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Figure 1. Self-evolved Signed Distance Field (SeSDF): We propose Self-evolved Signed Distance Field (SeSDF), which can flexibly
reconstruct 3D clothed human models from a single-view image (top) or uncalibrated multi-view images (bottom). SeSDF can robustly
recover fine geometry details from any type of poses, which allows us to generate clothed human avatars.

Abstract

We address the problem of clothed human reconstruction
from a single image or uncalibrated multi-view images. Ex-
isting methods struggle with reconstructing detailed geome-
try of a clothed human and often require a calibrated setting
for multi-view reconstruction. We propose a flexible frame-
work which, by leveraging the parametric SMPL-X model,
can take an arbitrary number of input images to reconstruct
a clothed human model under an uncalibrated setting. At
the core of our framework is our novel self-evolved signed
distance field (SeSDF) module which allows the framework
to learn to deform the signed distance field (SDF) derived
from the fitted SMPL-X model, such that detailed geometry
reflecting the actual clothed human can be encoded for bet-
ter reconstruction. Besides, we propose a simple method for
self-calibration of multi-view images via the fitted SMPL-
X parameters. This lifts the requirement of tedious man-
ual calibration and largely increases the flexibility of our
method. Further, we introduce an effective occlusion-aware
feature fusion strategy to account for the most useful fea-

tures to reconstruct the human model. We thoroughly eval-
uate our framework on public benchmarks, demonstrating
significant superiority over the state-of-the-arts both quali-
tatively and quantitatively.

1. Introduction

Clothed human reconstruction is a hot topic with increas-
ing demand in real-world applications such as 3D telep-
resence, game modeling, metaverse [40], etc. Early works
show promise under equipment-assisted settings, requiring
expensive dense camera rigs [12] and tedious calibration
procedures [15]. Parametric models, such as SMPL [36]
and SMPL-X [47], have been introduced to model a naked
human body with constrained parameters. With the wit-
nessed success of deep learning in many vision tasks, many
deep learning methods have been proposed to regress the
parameters of such parametric human models from a sin-
gle [16, 66, 67] or multiple images [6, 13, 68]. However,
these methods can only reconstruct a minimally-clothed hu-
man model without many details (e.g., hairs and clothes).



Recently, methods based on implicit shape representation
have reported encouraging performance, showing promis-
ing reconstruction with increased details in both single-
view [23, 26, 52, 63, 71] and multi-view [24, 25, 54, 55]
settings.

Despite the stunning results reported by the above meth-
ods, their reconstructions remain far from perfect, restrict-
ing their practical applications. For instance, state-of-the-
art (SOTA) single-view methods, such as PIFuHD [53],
PaMIR [71], and ARCH++ [23], struggle with many self-
occluding non-frontal human poses that widely occur in
the real world. ICON [63] can handle these cases but the
reconstructions contain serious artifacts (see Fig. 3). On
the other hand, many multi-view methods depend on cali-
brated cameras (e.g., [24, 54, 55]) which are tedious to ob-
tain in practice. Hence, how to carry out multi-view recon-
struction with uncalibrated cameras is an important topic
to study. Meanwhile, effective multi-view feature fusion
is another key factor for robust mutli-view reconstruction.
Prior techniques for multi-view feature fusion include aver-
age pooling [52], SMPL-visibility [63], and attention-based
mechanism [70]. However, the reconstruction results based
on these fusion techniques still contain notable artifacts in
many cases. This indicates that more efforts are needed to
derive a better multi-view feature fusion for more robust re-
construction.

In this paper, to extract more clothed human details flex-
ibly and robustly from a single RGB image or uncalibrated
multi-view RGB images, we present a novel framework,
named SeSDF, that employs the parametric model SMPL-
X [47] as a 3D prior and combines the merits of both im-
plicit and explicit representations. SeSDF takes a single
image or multi-view images as input to predict the occu-
pancy for each 3D location in the space representing the
human model. To reconstruct high-frequency details such
as hairs and clothes, we introduce a self-evolved signed dis-
tance field module that learns to deform the signed distance
field (SDF) derived from the fitted SMPL-X model using
the input images. The resulting SDF can reflect more accu-
rate geometry details than SMPL-X, which inherently devi-
ates from the actual clothed human model. The SDF refined
by our SeSDF module is further encoded to allow for 3D re-
construction with better geometry details.

Besides reconstructing a faithful 3D clothed human
model from a single image, our SeSDF framework can
also work with uncalibrated multi-view images to gener-
ate clothed human avatar with enhanced appearance (see
Fig. 1). To this end, we first propose a self-calibration
method by fitting a shared SMPL-X model across multi-
view images and projecting the shared model to different
images based on the optimized rigid body motion for each
input image. Further, we propose an occlusion-aware fea-
ture fusing strategy by probing the visibility of each 3D

point under different views through ray-tracing, leveraging
the SMPL-X model, such that features from visible views
will contribute more to the fused feature while those from
invisible views will be suppressed.

The contributions are summarized as follows:
• We propose a flexible framework that, by leveraging the

SMPL-X model as a shape prior, can take an arbitrary
number of uncalibrated images to perform high-fidelity
clothed human reconstruction. At the core of our frame-
work is a self-evolved signed distance field (SeSDF) mod-
ule for recovering faithful geometry details.

• For uncalibrated multi-view reconstruction, we propose
a simple self-calibration method through leveraging the
SMPL-X model, as well as an occlusion-aware feature
fusion strategy which takes into account the visibility of
a space point under different views via ray-tracing.

• We thoroughly evaluate our framework on public bench-
marks. SeSDF exhibits superior performances over cur-
rent state-of-the-arts both qualitatively and quantitatively.

2. Related Work

Parametric 3D human model Parametric 3D human re-
construction [21, 30, 36, 44, 47] paves the path for 3D hu-
man model. SMPL [36, 67] was built on convolutional net-
works and statistics collected from a wide range of human
populations. SMPL-X [47, 66] extended SMPL with more
body joints, keypoints, and expression parameters. Later
substantial supervision strategies were proposed to regress
the model parameters. Examples include semantic segmen-
tation [43, 64], human body silhouette [49], joints [16],
motion dynamics [30, 33], texture consistency [48], and
attention-regressor [31]. Multi-view [6, 13, 68, 69] and
multi-person [57, 58] setups were also sought for various
scenarios. Complex human clothing and hair topology were
also the goals for later parametric methods [3, 4, 29, 62, 73].
However, due to the minimal-clothing assumption of the
parametric models, these methods can retain little geome-
try details such as hairs and clothes in their reconstructions.

Single-view (implicit) human reconstruction Many
methods have been proposed in the deep learning era to
reconstruct a 3D human model from a single image. For
example, voxel-based methods [18, 27, 59, 60, 72, 72] re-
construct a volumetric representation of the human model.
Two-stage inference [56], visual hull [41] and front-back
depth method [17] were then proposed to improve the re-
construction performance and efficiency. However, the high
computational cost of these methods limits their real-world
applications. Implicit function methods have recently been
introduced to predict either the occupancy field [10, 38]
or signed distance field [8, 28, 45] using neural networks.
PIFu [52] presents promising results with a pixel-aligned
implicit function. Follow-up works exploited 3D features



to solve the depth-ambiguity problem [71], achieve ani-
matable model [23, 26], or improve the reconstruction de-
tails [7]. PIFuHD [53] and FITE [35] apply a multi-stage
method to improve clothing topology in the reconstruction.
Geo-PIFu [22] proposes to compute 3D features directly
from images. ICON [63] exploits the SMPL-based signed
distance filed as guidance to help produce a robust recon-
struction, with a smpl-visibility based method to choose
features from front or back sides. PHORHUM [5] explores
shading and illumination information to infer better geom-
etry and texture. Encouraging improvements have been re-
ported by these methods. However, their performance on
non-frontal human images are still far from being robust
and satisfactory.
Multi-view implicit human reconstruction Multi-view
reconstruction is conceptually a more natural choice as
information from different views can compensate each
other for better reconstruction. Under a calibrated setting,
PIFu [52] proposes to fuse features from multi-views by av-
erage pooling after being embedded using an MLP. Stere-
oPIFu [24] takes as input a pair of stereo images, and per-
forms depth-aware reconstruction. DiffuStereo [55] em-
ploys diffusion models for multi-view stereo human recon-
struction. DoubleField [54] combines the surface field and
radiance fields to improve both geometry and texture in-
ference. Effi-MVS [61] explores the dynamic cost volume
for reduced computational cost. DeepMultiCap [70] han-
dles the multi-person reconstruction with multi-view im-
ages. Neural-Human-Performer [32] proposes a multi-view
transformer to fuse features for multi-view reconstruction.
Despite promising results have been achieved, these meth-
ods require a large number of views and camera calibra-
tion. MVP-Human [74] makes use of the deformation fields
and handles multi-view inputs under an uncalibrated set-
ting, but the reconstruction quality lags far behind the cal-
ibrated methods. For calibrated methods, their models still
produce undesirable artifacts for many self-occluding non-
frontal poses and miss many geometry details.

3. Method
We propose an implicit function based framework for re-

constructing 3D clothed human models from a single im-
age or uncalibrated multi-view images (see Fig. 2). At the
core of our framework are a self-evolved signed distance
field (SeSDF) module and an occlusion-aware feature fu-
sion module. Next, we will first introduce the preliminary
for SeSDF in Sec. 3.1. We will then describe SeSDF for
single-view reconstruction in Sec. 3.2, followed by uncali-
brated multi-view reconstruction in Sec. 3.3.

3.1. Preliminary

Surface by implicit function Implicit functions [14] have
been shown to be effective for 3D reconstruction from im-

ages or videos. Typically, an implicit function is imple-
mented as an MLP, which takes the 3D coordinate X and
an optionally associated feature F of a 3D point as input,
and outputs the corresponding occupancy as a scalar value.
Commonly employed features include pixel-aligned image
features [52, 53] and space-aligned 3D features [7, 26, 71].
Formally, the implicit function can be written as

fv(X,F ) 7→ [0, 1] ∈ R. (1)

SMPL-X The parametric human model SMPL-X repre-
sents the 3D shape by incorporating body vertices, joints,
face and hands landmarks, and expression parameters. For-
mally, by assembling pose parameters θ, shape parame-
ters β, and facial expression parameters ϕ, SMPL-X human
model can be expressed by a function M(·) as

M(β, θ, ϕ) = W (Tp(β, θ, ϕ), J(β), θ,W),

Tp(β, θ, ϕ) = T̄ +BS(β;S) +BE(ϕ; E) +Bp(θ;P),

where W (·) is the linear blend skinning function, J(β) is
the joint location, and W denotes the blend weights. Tp(·)
poses the SMPL-X canonical model T̄ by shape blend shape
function BS , expression blend shape function BE , and pose
blend shape function BP . S and P are the principal compo-
nents of vertex displacements, and E represents the princi-
pal components capturing variations of facial expressions.
SMPL-X optimization Given a human image, we can fit
the SMPL-X model parameters by [16]. However, such
fitted models often suffer from misalignment. We use the
well-aligned SMPL-X models provided in the training data
to provide shape prior to train our framework. At test time,
we do not have such well-aligned models. Hence, to avoid
errors and artifacts caused by the misalignment during test-
ing, we optimize the SMPL-X parameters by projecting the
SMPL-X model onto the input image and maximizing the
Intersection over Union (IoU) between the projection and
body mask [9, 63], and minimizing the 2D keypoint dis-
tances. Please refer to the supplementary for details.

3.2. Single-view reconstruction

Given an input image I and an optimized SMPL-X mesh
S, SeSDF incorporates pixel-aligned image features F2D

extracted from I , space-aligned 3D features F3D extracted
from S, and the self-evolved signed distance field d to
predict occupancy using an MLP. By applying marching
cube [34] on the occupancy predictions in the 3D space,
SeSDF robustly reconstructs a 3D clothed human model
with faithful details, including the clothing topology. Given
a 3D point X , the implicit function for single-view recon-
struction can be formulated as

fo(F2D(X), F3D(X),D(d(X)),n(X), Z(X)) 7→ [0, 1], (2)



Figure 2. Overview of our proposed SeSDF framework. It takes a single image or uncalibrated multi-view images as input to predict
the occupancy for each 3D location in the space for shape reconstruction. We first fit a SMPL-X model to the input image(s) which
serves as a shape prior and provides space-aligned 3D features. At the core of our method is our proposed self-evolved signed distance
field (SeSDF) module, which learns a refined signed distance field (SDF) to better reflect the actual clothed human subject rather than
the minimally-clothed SMPL-X model. SeSDF module takes pixel-aligned image features, space-aligned 3D features, SDF with distance
encoding, and SMPL-X vertex normal as input to predict the refined SDF and normal value. For multi-view reconstruction, we propose
a SMPL-X based self-calibration method to eliminate the need for manual calibration and an occlusion-aware feature fusion strategy to
effectively accumulate features from different views.

where D(·) and Z(·) denote distance encoding and depth
value respectively, and d(·) and n(·) are the signed distance
and normal output by our SeSDF module.
Pixel-aligned image feature We apply a stacked-
hourglass encoder [42, 52] to the input image I ∈
R512×512×3 to produce an image feature map EI(I) ∈
R256×128×128. We then obtain the pixel-aligned image fea-
ture for the projection of a 3D point using bi-linear interpo-
lation.
Space-aligned 3D feature We apply PointNet [51] and
3D-UNet [11] to extract 3D features [7, 50] from the op-
timized SMPL-X mesh. Our 3D encoder first processes
the whole 10,475 vertices of the mesh to generate hier-
archical 3D point features, which are transformed into a
3D feature volume via average pooling. 3D-UNet is then
applied to output the final 3D feature volume ES(S) ∈
R128×64×64×64. Finally we obtain the space-aligned 3D
feature for a 3D point via tri-linear interpolation.
Self-evolved signed distance field The signed distance
field (SDF) derived from the SMPL-X model [63] provides
a strong prior for estimating the occupancy. However, the
SMPL-X model does not model geometric details of the
human, such as the cloth topology, and thus the resulting
SDF will unavoidably deviate from the true SDF of the ac-
tual clothed human model. Directly employing this SDF

for occupancy prediction will therefore induce error in the
reconstruction. To remedy this problem and recover plau-
sible geometry details in the reconstruction, we propose
a novel self-evolved signed distance filed (SeSDF) mod-
ule. This module is trained to evolve the SDF derived from
the SMPL-X model to better reflect the actual clothed hu-
man model. Instead of predicting only the signed distance
d(·) ∈ R, our SeSDF module further predict the normal
n(·) ∈ R3 which provides additional surface orientation in-
formation to guide the implicit function to better predict oc-
cupancy and capture fine shape details. Concretely, SeSDF
module is implemented as an MLP and formulated as

fsd(F2D(X), F3D(X),D(d′(X)),n′(X)) 7→ (d,n), (3)

where d′(·) ∈ R denotes the SDF derived from the SMPL-X
model and n′(·) ∈ R3 represents the normal obtained from
the closest SMPL-X vertex to X .
Distance encoding Inspired by the positional encoding
adopted in NeRF [39], we adopt a distance encoding that
maps the signed distance d to a higher dimensional space
using high frequency functions:

D(d) = (d, sin(20πd), cos(20πd), ..., sin(2Lπd), cos(2Lπd)).
(4)

In our experiments, we set L = 5. The encoded signed dis-
tance D(d) is concatenated with the predicted normal n(·),



2D feature F2D(·) and 3D feature F3D(·), and fed to the
implicit function fo(·) for occupancy prediction.
Training objectives To consistently regress SeSDF and
simulate realistic cloth topology, we consider two groups
of sampling points, namely surface samples Gs, and
occupancy-target samples Go. Points in Gs are uniformly
sampled on the mesh surface, while points in Go are sam-
pled following the strategy proposed in PIFu [52].

For points in Gs, we adopt the following loss function

Ls =
1

|Gs|
∑

X∈Gs

λd|d(X)|+ λn||n(X)− ngt(X)||, (5)

where ngt(X) denotes the ground-truth normal at the sur-
face point X . For points in Go, we adopt the following loss
function

Lo =
1

|Go|
∑

X∈Go

BCE(O(X)−Ogt(X)), (6)

where O(X) denotes the predicted occupancy at X com-
puted using Eq. (3) and Eq. (2), Ogt(X) is the ground-truth
occupancy at X , and BCE(·) denotes the binary cross en-
tropy. Following IGR [20], we add an eikonal normal regu-
larization term to smooth the surface by:

Lr =
1

|Go|
∑

X∈Go

(||n(X)|| − 1)2. (7)

The overall loss function is given by

LSeSDF = λsLs + λoLo + λrLr, (8)

where λs, λo, and λr are weights to balance the effect of
the respective loss.

3.3. Uncalibrated multi-view reconstruction

To allow our SeSDF framework work with uncalibrated
multi-view images, we present a simple self-calibration
method to estimate the relative camera pose for each im-
age through fitting a SMPL-X model to all the input im-
ages. In addition, we propose an occlusion-aware feature
fusion strategy to fuse features from different views effec-
tively. Ideally, we would like to fuse only features from
non-occluded views as features from occluded views are
just noise which at best provide zero contribution to occu-
pancy prediction but may also seriously degrade the fused
feature in the worse case.

Our multi-view framework is illustrated in Fig. 2. In
principle, it can work with an arbitrary number of views
and the number of views used in training and testing do not
even need to be the same.
Self-calibration via SMPL-X model fitting Given n un-
calibrated multi-view images, we first fit a SMPL-X model
to each image independently using the method described in

Sec. 3.1. We then take the averages of the shape, pose and
expression parameters of these n fitted models and use them
to initialize a shared SMPL-X model. Next, we optimize
the shape, pose and expression parameters of this shared
SMPL-X model and the global orientation parameters for
the n views simultaneously by maximizing the IoU between
the projection and body mask, and minimizing the 2d key-
point distances on each of the n images. After optimization,
the global orientation parameters for the n views then give
us the rigid body motion that transforms a point from the
SMPL-X model centered coordinate system to the camera
centered coordinate system of each view.

To perform multi-view reconstruction, we can sample
3D points in the model centered coordinate system, trans-
form them into the respective camera coordinate systems,
and compute 2D/3D features and the self-evolved signed
distance from each view. Finally, these features from n dif-
ferent views are fused by our occlusion-aware feature fu-
sion strategy (to be introduced next) and fed to the implicit
function fo(·) to predict the occupancy value.
Occlusion-aware feature fusion Conceptually, features
obtained from different views would give rise to predictions
of different quality. For instance, image feature for a 3D
point extracted from a frontal non-occluded view would be
expected to give the best prediction, whereas image feature
for the same point but extracted from an occluded view or
a lateral view would be expected to give poor prediction.
Hence, average pooling would in principle not be the best
way for feature fusion. Researchers therefore explored dif-
ferent fusion strategies, such as SMPL-visibility based [63]
and attention based [70] approaches, but all of these still
produce undesirable artifacts in their reconstructions (see
Fig. 7). To lessen the effect of features extracted from non-
optimal views, we propose a novel occlusion-aware fea-
ture fusion strategy based on ray tracing [19] with the fitted
SMPL-X model. Given a 3D point X , we cast a ray from X
to the i-th view through orthogonal projection and find the
intersection point X ′

i with the SMPL-X model that is the
closest to the image (see Fig. 2). We then compute a weight
for the feature Fi(X) extracted from the i-th view by

wi(X) =
1

|Zi(X)− Zi(X ′
i)|

. (9)

Finally, we fuse all features from the n views by

Ffused(X) =

∑n
i=1 wi(X)Fi(X)∑n

i=1 wi(X)
. (10)

4. Experiments
We evaluate the performance of our SeSDF both qual-

itatively and quantitatively, and provide comparisons with
other SOTA methods under both single-view and multi-
view setups.



Table 1. Qualitative comparison on the single-view setting. We report Chamfer Distance and P2S metrics (numbers the lower the better).

Method Feature Included Quantitative Number
THuman2.0 CAPE

2D Feature Normal Information 3D Feature SMPLX Signed Distance self-evolved Signed Distance Chamfer Distance↓ P2S↓ Chmafer Distance↓ P2S↓

PIFu [52] ✓ 2.403 2.388 3.059 2.818
PIFuHD [53] ✓ ✓ 2.008 1.965 2.571 2.427
PaMIR [71] ✓ ✓ 1.478 1.451 1.682 1.438
ICON [63] ✓ ✓ ✓ 1.301 1.259 1.533 1.431

Ours w/o DE ✓ ✓ ✓ ✓ 1.099 1.034 1.377 1.261
Ours w/o SeSDF ✓ ✓ ✓ ✓ 1.245 1.200 1.473 1.390
Ours ✓ ✓ ✓ ✓ 1.027 0.971 1.303 1.219

Table 2. Quantitative comparison on the multi-view setting.
THuman2.0 CAPE

Method Chamfer Distance↓ P2S↓ Chmafer Distance↓ P2S↓
multi-view PIFu [52] 0.864 0.838 0.920 0.876
multi-view PIFuHD [53] 0.831 0.804 0.883 0.849
multi-view PaMIR [71] 0.807 0.762 0.858 0.819

Ours w/o DE 0.795 0.749 0.849 0.811
Ours w/o SeSDF 0.802 0.755 0.854 0.815
Ours 0.791 0.742 0.841 0.800

Ours w/ Attention 0.794 0.743 0.845 0.803
Ours w/ SMPLX-Vis 0.841 0.832 0.925 0.917
Ours w/ Normal-Fusion 0.801 0.754 0.850 0.812

Figure 3. Qualitative comparison with SOTA methods on real-
world images. Our method can reconstruct fine details and work
robustly under challenge poses. Best viewed in PDF with zoom.

4.1. Implementation details

For each training subject, we sample (a) 5,000 surface
points as Gs, which are evenly distributed on the mesh sur-
face; (b) 5,000 occupancy-target points as Go in the 3D
space, for which we follow the sampling strategy in [52].
In particular, 15/16 points in Go are evenly sampled on the
mesh surface. Gaussian perturbation is then applied to them
along the surface normal direction. The rest 1/16 points are
randomly sampled within the predefined 3D space where
the mesh lies in.

We employ Rembg [1] to segment out the background
for real-world images and use Kaolin [2] to calculate the
SDF from the SMPL-X model. We apply PIXIE [16] to esti-
mate the SMPL-X model for the segmented human subject.
To compute the image features, we implement a stacked-

hourglass image encoder with bi-linear interpolation to ex-
tract pixel-aligned image feature F2D(·) ∈ R256. We follow
[7, 50] to employ PointNet with 3D-UNet and tri-linear in-
terpolation to extract space-aligned 3D features F3D(·) ∈
R128. Distance encoding maps the signed distance to a
higher dimensional space D(d) ∈ R13 using the high-
frequency functions as defined in Eq. (4). We implement
our framework in PyTorch [46]. Our SeSDF framework
is trained separately for 12 epochs with the learning rate
starting from 1e-4 and updated by the factor 0.1 for every
4 epochs, for both single-view and multi-view experiments.
Code for SeSDF will be made publicly available. Project
page: https://yukangcao.github.io/SeSDF/.

4.2. Datasets and evaluation metrics

We employ the THUman2.0 dataset [65] as our primary
testbed. The dataset comprises 526 high-fidelity meshes
captured via dense DSLR rigs. Each subject within the
dataset is accompanied by its corresponding texture map
and fitted SMPL-X parameters. We split the THUman2.0
dataset into a training set with 465 subjects, and a test set
with 61 subjects. We render each human subject into 360
images, sequentially separated by 1◦ around the subject,
with different albedo to augment the dataset to carry out
the experiments.

To further show the generalizability of SeSDF, we also
compare our method with others on the CAPE [37] test set,
which contains 150 subjects. To conduct quantitative eval-
uations of different methods, we employ standard Point-
to-Surface distance (P2S) and Chamfer distance metrics as
evaluation criteria. We compare the reconstructed models
from images captured at different angles, i.e., 0◦, 45◦, 90◦,
135◦, 180◦, 225◦, 270◦, and 315◦, against the ground truth
under corresponding orientations. Besides, we use real-
world images for extra qualitative evaluation.

4.3. Comparison on single-view setting

We first evaluate and compare the performance of single-
view 3D human reconstruction between ours and SOTA
methods. Specifically, we compare with PIFu [52], PI-
FuHD [53], PaMIR [71], ARCH [26], ARCH++ [23] and
ICON [63]. PHORHUM [5] is not compared here due to the
absence of publicly available code base. We retrain PIFu,
PIFuHD, PaMIR, and ICON on the THUman2.0 dataset for



Figure 4. Comparison with ICON on real-world (top) and THUman2.0 data (bottom). Ours (SeSDF) can produce results with more fine
geometry details. Best viewed in PDF with zoom.

a fair comparison, and obtain the reconstructions of ARCH
and ARCH++ with the help of their authors.
Quantitative comparison and ablation In Table 1, we
compare our method with the SOTA methods, i.e., PIFu,
PIFuHD, PaMIR, and ICON on the THUman2.0 and CAPE
datasets. As can be seen, for all metrics, our method signif-
icantly outperforms the SOTA by a large margin on both
datasets. Among these SOTA methods, ICON also em-
ploys the SMPL-X model to extract SDF to guide learning,
while our method consistently outperforms ICON across
the board. We also validate the effectiveness of different
components of our method. All components have positive
effects on the reconstruction results, while the SeSDF mod-
ule plays the most crucial role in the improvement. By com-
paring the last two rows, we can see that the SeSDF module
brings much more improvement than the SDF derived from
the SMPL-X model. By comparing the last row with all
others, we can observe that our SeSDF brings the most im-
provement among all components. By comparing “Ours”
and “Ours w/o DE”, we can see that our proposed distance
encoding is also effective in improving the performance.
Qualitative comparison We present qualitative compar-
ison in Fig. 3 on real-world images with SOTA methods.
Our proposed method has the capability to reconstruct fine
geometry details and handle the inputs with complicated
poses. Among the SOTA methods, ICON also employs
SMPL-X to improve the robustness, though in a different
way from our work. We provide a further comparison with
ICON in Fig. 4 on THUman2.0 and real-world images. As
can be seen, our method notably outperforms ICON with
more fine details in all cases.

4.4. Comparison on multi-view setting

For multi-view reconstruction, we compare with the
SOTA methods PIFu, PIFuHD, and PaMIR which allow
multi-view reconstruction. In the experiments, we use three
input views unless stated otherwise.

Quantitative comparison and ablation We report the
comparison results in Table 2. To have a fair comparison
with other methods which are calibrated, we also imple-
mented our self-calibration method for all of them. We
can see that our method outperforms other methods in all
cases. Similar to the single-view experiments, by compar-
ing “Ours” against “Ours /wo DE” and “Ours /wo SeSDF”,
we can see that our distance encoding and SeSDF play crit-
ical roles in the performance.
Qualitative comparison We present qualitative compari-
son in Fig. 5 for multi-view reconstruction. The reconstruc-
tion results of our method retain more details, e.g., cloth-
ing wrinkles and hair topology, which are contained in the
ground truth. We provide more results with different num-
bers of views in the supplementary.

4.4.1 Further analysis

Self-calibration [74] also introduced an alternative
method for self-calibration of multi-view reconstruction by
introducing a deformation field to deform points from the
canonical space to the camera space, through SMPL linear
blend skinning (LBS) weights. We also follow the paper to
implement it for SMPL-X in our framework and compare
it with our method in Fig. 6. We observe wide-spreading
artifacts across the whole body of the reconstruction using
the deformation field for the uncalibrated setting. The de-
formation field is error-prone because the LBS weights are
computed to deform the parametric human model, which
inherently lacks the fine details of the actual human subject,
limiting its final performance and introducing the artifacts
for reconstruction.
Feature fusion We compare our occlusion-aware feature
fusion strategy with other alternatives, namely (1) AVG-
Pool [52], (2) SMPLX-visibility [63], and (3) Attention-
based method [32] in Fig. 7. As can be seen, our occlusion-
aware strategy achieves better performance than the others.
See supplementary for more analysis.



Figure 5. Comparison with SOTA methods on the multi-view setting. Ours (SeSDF) consistently retains more geometry details, e.g.,
clothing wrinkles, hairs, and faces.

Figure 6. Comparing our self-calibration method (“Ours”) with
an SMPL-X deformation field alternative (“DF”). Best viewed in
PDF with zoom.

5. Conclusion

In this paper, we have presented a new framework for
single- and multi-view clothed human reconstruction under
an uncalibrated setting. Our framework can take an arbi-
trary number of input images to reconstruct faithful 3D hu-
man models. We have proposed a self-evolved signed dis-
tance (SeSDF) module to recover more geometry details, a
method for self-calibrating multi-view images via SMPL-X
model fitting, and an effective multi-view occlusion-aware
feature fusion strategy to aggregate useful features across
views for robust reconstruction. Our method notably out-
performs previous SOTA methods in both terms of qualita-
tive and quantitative results.
Limitation Though our SeSDF can deal with various

Figure 7. Comparing our occlusion-aware feature fusion with
other alternative fusion strategies.

poses and retain fine clothing topology, it still has difficul-
ties when handling extremely loose clothes, e.g., dresses,
which deviate significantly from the parametric prior.
Potential Social Impact Our method takes a step towards
practical tools for real-world application, as it does not re-
quire expensive equipment to get the 3D models. However,
despite its intended positive usage, there might be potential
risks of falsifying human avatars, which unfortunately com-
promise personal privacy. Transparency and authentication
will be helpful to prevent these vicious uses.
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