
Software Architecture of GG1—A Mobile Phone Based
Multimedia Remote Monitor ing System

 Y. S. Moon W. S. Wong H. C. Ho Kenneth Wong

 Dept of Computer Science & Engineering Dept of Engineering
 Chinese University of Hong Kong Cambridge University

 Shatin, HONG KONG England, U.K.

Abstract

GG1 is a mobile phone based
communication application. It monitors the
security of an automobile by carrying
pictorial, vocal and text data in real time
using a very narrow bandwidth. This papers
explains the software structure of GG1.
Details of the architecture are presented to
show how GG1 can accomplishes its work.

1. Introduction

This paper describes the software structure
of GG1[1], an advanced remote automobile
monitoring system. GG1 is built on a

GSM mobile phone network which connects
two major components[2], [3]. One
component is the client which is installed
inside the automobile to be monitored, and
the other component, the server, acts li ke the
central monitoring console. A GPS (global
positioning system) receiver and other video
and audio capturing devices are attached to
the client so that the client can gather all
these information and transmit them back to
the server. On receiving the information
from the client, the server will then display
this information as shown in Figure 2 so that
the operator of the system will be able to
know exactly where the automobile is and
what is going on inside and outside the
automobile.

ServerModem

GSM network and
public switching

telephone network

Mobile
Phone

Modem
Client

Digital
Camera

GPS
Receiver

Micro-
phone

One Way Data Flow

Bi-directional Data Flow

Speakers

Figure 1 Client/Server Model

Figure 2 User-interface at the Server

2 Tasks to Perform

The primary concern of GG1 is to
maximize the throughput of the low
bandwidth mobile phone communication
channel between the client and the server.
Nevertheless, GG1 also requires a very
complicated software structure since it has
to support a list of different natured real
time data collection and communication
hardware during its operation.

There are totally seven main tasks to
be completed in GG1:

�
 capture location information from

the GPS receiver,�
 capture video data from the video

capturing device,�
 capture audio data from the audio

capturing device,�
 data compression for the large

volume of audio and video data
captured,�

 data and controls transmission
between client and server via
modem,�

 reproduction of video, audio,
location data received, and
interpolation of GPS signals and
display the resultant path on an
electronic map

The operation mode mainly is
responsible for presenting the data captured
by the client system to the server system.
On the top of the window, there are list of
buttons and tool bars, which are provided
for the operator to access the server’s
window setting and control the operation of
remote client system. Besides, the window
divides into three partitions, which are for
six major visual outputs. These visual
outputs are displaying the map of interest,
displaying the path traveled by the remote
object, displaying pre-defined/expected path
(way points), displaying result of
interpolation of GPS data, indicating the
current position of the remote object
textually and display li ve video signals
captured in the client side. The audio signals
are also produced by sampling audio data in
the client system. These are presented
through the speakers.

3. Implementation

GG1 was written by Visual C++ as it
has a lot of libraries, which assist the
programmers to access the low-level
implementations. Besides, user-friendly
graphical interface can be implemented
much more easily with this language. As it
is an object-oriented language, the structure
of this program should be in object-oriented.
By creating different objects and designing
the interactions between those objects, the
software of this project is created.

3.1The Server

In the server system, there are six main
objects, which include CServerView,
CWayPointView, CServerDoc, CDial,
CTrans and CDataMan.

�
 CServerView Object

This object implements all the major
jobs of the server system. It is responsible
for all the displays. Moreover, it is also
responsible to decompress the received
video sequence, perform the interpolation of
GPS data, generate the suitable portion of
the map on the screen and make the control
commands to client system. Producing
audio output, buffering and decompressing
the received audio data and as well as
opening the audio output device are also the
duties of this object.�

 CWayPointView Oject
This object implements all the user

interface communications in edit mode.�
 CServerDoc Object

This object is responsible for the
documentation of the received data. It
records all the necessary data for
CServerView object to display. This object
records the last video sequence frame and
the last received still picture. It also records
the GPS data with a two-dimensional list.�

 CDial Object
This object is responsible for

monitoring the connection between server
and client systems. It encapsulates the
functions of Telephone Application
Programming Interface (TAPI) which is
used to communicate with the modem.
Therefore, this object can establish an
outgoing call, answering an incoming call
and hanging up an active call.�

 CTrans Object
This object is responsible for

reading/writing the data from/to the com
port.�

 CDataMan Object
As different types of data, including

video, audio and GPS data, are transmitted,
standardize data packing system should be
employed. This object is designed for this
purpose. Having received the compressed
data, this object generates corresponding
header, frame type, frame length and
checksum to the front of the data. Footer is
also generated and appended to the end.
This whole set of data is called data frame
and will be sent to CTrans object for
transmission.

Receiving data frames is the same as
sending but on reverse direction. The
collected data frame is dispatched into raw
data and sent to corresponding object for
further processing.

3.2 The Client

The client system contains six major
objects and other minor objects. The major

objects are CClientView, CDial, CTrans,
CDataMan, CGPS and CVideoCap.

�
 CClientView Object

This object is responsible to all the
displays of the client window. It also needs
to response the control commands sent from
the server system by calli ng the member
functions of the corresponding object.�

 CDial Object
This object works exactly the same as

the CDial object of the server system.�
 CTrans Object

This object works exactly the same as
the CTrans object of the server system.�

 CDataMan Object
This object works exactly the same as

the CDataMan object of the server system.�
 CGPS Object

This object communicates with the
GPS receiver directly.�

 CVideoCap Object
This object is responsible for capturing

the video and audio data. It encapsulates the
functions of Video For Window Application
Programming Interface (VFW API). This
object communicates and cooperated with
the installed video capturing driver and the
installed audio capturing driver for
capturing the streaming video, streaming
audio and high resolution still i mage.

Compressing the video and audio
data is also the responsibili ty of this
object. It cooperates with the Installable
Compression Manager (ICM) for video
compression and the Audio
Compression Manager (ACM) for audio
compression. After capturing a video
frame of the video sequence, the frame
will be compressed by the chosen video
compression codec. In this project, Intel
Indeo® Video R3.2 codec is employed.
The compressed frame will t hen pass to
the CDataMan object for packing into
the standard frame format and finally
send to the server system. The audio
samples are processed with the similar
procedures. They are compressed with a
chosen audio compression codec and
sent to CDataMan object.

4. Multi-thread programming

Using multi -thread programming avoids the
whole program to be idled while one of the
processes in the program comes to a
bottleneck state. In general, multi-thread
programming speeds up response time while
the program needs to manage more than one
operation at the same time.

The real time response is very
important target in this project. The client
should perform the instructions from the
server immediately after receiving them.
However, the client may be very busy in
packing and sending the previous requested
data, since the size of video and audio data
is extremely large even though, a small
picture or a short period of sound is
captured. Obviously, the single thread
programming cannot satisfy this
requirement. Besides, fast response user
interface is also a major requirement of this
project. As mention before, the multi -thread
programming improves the efficiency of the
multiple operations accession. As a result,
multi -thread programming must be
employed to this project.

4.1 Threads in the Server System

Originally, three threads are designed
for the server system to read data from the
com port, to write data to the com port and
to manage the flows of the program.
However, after program testing, it was
discovered that the program becomes non-
responsive to the user input after one
streaming data arrived. In order to increase
the interactive of the program, two more
threads are introduced. They are responsible
for packing and dispatching the data.
Resulting in these five threads, the program
can work smoothly without any idle time.

�
 Main Thread

This thread handles the main program
flows.�

 DataDispatch Thread
This thread dispatch the standard

frame sent from the ComPortReading
Thread into raw data. Next, it checks the
correctness of the data by examining the
checksum. Then, it determines the type of
the raw data by retrieving the header from
the frame.�

 DataPacking Thread
This thread packs the raw data into

standard frames for transmission.�
 ComPortWriting Thread

This thread writes the standard
frame sent from the DataPacking Thread
to the com port for delivering the frame
to the connected modem.�

 ComPortReading Thread
This thread reads data from the com

port.

ComPortReading
Thread

ComPortWriting
Thread

DataDispatch
Thread

DataPacking
Thread

Thread Main

user inputs

video request,
audio request,
still image request,
abort capture request

video data,
audio data,
still image data,
GPS data

outgoing packed
standard frame
for transmission

incoming packed
standard frame

incoming data
from com port
(modem)

outgoing data
to com port
(modem)

Figure 3 Flow diagram for the Server System

4.2 Threads in the Client System

Originally, There are four threads,
which are reading data from the com port,
writing data to the com port, capturing video,
audio and GPS data and managing main
program flows in this system. The main
program flows involves handling the
requests sent from server system, updating
the displays, packing the data for further
transmission, dispatching the data sent from
server system, and manipulating the
program data.

After the program testing, it was
discovered that once the client starts to
capture the streaming data according to the
server request, the client system would
become non-responsive to further requests.
This may happen, as the thread of main
program flows is too busy in packing the
data captured by the multimedia capturing
devices. Therefore, two more independent
threads must be introduced to this system

mainly for packing the data for transmission
and dispatching the data received from the
server system.

Besides, it was also discovered that the
outputs of streaming video and audio signals
are not smooth enough as some pauses must
be taken for the client system to
communicate with the GPS receiver during
the video and audio capture. Although this
imperfection is acceptable for the video
output, it is not tolerable for the audio case.
It is because missing the audio samples will
result in large distortion that makes the
audio output completely incomprehensible.
Moreover, the blocking in the
communication between client system and
the GPS receiver blocks the channel of
capturing the multimedia data. As a result,
the client system cannot obtain any new
data from the remote object. This
monitoring system is not secure at all . In
order to avoid this tragedy, two more
threads must be introduced for sending the
instructions to the GPS receiver and

receiving the returning data. Finally, eight
threads are employed in this client system.

�
 Main Thread

This thread manages the main program
flows of the client system.�

 DataDispatch Thread
This thread works exactly the same as

the DataDispatch Thread of the server
system.�

 DataPacking Thread

This thread works exactly the same as
the DataPacking Thread of the server
system.�

 ComPortWriting Thread
This thread works exactly the same as

the ComPortWriting Thread of the server
system.�

 ComPortReading Thread
This thread works exactly the same as

the ComPortReading Thread of the server
system.

ComPortReading
Thread

ComPortWriting
Thread

DataDispatch
Thread

DataPacking
Thread

Main Thread

video request,
audio request,
still i mage request,
abort capture request

outgoing packed
standard frame for
transmission

incoming packed
standard frame

incoming data
from com port
(modem)

outgoing data
to com port
(modem)

MultmediaCapturing
Thread

GPSReading
Thread

GPSWritting
Thread

capturing
commands

video data,
audio data,
still i mage data

GPS data

asynchronous events,
GPS position datatext version of

asynchronous events

initialization
requests

asychronous event request,
position data request

Figure 4 Data Flow diagram for the Client System

5. Conclusion

GG1 was actually implemented. The
client uses a Pentium-233 MMX laptop
computer running Windows 95. It is
equipped with a Connectix QuickCam black
and white camera, a Garmin 45 GPS
receiver and a modem connected to an
Ericsson GH688 GSM mobile phone. The
modem facilitates data transfer at between
2,400 and 9600 bps. A sound card
connected with a microphone is also
connected to the laptop for providing the
sound capturing capability. The server is
made up of a Pentium-133 MMX desktop
computer running Windows 95.

After various testing and suitable
amendments, the overall performance of the
project can be concluded as satisfactory. All
the major targets set at the beginning of the
project are met. Low resolution streaming
video, high resolution still image, streaming
audio and GPS data can be captured and
sent to the server system for display.

6. References

[1] Y.S. Moon, K. Wong, “GSM Mobile
Phone Based Communication of
Multimedia Information: A Case Study” ,
manuscript in preparation, 1999.

[2] R. J. Bates, Wireless Networked
Communications, McGraw-Hill Inc.,
1995.

[3] D. J. Goodman, Wireless Personal
Communications Systems, Addison-
Wesley, Jan 1998.

