological

information in the training data and enforce such information as con-

straints during estimation;

• A novel structured split criterion is proposed to enable an efficient train-

2



(a) (b) (c) (d)

Figure 1: Introduction to our method. (a) Original image. (b) Pixel-level hand detection

by single pixel prediction. (c) Pixel-level hand detection by structured mask prediction. (d)

Hand part labelling by structured label prediction.

ing and consider more pixels of our structured forests by incorporating

unsupervised learning methods;

• We extend the binary hand detection to multi-class hand part labelling

within our unified framework to solve these problems in an efficient and

robust manner;

• Throughout the experiments, our method outperforms the state-of-the-art

methods. We also present a comprehensive analysis on different factors

affecting the performance of our method on both tasks.

Next, we briefly review related work on pixel-level hand detection in Sec-

tion 2. In Section 3, we describe our proposed structured forests for hand

detection. In Section 4, we extend our structured forests to handle more gen-

eral output and apply them to hand part labelling. In Section 5, we show the

experimental results for both hand detection and hand part labelling. Finally,

we conclude our method in Section 6.

1.1. Literature Review

For many years, hand detection has been studied as a part of gesture analysis

and human layout parsing. Early efforts in detecting human hand from a colour

image usually considered skin-colour as the major cue [2, 3, 6] to build a model

of the hand region in colour space. Mixture of Gaussians [7] was commonly

used to model colours of skin and non-skin regions for hand localization [8] and
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hand tracking [9, 10]. As these methods often require a priori knowledge of skin

colour, extracted either from training data or from face detection, to build the

skin model, they cannot obtain robust results when they are applied to a novel

scene or when illumination changes cast a large variation in colour.

In the mean time, inspired by the great progress in object detection and

recognition, a few works directly modeled the appearance of hands with a generic

object detection framework. Features could be extracted from a number of

training images to train a Viola & Jones-like boosted detector [1, 11, 12] or an

HOG-SVM detector [4, 13], which can be viewed as a hand template represen-

tation. A hand template could also be learned as an ensemble of edges [14, 15]

from a set of 2D projections of a 3D synthetic hand model. Furthermore, colour

information can be used to further create more proposals to improve the detec-

tion performance [4]. However, the applications of these methods are limited to

a small number of hand configurations. They often need to exploit more train-

ing data in order to cover a larger configuration space. Alternatively, hands can

be detected as part of a human pictorial structure [16], which may bring more

context information and allow inferring hand position via optimization. This is

a common practice for still images, but it usually requires at least the upper

body being visible for the inference of human layout.

When it comes to videos, motion-based methods can be used for ad-hoc

applications, such as activity analysis and gesture recognition. They segment

foreground hands from background by motion and appearance cues [17, 18, 19].

Hands can usually be tracked easily and they do not require a strong appearance

model in most cases. Nevertheless, motion-based methods are often not suitable

for moving cameras which produce images with lots of background motion.

Recently, ego-centric cameras, such as Google Glass and GoPro cameras,

have become more and more popular. A local-appearance-based pixel labelling

method recently proposed by Li and Kitani [5] has shown to be quite successful

in dealing with dynamic background and varying appearance of hands in ego-

centric videos. However, their method only predicts the label of every pixel

independently without considering any shape constraint. To deal with the noisy
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output, segmentation is required to optimize the shape of hand region [20, 21].

Often hand detection is only the first step in hand gesture analysis. It is of

great interest to further recognize the hand parts in detail. Following the great

success of image labelling for human pose estimation [22], hand part labelling

becomes one of the most investigated fields, especially for depth images. In

this line of works [23, 24, 25, 26], recognizing hand parts are considered as an

intermediate step for subsequent articulated hand joints estimation. As it is

easy to synthesize hand depth images using graphics techniques, there is a lot

of priori knowledge, e.g., hand joint position, hand orientation, that can be

used to customize the construction of a per-pixel random forest classifier. Such

information, however, is not available in conventional colour images. This makes

hand part labelling in colour images not well investigated. On the other hand,

the progress of semantic labelling [27, 28] enriches us with more possible ways

to exploit per-pixel labels for prediction. This encourages us to fill the blank of

hand parts labelling in colour images.

2. Random Decision Forests for Hand Detection

In this section, we begin with a review of random decision forests for pixel-

level hand detection, and introduce some notations used in pixel-level hand

detection settings.

Given an image patch Ip ∈ Rw×w×3 with a size of w × w centered at pixel

p ∈ Z2 in a colour image I, a feature vector xp ∈ X is extracted to encode

the colour, gradient and texture information of this patch. A binary decision

tree fΘ(xp), parameterized by Θ, is a tree-structured classifier that maps xp

to a binary label yp ∈ {0, 1}, which indicates whether the pixel p belongs to a

hand (i.e., yp = 1) or not (i.e., yp = 0). The feature sample xp is recursively

branched left or right down through the tree. In Node j, this process is done

according to a split function with parameter θj

Φ(xp,θj) =

1, if θ>j [x>p 1]> ≤ 0

0, otherwise

, (1)
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where 1 means xp belongs to the left child of Node j while 0 means to right.

When the sample reaches a leaf node, the posterior distribution P (yp) stored

in that leaf will be associated to the sample for prediction.

A decision forest is an ensemble of T decision trees, each with independent

parameters Θi. Given the feature sample xp, the output of the decision forest

F (xp) is the final class label y∗p, which is obtained using an ensemble model of

the posterior distributions Pi(yp|xp) in the leaf node of tree i as,

y∗p = arg max
yp

1

T

T∑
i=1

Pi(yp|xp). (2)

2.1. Training Decision Forests

During the training process, each decision tree is constructed independently

from a randomly sampled subset of the training set S ⊆ X × Y in a recursive

manner. For a node j with a set of training data Sj ⊂ S, there are several

randomly generated candidates of θj and the goal is to find a candidate that

maximizes the information gain, G(θj), of the current split test. The informa-

tion gain is defined as

G(θj) = H(Sj)−
∑

k∈{L,R}

|Skj |
|Sj |

H(Skj ), (3)

where SLj = {(xp, yp) ∈ Sj |Φ(xp,θj) = 1} denotes the set of training data to

be assigned to its left child and SRj = Sj \ SLj denotes the set of training data

to be assigned to its right child, | · | denotes the size of a set and H(·) denotes

purity measurement w.r.t. yp. As in our formulation, yp is a binary variable, the

purity can be measured by Shannon Entropy or Gini impurity [29]. The decision

tree is constructed by splitting the training data in its nodes repeatedly until

either the minimum number of training data in a leaf node or the maximum

depth of a tree is reached. In a leaf node, a posterior distribution P (yp) is often

built by calculating the frequencies of each class and kept in the leaf for future

prediction. An alternative is to select the most represented class of the training

samples routed to that leaf [30].
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Figure 2: The main difference between random forests and structured forests.

3. Learning Shape Masks in Random Forests

In the traditional random forest framework, each input image patch is as-

signed with a single label to its central pixel. It does not consider any depen-

dency among all of the pixel in that patch. In fact, if these labels are considered

as a whole, they exhibit an inherent structure, which just forms the shape mask

of the hand. Nevertheless, the standard random forests cannot fully exploit

such interdependencies of the pixels during training and usually lead to a noisy

result. It suggests that a better treatment is to learn a shape mask instead of

just a single pixel label for an image patch to overcome the limitation of the

original random forests, and explicitly utilize the inherent shape information in

the training data.

In this section, we propose to augment the original output space to a struc-

tured label space and learn these shape masks within the random forest frame-

work. We refer to our method as Shape-aware Structured Forests to highlight

the major difference compared with standard random forests.

3.1. Shape Masks as Structured Output

Given an image patch Ip, our structured forests again take its feature vector

xp as input, but the original output space yp ∈ {0, 1} is extended to a shape

mask space yp ∈ Y = {0, 1}w×w. Each decision tree of the structured forests

now maps xp to a shape mask following the same routing procedure as in stan-
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dard decision forests. In each leaf node, the posterior distribution of the mask

P (yp) is stored instead of that of the central pixel. However, as the number

of the states is exponential to the size of the image patch Ip, we approximate

the posterior distribution by the product of its marginal distributions over each

pixel. As a result, each leaf node stores the marginal distribution of each pixel

for efficiency.

For each tree i, a patch will pass through several binary tests until a leaf

node is reached. In the leaf node, a posterior distribution of a mask is stored

as a per-pixel posterior mi(x, y) at (x, y) as illustrated in Figure 2 along with

a per-pixel variance σi(x, y). The output of the structured forest is defined as

the weighted average of all these posteriors,

m∗(x, y) =
1

Z

T∑
i=1

e−kσi(x,y)mi(x, y). (4)

where Z =
∑
i e
−kσi(x,y) is a normalization term, and k is a parameter for

tuning the weights. If k = 0, Z will become the total number of trees T

and m∗(x, y) will simply be the average of all the posteriors. Note that each

pixel will receive predictions from multiple input patches covering it. The final

prediction depends on both the prediction of structured forests and the fusion

of predictions from multiple patches. Due to efficiency concern, we turn to

a simple fusion method by assuming all the predictions are uncorrelated and

calculating the marginal distribution of each pixel from these predictions as the

final fusion result. Moreover, it does not need to evaluate every pixel with its

local neighborhood image patch because a pixel can receive predictions from its

neighboring pixels as long as those corresponding patches cover it. Therefore, a

stride-based approach can be also used to accelerate the evaluation on the whole

image. For a w×w patch with stride width d, each pixel receives approximately

w2T/d2 predictions as compared to T predictions from standard decision forest,

which makes prediction more robust in practice.
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Figure 3: Intermediate mapping during splitting in Node j. In the parent node, all mask

images are firstly grouped into two clusters. Next, θj for X is selected to maximize G(θj)

calculated from cluster labels in Z.

3.2. Training Forests by Intermediate Mapping

However, it will be extremely time consuming to calculate information gain

in the new shape mask space as we need to enumerate all possible states. For

instance, there will be 216×16 possible states for a patch with a size of 16×16. In

order to speedup the calculation of information gain, an intermediate mapping

is used during training to approximate the mask space by a lower dimensional

space as illustrated in Figure 3. During node splitting process, a subspace Y ′

is first randomly selected from the original mask space Y so that additional

randomness can be injected into forest training to ensure the diversity of trees.

This can be done by randomly selecting m elements from the mask yp. Next,

k-means algorithm is performed over the subspace Y ′ to group the training

masks into 2 clusters, so that either Shannon Entropy or Gini Impurity can be

used to compute information gain of a candidate split test. Finally, a standard

procedure like in decision forest training is applied to find an optimal split

parameter θj for the current node j.

3.3. Multi-scale Hand Detection

Normally, the hand size in training samples does not vary much or is pre-

processed to be constrained within a certain range. In order to detect hands of
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Figure 4: Hand detection in multiple scales. An input image is resized into several copies

before a sliding-window of our structured forests predictor is applied to the image in each

scale. The subsequent probability maps are then rescaled to the original size of the input

image to be aggregated as the final output.

different sizes in a new image, we need to apply our model in multiple scales.

Similar to [31], we adopt an image pyramid-based detection framework as illus-

trated in Figure 4. We first rescale the input image I to form an image pyramid.

In each level, colour and gradient features are extracted as channel features [32].

In particular, we extract CIELUV channels as per-pixel colour features, which

have been shown to be the most discriminative colour features in many appli-

cations [33, 5, 34]. As for per-pixel gradient features, we simply extract the

magnitude and the orientation for each pixel and split its orientation into 9

channels followed by Gaussian smoothing among all bins. In order to describe

the texture of a hand, we also include self-similarity features [35], which are

pairwise differences among cells that subdivide a patch into tiles. This will also
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help to differentiate hand and non-hand regions in the patches. As all features

are either channel features of order 1 or pairwise features of order 2, a lookup

table can be built so that feature extraction can be done very efficiently during

the test phase.

After the features are extracted, a sliding window of size w × w with stride

width d is used to apply our structured forests and the final probability map

of pixel-level hand detection is obtained by averaging the results over different

scales and overlapping windows.

4. Extending Shape Masks to Hand Parts

The hand shape mask yp consists of a set of binary labels indicating whether

a pixel belongs to a hand or not. In this section, we further extend these binary

labels to multi-class labels indicating which hand part a pixel belongs to.

More formally, a shape mask yp in original mask space Y can be further

extended to a label patch lp in the new structured label space L = {0, ..., C}w×w,

where every pixel is assigned with a class label l ∈ {1, ..., C} or a background

label 0. As a consequence, the problem can be further extended to a semantic

image labelling of hand parts. For a given training set S ⊂ X × L, we can

construct structured forests to map a feature vector xp to a label patch lp by

making some customization.

1 1
3 1

1 2
3 1

1 1
3 2

... Generalization Clustering
1 0 1... ...

1 1
3 1

1 2
3 1

1 1
3 2

...

Splitting ...21 : : 3 :

Figure 5: Intermediate mapping for hand part patches. During node splitting, linear general-

ization for categorical labels is done before these sample patches are clustered in the promoted

output space, and serve for information gain calculation.
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4.1. Intermediate Mapping for Hand Part Labels

Unlike in [28], where a k-label joint distribution is directly used for infor-

mation gain calculation, we still use a two-step intermediate mapping in order

to better utilize the output space. However, as the hand part label lp of pixel

p becomes a categorical variable, k-means algorithm cannot be directly applied

during the clustering step. Instead, inspired by generalizing linear binary classi-

fiers [36], we loose the class label l ∈ {0, 1, ..., C} to a (C+1)-dimensional binary

vector l̃ with only one dimension being 1 as illustrated in Figure 5. The label

space L is promoted to a higher dimensional space L̃ = {0, 1}(C+1)×w×w so that

k-means algorithm can be applied to find the “mean” joint class probability

of the pixels in the patch. After the clustering is done, the information gain

is calculated over subsequent two clusters in test function similar to previous

section.

Compared with [28], we do not need to specify k and select optimal k-labels

to separate the training samples at current node. Instead, unsupervised learning

is used to split current subspace of L and fit the training subsets autonomously.

In this way the samples can be coarsely separated in higher levels with more

labelling information considered and finely clustered in deeper nodes. In Fig-

ure 6, we show that the training samples that reaches the leaves are semantically

coherent by our method.

Fingers 

Thumb 

Palm 

Forearm 

Background 

Figure 6: The examples of image patches with corresponding label patches collected from

different leaf nodes (each row) in EDSH Dataset.

12



4.2. Selecting Prototypes in Leaf Nodes

When a tree grows to its leaf node t by reaching the stopping criteria with

Dt ⊆ L as the set of hand label samples in the training data, we store a single

label patch as the most represented patch of Dt to approximate the true poste-

rior like in [28]. This can be done by choosing the label patch lt∗p that maximizes

the joint class probability P (l) at node t,

lt∗p = arg max
ltp∈Dt

P (ltp) ≈ arg max
ltp∈Dt

∏
u∈N (p)

P (ltu), (5)

where N (p) is the local neighborhood of pixel p and the marginal distribution

P (lju) is obtained by calculating the frequencies of each semantic class of pixel

u. As a consequence, we use a prototype to represent all samples in current leaf

node in order to minimize computation cost while enforcing a proper constraint

for prediction.

Once a forest is trained, each pixel label can be predicted by aggregating the

multiple predictions in its local neighborhood and choosing its most probable

class by the forest.

5. Experimental Results

We first tested our structured hand detector on ego-centric videos and depth

images. Next we explored the hand part labelling in manually labelled ego-

centric images. In ego-centric videos, fine shape is always needed for further

high-level analysis, such as action analysis or object recognition. We compared

our methods with state-of-the-art methods on these images and analyzed differ-

ent factors that may affect the detection performance, and then evaluated the

performance of our method on hand part labelling.

5.1. Hand Detection in Ego-centric Videos: GTEA and EDSH dataset

We first evaluated our detector on the Geogia Tech Ego-centric Activity

dataset (GTEA) [18]. The GTEA dataset involves little camera motion and

is taken under the same environment as it is primarily recorded for activity
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Baseline Li &

Kitani [5]

Serra et

al. [38]

Ours

GTEA-Coffee 78.05 88.4 - 90.19±1.07

GTEA-Tea 72.53 87.3 - 84.30±1.12

GTEA-Peanut 74.71 81.5 - 84.37±2.11

EDSH2 72.31 78.1 78.9 80.43±3.10

EDSH-Kitchen 74.37 80.8 83.1 92.11±1.41

Table 1: Comparison on different pixel-level hand detection methods in GTEA and EDSH

dataset. The F-scores of the baseline random forests, Li and Kitani’s approach with feature

selection, Serra et al.’s approach before temporal smoothing and our approach are listed in

Column 2-5 respectively.

recognition. Similar to the experimental setup in [5], all video clips were firstly

down-sampled to 640 × 360. There are 7 actions for 4 subjects, one of which,

Subject 1 (S1), the ground truth labels are available for evaluation. The original

hand masks are quite noisy and sometimes confused with the objects in hand

due to unsatisfactory segmentation. We turned to the masks made available

in [5] obtained using GrabCut [37]. We performed three experiments where we

used Coffee sequence for training and Tea and Peanut sequences respectively

for testing, and used Tea sequence for training and Coffee sequence for testing.

We also compared our approach on a publicly available EDSH dataset 1,

which involves more illumination changes and camera motion. EDSH1 and

EDSH2 recorded both hands of a subject walking through different indoor and

outdoor scenes in order to capture the changes in skin colour. EDSH-Kitchen

recorded a subject performing different activities in a kitchen, where there were

great ego-motion and hand deformations. These are typical scenarios for hand

detection in daily life and all these videos were recorded in 640× 360, and 442

labelled frames were used for training our shape-aware structured forests.

1http://www.cs.cmu.edu/~kkitani/perpix/
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Figure 7: Sample images of GTEA dataset: (left column) original images, (second column) re-

sults of Li and Kitani’s Method [5], and (last column) our results. From top to bottom:

GTEA-Coffee, GTEA-Peanut and GTEA-Tea. Best viewed digitally at high zoom.

5.1.1. Comparison

We performed the same experiment using standard random forests for single

pixel prediction based on 9×9 patches using colour and HOG features as baseline

method. Furthermore, we also included Li and Kitani’s results after feature

selection for all 5 experiments [5] and Serra et al.’s results before using temporal

information [38]. The average F-score, i.e., harmonic mean of precision-recall

rate, over all test images was used to measure the detection performance. The

results are shown in Table 1. Our approach outperformed the baseline method in

all 5 experiments. The improvement mainly happened in some cluttered regions

because our method can filter out the noise and also smooth the prediction of

hand region by averaging.

Figure 7 and Figure 8 show some sample images overlaid by per-pixel proba-

bilities produced by the public code in [5] and our method in GTEA and EDSH

dataset.

In Figure 7, we find that single pixel hand prediction always fails at the

edge of hand and fingers. This is because the local neighborhood of these pixels
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Figure 8: Sample images of EDSH data set: (left column) original images, (second column) re-

sults of Li and Kitani’s Method [5], and (last column) our results. From top to bottom:

confusion with the door in EDSH1; shadow on the hand in outdoor in EDSH2; poor light

condition in EDSH2; motion blur in EDSH-Kitchen; confusion with sink in EDSH-Kitchen.

Best viewed digitally at high zoom.

varies a lot when the hand is moving and deforming. Therefore it cannot collect

a strong evidence saying that the central pixel belongs to a hand. On the

contrary, our method can provide partial support from the neighborhood of

edge pixels via structured label predictions because these partial contributions

will aggregate into the edge pixel such that the ambiguity along the edge can

be removed.

In Figure 8, both our method and single pixel prediction might cause con-
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Figure 9: Usage of features in the structured forest. (a) Feature of channel and similarity

features. (b) Feature in different channels. The first 3 channels are CIELUV colour channels,

the 4th are magnitude of gradient and the rest are gradients in different orientations. (c)

Spatial distribution of the features rasterized in a 8× 8 grid. Higher intensity indicates more

usage in corresponding area.

fusion with certain textureless objects, e.g., doors in 1st row. However, our

method smoothed these regions so that they could be easily removed by post-

processing. Meanwhile, our method was more robust to the incorrect labels in

training samples caused by improper segmentation. These labels often appear

along edges of the hand as well as on the objects in the hand. For single pixel

prediction, these labels will be incorrectly treated during training, so they will

affect the prediction in a fundamental way. However, it is not common in our

approach as ours is based on patch observation that is robust to pixel-level noise.

5.1.2. Feature

We first investigated the contribution of different features by checking its

usage in the structured forests. All selected features are aggregated from all

non-leaf nodes in the forests. First in Figure 9(a), we show the ratio of channel

features and texture features. They are almost equally important so the pairwise

texture features are essential in mask prediction. Figure 9(b) shows that the

colour features (first 3 channels) are the mostly used ones among all channel

features. This means that colour is still the most discriminative feature for

hand detection. Moreover, the orientations of the gradients are more often used

than their magnitudes, which suggests that the edge orientation of a hand is
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Colour Gradient C+G C+G+T

EDSH2 72.86 52.62 77.05 80.43

EDSH-Kitchen 83.35 55.32 87.14 92.11

Table 2: F-score (100×) of different feature settings.

more informative in determining its shape mask. Figure 9(c) shows the spatial

distribution of selected channel features in a 32× 32 patch rasterized in a 8× 8

grid, we can see that most of the places are used for predicting the hand shape

mask.

We also trained several models of various settings on EDSH dataset in order

to validate the importance of different feature types. All models took 16 × 16

colour patch as input and their settings of feature combinations are shown in

Table 2. The performance of only using colour channels on EDSH2 dataset is

relatively lower than that of EDSH-Kitchen mainly because of the great illumi-

nation changes. The model of only using gradient channels may introduce a lot

of false positives along long edges. The performances were improved on both

datasets by combining colour and gradient channels. With texture descriptor

extracted, they were further improved as the pairwise pixel differences are more

robust to the change of lighting.
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Figure 10: Performance of our structured forests of different patch sizes for GTEA dataset.
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Figure 11: Performance of our structured forests of different patch sizes for EDSH dataset.
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5.1.3. Size

We next examined the effect of different sizes of patches used for our struc-

tured forests. In order to examine the hand in different resolution for ego-centric

videos, we down-sampled all the images in EDSH dataset from 640 × 360 to

320 × 180. For both datasets, we increased the size of training patches from

half the finger size to twice the palm size. Both in Figure 10 and Figure 11,

there are two phases in the F-score curve. During the increasing phase, it brings

more spatial context for shape mask prediction so the F-score will increase dra-

matically. In the decreasing phase, the structured forests will suffer from two

limitations. First, it will over-smooth along the hand contour which makes it

sensitive to the detection threshold. Second, there will not be sufficient train-

ing samples for the exponentially increased output space. Thus the forests will

probably overfit the training data. From our observation, more than half the

palm size is suitable for a robust hand detector.

5.1.4. Number of trees

As for the common smoothing effect introduced by our structured forests, we

further examined the contribution of different number of trees to shape detec-

tion. Figure 12(a) shows the performance of structured forests under different

number of trees. We used a forest trained from 16× 16 patches to observe the

shape mask prediction. In Figure 12(c), we can see that a single tree can outline

the shape but the shape contour is not smooth enough. This can be improved

either by increasing the number of trees T as shown in Figure 12(d) or reducing

the stride width d as shown in Figure 12(e). Both can accumulate more spatial

context in order to obtain a better shape mask.

5.1.5. Timing

Table 3 records the time cost for evaluating a 720×405 image on a Macbook

Pro with Core i7 2.5 GHz CPU and 16 GB Memory. We compared the public

code provided by the author [5] with our MATLAB implementation. We used

9 × 9 patch to train the single pixel predictor, and used the same size in our
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Figure 12: Performance under different number of trees and stride width. (a) Overall F-score

w.r.t. different numbers of trees. (b) Original image. (c) Prediction by forest (d = 16, T = 1).

(d) Prediction by forest (d = 16, T = 16) (e) Prediction by forest (d = 1, T = 1).

Li et al. [5] Ours (s) Ours (m)

d = 1 d = 2 d = 8 d = 1 d = 2 d = 8

Time (ms) 1167 576 214 71 2956 1038 387

F-Score (100×) 86.37 89.21 89.25 87.81 88.91 89.06 89.35

Table 3: Comparison on time cost to evaluate a 720×405 colour image using different methods

with input patch of size 9× 9. s and m stand for single and multiple scale detection, and d is

the stride width.

implementation. s and m stands for single and multiple scale detection. d is

the stride width. Most of their time is spent on feature extraction compared

with ours. Moreover, we can reduce the time cost for prediction by increasing

the stride width with only a little performance drop. This is extremely helpful

when it comes to multiple scale implementation, where image copies of different

scales are considered.

5.1.6. Fusion Parameter k

We performed two experiments to evaluate different choices of the fusion

parameter k in Eq. 4. Firstly we trained a set of forests from 16 × 16 patches

using original 720 × 405 images of GTEA dataset and trained another one set

using their down-sampled 267× 150 images. From Figure 13(a), we found that

there was a great improvement in F-score for the latter one while that for the

former set was not improved much. This is because for the images of larger

resolution the confusion often happened along the contour of the hand where
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the detection results were good enough. Therefore larger k did not contribute

much although it made the boundary clearer as shown in Figure 13(c-d). When

it comes to smaller resolution, the confusion also existed in finger region during

fusion process and better results could be obtained with a larger k.

75

78

81

84

87

0 1 2 4 8 16 32

F-
sc

or
e 

×
10

0

Voting parameter k

 267 × 150

 720 × 405

(a) (b) (c) (d)

Figure 13: Performance under different choices of k. (a) Overall F-score of two experiments.

(b) Original image. (c) Prediction by forest (k = −1). (d) Prediction by forest (k = 32).

5.1.7. Generalization Capability

It is also interesting to investigate the generalization capability of our method

among different subjects and datasets.

We first tested the our approach by training on one subject (S1) in GTEA

dataset and tested on all subjects. For S2-S4, we manually lablled 20 images

from different activities and used them for evaluation. The result are shown

in Figure 14. In general our model can achieve good performance among all

4 subjects. When more training samples are used, the performance can be

improved accordingly.

Next we showed the performance of hand detection in GTEA dataset using

the model trained from EDSH dataset (E2G) and that of EDSH dataset with

the model from GTEA dataset (G2E) in Figure 15 respectively. It is interesting

to see that the performances were quite low probably because our model uses

raw channel features which are not robust to illumination changes.

We observe that this is limited by the random forest framework as it usually

requires a lot of training data in order to cover input space sufficiently. As our

method uses channel features as input, it can be generalized to a new scene if

its lighting condition is similar to original one.
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Figure 14: Performance on each subjects. (a) Overall F-score on each subjects with different

amount of training samples. (b-d) Sample images for Subject 2-4: original images (top) and

their corresponding prediction (bottom).
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Figure 15: Performance on GTEA and EDSH datasets. (a) Average precision and recall of

two settings. (b) Sample image from GTEA dataset (top) and its prediction (bottom). (c)

Example from EDSH-kitchen dataset. (d) Example from EDSH1 dataset.
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5.2. Hand Detection in Depth Images

As our method is not limited to ego-centric images, we further explored its

ability to segment hands in depth images on NYU Hand Pose Dataset [39]. The

dataset consists of 6736 depth frames of a subject doing various hand gesture

and their ground truth per-pixel hand labels. As the number of training images

are larger than the previous datasets and the hand size varies a lot as well, we

down-sampled each image from the resolution 640×480 to 320×240 in order to

use more hand patches for training and cover more hand samples. Accordingly,

we extracted pixel-wise depth comparison as channel features for each pixel in

order to achieve depth and scale invariance following the success in [22].

5.2.1. Comparison with Benchmark

We compared with classical random decision forest approach, which has been

shown successful in [22, 39]. As the feature used in our approach and theirs are

the same, we mainly discuss the number of candidate features used for pixel-wise

comparison and the size of patches.

50

55

60

65

70

75

80

85

90

4 8 16 32 48 64 96 128 192 256

F-
sc

or
e 

×
10

0

#Candidate features per pixel

 1x1, 60k

 1x1, 300k

 12x12, 60k

 12x12, 300k

Figure 16: Performance of our structured forests under different number of candidate features

on NYU Hand Pose dataset. 1× 1 and 12× 12 indicate patch size w. 60k and 300k stand for

the numbers of training samples.

Number of Candidate Features of Pixel-wise Comparison. For single pixel clas-

sification, it usually requires a large amount of pixel-wise comparison to achieve

high accuracy. As shown in Figure 16, the performance increases as the number

of candidate features increases, because it can capture more information of its

local neighborhood. On the contrary, our structured forests can predict the

23



hand region well with less training samples even if there is limited number of

candidate features per pixel.

Size of Patches. Similar to previous observation, there are also two phases in F-

score curve in Figure 17. 12×12 is optimal in our setting, which corresponds to

two-finger sizes when a hand is 600mm away from the depth camera. Figure 18

shows some examples predicted by the benchmark model (1× 1) and ours with

64 candidate features and probe offset 64 pixel meters. We can see that our

method can eliminate the confusion in the head and arm given a small set of

candidate features.
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Figure 17: Performance of our structured forests under different patch sizes for NYU Hand

Pose dataset.

Figure 18: Sample results on NYU Hand Pose Dataset: (left column) original images, (second

column) results of benchmark method [39], and (last column) our results.
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5.3. Labelling Hand Parts: EDSH dataset

For hand parts labelling, we continued to label hand parts on EDSH dataset.

We defined 4 regions of a hand, namely as thumb, finger (for the rest of the

fingers), palm and forearm as shown in Figure 6. Because detailed hand seg-

mentation maskes have already been made available in the public dataset, we

further developed a labelling tool to manually label each part and perform an

AND operation to obtain a precise segmentation of each hand part. 437 images in

EDSH1 were used for training and 104 images in EDSH2 were used for testing.

a

b

c

d

e

f

Figure 19: Sample images for comparison with hand part detection. (a) Original image. (b)

Predicted hand parts. (c) Image overlaid with per-pixel probability map for each hand part

by one-vs-all prediction. (d) Probability map of hand part obtained by one-vs-all prediction.

(e) Image overlaid with per-pixel probability map for each hand part by our method. (f)

Probability map of hand part obtained by our method.

5.3.1. Support from Labelling in the Neighborhood

We first performed a pilot study to train four separate detectors of patch size

16× 16 for each part of the hand in one-vs-all fashion, which treated the other
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Figure 20: Performance of different patch sizes used for training.

parts as background pixels using previous hand detection framework. Next our

structured forest was trained under the same setting to compare with the above

detectors qualitatively. The detection results for each hand part are shown in

Figure 19. From the probability map, we can see that for one-vs-all hand part

detectors, confusion may occur between thumb and finger region, as well as palm

and forearm region. On the contrary, if we switch to the posterior distribution

for each label under multi-class framework, the confusion is suppressed greatly

for these regions. This suggests that the class labels in the neighborhood of a

hand pixel provide contextual support for the recognition of each part.

5.3.2. Patch Size

Next we examined the effect of different sizes of patches used for training.

Similar to the experiment settings of hand detection in EDSH dataset, we down-

sampled the video to 320 × 180 and tested a wide range of patch sizes from

2 × 2 pixels to 64 × 64 pixels. Overall per-class accuracy was used to evaluate

the multi-class prediction for hand region. It was computed as the mean of

diagonal elements of the confusion matrix between predicted labels and ground

truth labels. The metric had the same weights for each hand part in spite of

their different sizes. We evaluated our method on the whole image in the test

set and collected the metric in ground truth hand region. The overall accuracy

of all classes vs. size of patch is shown in Figure 20. When the patch size was

small, there was great confusion between palm center and forearm region. This

is probably because the colour and texture information are quite similar for these

patch samples and no information from the shape can help to differentiate the
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palm pixels from forearm pixels. As the patch growed larger, the prediction for

fingers were often suppressed by background pixels probably due to insufficient

support from its nearby regions. Therefore, like in Shotton et al.’s observation

in [22], we also confirm that larger neighborhood helps defining the identity of

current pixels. However, it may suffer from insufficient training data if the size

becomes too large (see the drop in Figure 20).

We further show F-score for each class in Figure 21. The metrics of finger

and thumb drop greatly when the patch size becomes larger while there is a

slight increase for palm and forearm region. The size of 16× 16 is a good trade-

off between small parts such as hand fingers and large parts such as palm and

forearms.
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Figure 21: F-score for different hand part classes.

6. Conclusions

We have presented a new approach to exploit the inherent contextual infor-

mation from structured hand labelling for pixel-level hand detection and hand

part labelling. By using a random forest framework, our method can predict

the hand mask and hand part labels in an efficient and robust manner. Through

experiments, we demonstrate that our method can outperform state-of-the-art

pixel-level detection methods in ego-centric videos, and further be able to parse

hand parts in details. This may provide us better information for gesture anal-

ysis and hand-object interaction.
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