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ABSTRACT

This paper introduces a novel method for 3D reconstruction
from spherical mirrors in a single view. Traditional recon-
struction algorithms either assume both intrinsic and extrinsic
parameters of the cameras being known precisely and rely on
multiple view information to recover 3D objects, or use re-
flections of the 3D objects on spherical mirrors with known
radii in a single calibrated view. It will be shown in this paper
that 3D objects can be recovered up to a scale using an un-
known spherical mirror in a single view. Experimental results
on both synthetic and real data show the practicality of the
proposed reconstruction method.

Index Terms— 3D reconstruction, single view, spherical
mirror

1. INTRODUCTION

Recovering the shape of an object from images has many ap-
plications in robotics, augmented reality, video games and
computer vision.

Given images of a 3D scene from multiple views, a
3D point can be obtained from its images by triangulation.
Single-view 3D reconstruction is possible by exploiting mir-
rors to provide multi-view information. In the literature, there
exists a large number of work dealing with catadioptric sys-
tems which consist of both mirrors and lens [1, 2]. However,
they all rely on complex calibration procedures to recover the
parameters of the systems. Planar mirrors are often exploited
in vision systems [3, 4, 5, 6]. Since the field of view of a pla-
nar mirror image is small, only a limited part of the object can
be reconstructed. Instead, a spherical mirror can be exploited
for 3D reconstruction. In [7], Nayar built a system named
sphereo with a camera and two spherical mirrors. The field
of view of a sphereo system is greatly enhanced and is not
limited by the field of view of the camera. However, the radii
and the positions of the spheres must be known to recover
the 3D object. In [8], Nitschke et al. reconstructed a display
from its reflection on corneas of eyes, which were assumed
to be spherical. In [9], Powell et al. proposed a strategy
for reconstructing the positions of point light sources. The
positions of the light sources can be recovered from images

of highlights on spherical mirrors with known radii. In [10],
Lanman et al. constructed a catadioptric system composed of
a large number of identical spherical mirrors and a perspec-
tive camera. The centers and radii of the spherical mirrors
were obtained through a special calibration step. In [11],
Kanbara et al. moved a spherical mirror with known radius
freely in the field of view of a camera to recover the surround-
ing scene. By attaching a color marker around the lens of the
camera, the direction of the sphere center can be determined,
which is then used to reconstruct the spherical mirror with the
radius of the sphere. These methods all use spherical mirrors
to reconstruct 3D objects. However, they all rely on known
radius and/or sphere center.

In this paper, a novel 3D reconstruction algorithm, which
will reconstruct a 3D object from an unknown spherical mir-
ror in a single view, is proposed. Unlike [11] which requires
the radius of the sphere and uses additional color marker to
reconstruct the spherical mirror, this paper considers a sphere
with unknown radius and points out that a one-parameter fam-
ily of the spheres, with all the sphere centers lying on a line
joining the camera center and the true sphere center, will be
recovered from the silhouette of the sphere in the image. It
will then be shown that a 3D object can be reconstructed up
to a scale.

The rest of this paper is organized as follows. Sect. 2
addresses the problem of 3D object reconstruction with a
scaled spherical mirror in a single view. It will be shown that
any sphere from the family of estimated spheres can be used
for reconstruction. Experimental results will be presented in
Sect. 3, followed by conclusions in Sect. 4.

2. RECONSTRUCTION USING A SPHERICAL
MIRROR

Consider a pinhole camera P centered at O viewing a mirror
sphere S. It was shown in [12] that S can be reconstructed by
determining the central axis of a right circular cone estimated
from the silhouette of a sphere and the camera center. If the
radius R of S is not known, all possible sphere centers will
lie along the central axis of this cone (see Fig. 1).

Now, let a 3D point Q be visible from P through its re-
flection on S. The direction L from the point of reflection



Fig. 1. The silhouette of a sphere and the camera center will
define a right circular cone tangent to a family of spheres.

X on the spherical mirror S to the 3D point Q can be recov-
ered from the reconstructed sphere using the law of reflection.
Note that L is independent of the radius R used for the recon-
struction of the sphere. This can be seen in Fig. 2, where a
sphere is reconstructed with two different radii R1 and R2

resulting in two sphere centers Sc1 and Sc2. The points of re-
flection X1 and X2 project to the same point q in the image.
The direction L1 from X1 to Q1 is parallel to the direction L2

from X2 to Q2. In general, it can be shown that there is a ho-
mothetic transformation along the axis of the cone preserving
the directions of vectors.

Fig. 2. Reconstruction using a direct view and a reflection on
a spherical mirror.

In the following, we will use the above properties and pro-
pose a reconstruction method for two cases. For the first case
(Sect. 2.1), a 3D point is visible to the camera directly and
through reflection on a spherical mirror, while for the other
case (Sect. 2.2), the 3D point is recovered with reflections of
the point on a moving spherical mirror in two different posi-
tions. It will be shown that with unknown radius, the recon-
struction result can be obtained up to an unknown scale.

2.1. Reflection and Direct View

Suppose a 3D object and a spherical mirror are placed in the
view of a single calibrated camera. A 3D point Q on the
object surface and the reflection of Q on the spherical mir-
ror are both recorded by the camera, with the projections qd

and q respectively (see Fig. 2). The 3D point Q can now
be estimated from a reconstructed sphere and the two points

qd and q. For the sphere with radius R1, Q1 is obtained as
the reconstruction result triangulated using L1 and the visual
ray of pixel qd. For the sphere with radius R2, Q2 is ob-
tained. In the following paragraph, it will be shown that the
ratio |OQ1| : |OQ2| is equal to R1 : R2.

Consider the two triangles 4OQ1X1 and 4OQ2X2. As
L1 ‖ L2, |OQ1| : |OQ2| = |OX1| : |OX2|. Consider
now the two triangles 4OX1Sc1 and 4OX2Sc2. Obviously,
|OX1| : |OX2| = |X1Sc1| : |X2Sc2| = R1 : R2 since
N1 ‖ N2. It follows that |OQ1| : |OQ2| = R1 : R2. Since
Q is an arbitrary point on the surface of the sphere, the fol-
lowing proposition follows.

Proposition 1 Consider a single camera viewing an object
directly visible and reflected on a spherical mirror. The object
can be reconstructed up to an unknown scale using image
correspondences. The scale is equal to the ratio of the radius
used in recovering the sphere center to the true radius.

Fig. 3. Reconstruction using reflections on a moving spheri-
cal mirror.

2.2. Reflections on Multiple Spheres

Suppose the reflections of a 3D object produced on a moving
spherical mirror are recorded by a single calibrated camera.
Let q be the projection of a point X which reflects the point
Q and let q? be the projection of a point X? which reflects
the same point Q after the sphere has been moved, i.e., q
and q? are corresponding points. In the following it will be
shown that Q can be obtained from the point correspondence
q and q? up to an unknown scale, if the radius of the sphere
is unknown.

Suppose Q is directly captured by the camera with the
projection qd in the image. A 3D point T1 will be obtained
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Fig. 4. Angular errors. The error increases almost linearly
with the noise level.

as the reconstruction result from q and qd if the radius of the
spherical mirror is R1. Similarity, T?

1 will be reconstructed
from q? and qd. It follows from Sec. 2.1 that |OT 1| = |OT ?

1 |.
Moreover, T1 and T?

1 both lie on the visual ray of qd. There-
fore T1 and T?

1 are the same point which both the two lines
L1 and L?

1 pass through. Since L1 and L?
1 intersect at the

point Q1, Q1 = T1 = T?
1. Meanwhile, if the radius of the

spherical mirror is R2, then T2 will be reconstructed from q
and qd, and T?

2 will be reconstructed from q? and qd. Sim-
ilarly, Q2, T2 and T?

2 are the same point. It follows that
|OQ1| : |OQ2| = |OT 1| : |OT 2| = R1 : R2. Since Q is
an arbitrary point on the surface of the sphere, the following
proposition follows.

Proposition 2 Suppose the reflections of a 3D object pro-
duced on a moving spherical mirror are recorded by a sin-
gle calibrated camera. The object can be reconstructed up
to an unknown scale using correspondences of reflections in
the image. The scale is equal to the ratio of the radius used in
recovering the location of the sphere center to the true radius.

3. EXPERIMENT

Experiments were carried out using both synthetic and real
data. The details are presented in the following subsections.

3.1. Synthetic Data

In the synthetic experiment, the reflections of four 3D points
X0, X1, X2, X3 on a moving spherical mirror in two dif-
ferent positions were captured by a synthetic camera. The
four points had the following relations: |X0X1| = |X0X2| =
|X0X3| and ∠X1X0X2 = ∠X2X0X3 = ∠X3X0X1 = 90◦.
The images of the sphere were obtained by projecting the
sphere onto the image plane. The reflection of a 3D point
X(X ∈ {X0,X1,X2,X3}) on the spherical mirror was ob-
tained with the close-form solution proposed in [13], which is
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Fig. 5. Errors of length ratio. The error increases almost lin-
early with the noise level.

then projected on the image plane.
Uniformly distributed random noise was added to the lo-

cations of 2D projections of the reflections on the sphere and
the conic images of the sphere. Noise was added directly to
the pixel coordinates of the locations of the reflections in the
image and sampled conic points. A conic was then fitted to
these noisy conic points using SVD [14].

Experiments on synthetic data with noise levels ranging
from 0.0 to 3.0 pixels were carried out. For each noise level,
1000 independent trials were performed to estimate the po-
sitions of X. The radius of the sphere was set with a ran-
dom value. Denote the length of the line segment X0X1 as
l1. Similarity, denote |X0X2| = l2 and |X0X3| = l3. Set
∠X1X0X2 = alpha, ∠X2X0X3 = beta and ∠X3X0X1 =
theta. After X was reconstructed, error of the ratios l1/l2,
l2/l3, l3/l1 and errors of the angles alpha, beta, theta were
estimated. Fig. 4 shows root mean square error of the angles
(in degrees) against the noise level (in pixels). It can be seen
that the error increases almost linearly with the noise level.
For a noise level of 1.0 pixel, the angular errors for alpha,
beta, theta are all less than 0.6◦. Fig. 5 shows a plot of errors
of the three ratios against the noise level (in pixels). The error
increases linearly with the noise level. For a noise level of 1.0
pixel, the average errors of ratios are less than 0.04.

3.2. Real Data

In the real experiment, reflections of a rectangular box on a
moving spherical mirror with the radius 3.15cm were cap-
tured by a camera. The intrinsic parameters of the camera
were obtained using [15]. Edge points on the contours of the
sphere in the images were marked by hand and conics were
then fitted to these edge points using SVD. Scaled reconstruc-
tion of a sphere was achieved using the method in [12] with
the radius 7cm. The reflection correspondences of corners in
different images were marked and matched manually. Four
corners of the box were reconstructed using Fig. 6(a,c), while



the other four corners using Fig. 6(b,d). In order to verify that
the reconstruction result is up to a scale equal to the ratio of
the radius used in recovering the location of the sphere cen-
ter to the true radius, 24 angles and 12 length ratios of the
reconstructed length to the ground truth around eight corners
were measured. The ground truth of the angle is 90◦ and the
ratio is 2.22. The root mean square error of the angles and
the length ratios are 1.24◦ and 0.042 respectively. Around a
certain corner, three angles are 91.2◦, 90.1◦, and 88.7◦, and
three ratios are 2.263, 2.218 and 2.218. The reconstruction
result is shown in Fig. 6(e).

(b)(a)

(d)(c) (e)

Fig. 6. Reconstruction result of a box.

4. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of recovering a 3D object
using an unknown spherical mirror in a single view. It has
been shown in this paper that a scaled reconstruction can be
obtained from either a reflection of the object on the spherical
mirror and a direct image of the object or reflections on a
moving spherical mirror. The reconstruction result is scaled
by the unknown radius of the sphere. Experiments on both
synthetic and real data show promising reconstruction results.
In the future, the proposed method will be extended to obtain
a dense reconstruction of a 3D model.
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