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ABSTRACT

This paper introduces a clustering based deep feature for particular
object retrieval. Many object retrieval algorithms focus on aggre-
gating local features into compact image representations. Recently
proposed algorithms, such as R-MAC and its variants, aggregate
maximum activations of convolutions from rectangular regions
of multiple scales and have achieved state-of-the-art performance.
Such rectangular regions, however, cannot fit the “non-rectangular”
shape of an arbitrary object well, and therefore cover much clutter
in the background. This paper targets at mitigating this problem
by proposing a deep feature based on clustering the activations of
convolutions and aggregating the maximum activations from such
clusters. Compared with the square regions used in R-MAC, the
clusters thus obtained can better fit the arbitrary shapes and sizes
of the objects of interest. By not taking spatial location into account,
it is possible to have a single cluster covering multiple disconnected
regions that correspond to repeated but isolated visual patterns.
This helps to avoid over-weighting such patterns in the aggregated
feature. Experiments are carried out on the challenging Oxford5k
and Paris6k datasets, and results show that our clustering based
deep feature outperforms the R-MAC feature.

KEYWORDS

Particular object retrieval; activation clustering

1 INTRODUCTION

Particular object retrieval has attracted sustained research attention
for decades. It aims at retrieving all images containing the same
instance of a certain object given in a query image. Traditional
methods [6, 7, 23, 24, 27, 37] extract local visual features such as
SIFT [22], and then aggregate them into sparse or compact feature
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vectors which can be searched efficiently. Since CNNs [20] have
achieved great successes in fundamental vision tasks such as image
classification [15, 19, 36, 38], image detection [9, 10, 33] and image
segmentation [5, 14, 21], a number of CNN based methods [3, 4, 11-
13, 29, 39] have been proposed for extracting discriminative deep
activation features for image retrieval. Many of these methods [12,
13, 31, 32, 39] focus on aggregating local activations into compact
image representations.

(a) MAC [32] (c) Our method

(b) R-MAC [39]

Figure 1: Different strategies for max-pooling. (a) MAC [32]
max-pools from the whole convolutional feature maps. (b)
R-MAC [39] max-pools from multiple-scale square regions
of the feature maps. (c) Our method max-pools from clusters
of activations (represented by different colors).

Ideally, an optimal image representation for particular object
retrieval should only encode the activations inside the regions of
interest (ROI) (i.e., regions corresponding to the objects of interest)
and ignore those outside the ROIs (i.e., those corresponding to the
background). However, ROIs depend not only on the image itself
but also on a user’s intent, and thus cannot be known in advance.
Razavian et al. [32] did not consider ROIs and proposed to use max-
imum activations of the whole convolutional layers (MAC) as an
image representation. The information of the ROIs might be sup-
pressed in MAC due to global max-pooling. Later, Tolias et al. [39]
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Figure 2: The whole framework of the proposed method

proposed to aggregate regional maximum activations of convolu-
tional layers (R-MAC). Although aggregating activations that are
max-pooled from local regions may be more robust than MAC, the
square regions used cannot fit the “non-rectangular” shape of an
arbitrary object well, and therefore often cover much clutter in the
background. Rather than max-pooling from square regions, Gordo
et al. [12, 13] adopted the region proposal network (RPN) [33] to
produce ROIs for max-pooling. However, its performance depends
heavily on the training data, and might not generalize well to test
images from a very different source.

In this paper, we propose a clustering based deep feature for
particular object retrieval. Activations are first partitioned into
clusters, and are then max-pooled from each of the clusters. A
compact image representation is then obtained by aggregating
these maximum activations from the clusters. In contrast to the
previous approaches [12, 13, 31, 32, 39] in which activations are
max-pooled from rectangular regions, activations are max-pooled
here from clusters with arbitrary shapes and sizes (see Figure 1c). As
regions of similar visual patterns often generate similar activations,
our approach tends to perform max-pooling from regions of similar
visual patterns, and is therefore less likely to be influenced by clutter
in the background. By not taking spatial location into account,
it is also possible to generate a single cluster covering multiple
disconnected regions that correspond to repeated but isolated visual
patterns. This helps to avoid over-weighting such patterns in the
aggregated feature. Experiments are carried out on the challenging
Oxford5k [27] and Paris6k [28] datasets, and results show that our
clustering based feature outperforms the R-MAC feature.

The rest of this paper is organized as follows. Section 2 gives an
overview of related work. Section 3 details our proposed method.
Section 4 summarizes our experimental results, with concluding
remarks in Section 5.

2 RELATED WORK

Existing methods in the literature for particular object retrieval can
roughly be categorized into two approaches, namely traditional
local invariant feature based approach and deep feature based ap-
proach.

Traditional local invariant feature based approach. Sivic
and Zisserman [37] first proposed the Bag-of-Word (BoW) model
which represents a set of local visual features (e.g., SIFT [22]) in
an image as a sparse feature vector, and then searching can be
carried out efficiently by inverted index. Since then, large visual

codebooks [2, 23], spatial verification [24, 27], and query expan-
sion [6, 7] were proposed to improve its performance in terms of
efficiency and accuracy. To reduce the memory cost, Fisher Vec-
tor [25, 26] and VLAD [1, 16] were proposed to aggregate local
features into compact representations.

Deep feature based approaches. Babenko et al. [4] and Raza-
vian et al. [30] are the pioneers in investigating deep features in
fully-connected layers for image retrieval. Razavian et al. [31] ex-
tensively studied the availability of image representations based
on the convolutional network. Babenko and Lempitsky [41] found
that sum-pooling over convolutional layers with a centering prior
can produce promising performance. Kalantidis et al. [18] proposed
spatial and feature channel weighting that significantly improves
the performance. Azizpour et al. [32] introduced a highly com-
petitive compact image representation by a global max-pooling
operation. Later, Tolias et al. [39] proposed max-pooling of acti-
vations from multiple-scale square regions, and aggregated the
maximum activations into a compact feature vector. Our method
is inspired by [39], but different in that we perform max-pooling
from clusters of activations. Very recently, Radenovic et al. [29]
learned compact representations in an end-to-end fashion using a
pairwise loss. Their training strategy is complementary to our pro-
posed method, and can further improve our performance. Similarly,
Gordo et al. [12, 13] learned representations using a ranking loss.
Besides, they employed RPN [33] to produce ROIs for max-pooling.
Different from [12, 13], our clusters for max-pooling are generated
in an unsupervised manner, non-rectangular in shape, and do not
depend on the training data.

3 CLUSTERING BASED DEEP FEATURE

This section introduces our clustering based deep feature for partic-
ular object retrieval. The framework for generating our aggregated
deep feature is similar to the one described in [39], with the major
difference in the way we carry out the max-pooling operation.

An overview of our framework is illustrated in Figure 2. We
first reduce the dimension of the CNN features using PCA, and
employ Normalized Cut [35] to cluster these PCA features. We
then compute per-cluster MAC vectors by max-pooling from the
clusters, and carry out Iz normalization and PCA whitening on
these per-cluster vectors. Finally, we aggregate these per-cluster
feature vectors and lz-normalize the resulting vector to produce
our final deep feature.
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Figure 3: Image retrieval performance using feature clusters
generated by I» norm distances of C-dimensional PCA fea-
tures. The retrieval results are conducted on the conv5_3
layer of the VGG16 model [36] pre-trained on ImageNet clas-
sification tasks.

3.1 PCA dimension reduction

The activation features generated by the convolutional layer can
be considered as a set of D-dimensional descriptors extracted at
H X W spatial locations. Before clustering activation features, we
use PCA to reduce the dimension of these descriptors from D to C
(where D > C). There are two main reasons for carrying out this
step. First, we find empirically that increasing the dimension of the
descriptors often does not improve the retrieval performance but
instead makes it worse (see Figure 3). Note that, in principle, most
of the valuable information is encoded in the first few dimensions
of a PCA feature, and the last few dimensions of the feature can
be seen as noise. Figure 5 provides a visualization of the content
in different dimensions of the PCA feature. We can see that the
difference between object and background is large in the first few
dimensions, and the difference decreases rapidly as the dimension
increases. Second, it is easy to see that a small value of C makes it
fast and efficient to cluster the features, and again the clustering
will also be less affected by noise.

3.2 Feature clustering

We observe that activation features of object regions have larger
I3 norm values when compared with those of the background (see
examples in the second row of Figure 7). This suggests that it is pos-
sible to segment the object by simply applying some unsupervised
clustering methods on the feature vectors. We apply Normalized
Cut [35] to produce the clustering results. Figure 7 shows some
examples of the clustering results using Normalized Cut.

From Figure 7, we can see the benefits of using feature clusters for
computing the MAC features. First, although different background
objects such as sky, cloud and trees may have quite different ap-
pearances in the color space, they do have similar features in the
PCA-dimension-reduced feature space and can often be clustered
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Figure 4: The proportion of regions that meet a particu-
lar precision threshold. For R-MAC[39], we extract approx-
imately 20 regions per image at 3 different scales, which is
the same as the original paper. For the proposed method, we
hierarchically cluster the features into 5 and 15 clusters re-
spectively, which also generate a total of 20 regions per im-
age.

into the same cluster. Since the final descriptor is generated by
aggregating the per-cluster MAC vectors, having all background
objects in the same cluster would mean they have less weight in
the final descriptor. Second, object regions often have very distin-
guishable feature vectors that makes most of the resulting clusters
overlap with these regions. This implies objects of interest gen-
erally have more weight in the final descriptor. Third, a cluster
can have arbitrary shape and size, and can cover multiple spatially
disconnected regions. This allows clusters to better fit the arbitrary
shape and geometry of the objects, and produce features that can
better describe them.

To better illustrate the benefits of using feature clusters, we
define the following precision measure

area(rgn) N area(gt)

(1)

precision = area(rgn)
where area(rgn) represents the area of a particular region of interest
and area(gt) is the area of the bounding box of the query object.
We test on the query set of OxfordSk [27] and Parisék [28] datasets,
which provide the ground truth bounding boxes of the query objects.
We calculate the percentage of the regions having a precision larger
than or equal to a particular threshold. The results are shown in
Figure 4, from which we can see that the regions generated by
feature clustering are much more precise than the square regions
used in R-MAC[39].

Since objects in different images may have different sizes, we
further propose to cluster the feature map hierarchically to mini-
mize the effect of object size. This can be done efficiently by simply
setting different numbers of target clusters. Besides, in order to
get more diverse and robust clusters, we also resize the images to



Figure 5: A visualization of the content in different dimensions of a PCA feature. The first column is the input images, and the
2-7 columns are a visualization of the distribution of values for the 1st, 2nd, 8th, 64th, 256th, 512th dimension, respectively, of
the conv5_3 descriptor after PCA. The difference in color represents the difference in value in a particular dimension. Images
are sampled from the Oxford5k dataset [27], and the CNN used is the VGG16 model [36] pre-trained on ImageNet classification
tasks [34].

the same spatial dimension as the feature map and apply Normal-
ized Cut [35] to the color space of the resulting image to obtain
additional clusters.

Normalized cut [35] performs clustering based on the similarity
matrix of samples. We calculate the feature similarity matrix based
on the weighted I, distance between C-dimensional PCA features.
The distance between the i-th feature and the j-th feature is defined
as

C
dij = szk(fi,k - fik)? @)
k=1

where f; ;. denotes the value of the k-th dimension of the i-th

feature, wy. = ZCL and oy, is the variance of the m-th dimension

of the PCA featun;; Supposed N is the total number of features, we
construct a distance matrix D = (d; ;) € RNXN ysing (2). Based
on this distance matrix, we define the similarity matrix between
features as

d;
§=(e (=) e RNV, (3)

where z is a scale. In our experiments, we set z = 0.05 X max(d;,j).

Unlike the conventional image segmentation tasks in [8, 35],
we on purposely do not take the spatial distance of the features
into account when constructing the similarity matrix. Intuitively,
features that are close to each other in the image space are deemed

to be similar and should be more likely to be clustered into the same
cluster. We do observe that constructing a similarity matrix based
on both feature distance and spatial distance as in [35] enables
spatial smoothness within the clusters. However, in our case, we
find that adding spatial information actually degrades the retrieval
performance. According to our observations, adding spatial infor-
mation tends to over-segment large background regions (e.g., sky
and land). This results in over-weighting the corresponding fea-
tures in the aggregated feature. Besides, adding spatial information
will also prevent repeated but isolated visual patterns from being
clustered into the same cluster. This again results in over-weighting
the corresponding features in the aggregated feature. Figure 6 show
the effect of spatial distance on feature clustering.

3.3 Comparison with previous aggregation
methods

The activations from a convolutional layer can be represented by a
3D tensor y of HX W X D dimensions, where D denotes the number
of channels in the convolutional layer. Such a 3D tensor can be
viewed as a H X W feature map with each feature being described
by a D-vector. A D-dimensional MAC vector [32] of an image can
be generated by max-pooling over this feature map, i.e.,

£= Ufificfp]" with fic = max i (o), @)
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Figure 6: Effect of spatial distance on feature clustering.
The first column shows the input images sampled from the
Oxford5k [27] dataset. The second column shows /; norm
of conv5_3 features extracted from the VGG16 model [36]
pre-trained on ImageNet classification tasks [34]. The third
column shows the clustering results based on feature dis-
tance only. The last column shows the clustering results
using both feature distance and spatial distance. Different
colors represent different clusters generated by Normalized
Cut [35].

where yi (p) denotes the value of the k-th dimension of the feature
vector at the spatial location p, and Q represents all the valid spatial
locations. It is easy to see that MAC is in fact an extreme case of
our method with the cluster number set to one.

Different from MAC which max-pools over all the spatial loca-
tions, R-MAC [39] generates a compact image representation by
computing regional MAC vectors and summing them up. Given a
feature map from a convolutional layer, R-MAC first defines square
regions on the feature map via a sliding window strategy. For each
square region, a MAC vector is computed by max-pooling over
all spatial locations within the region. Finally, a global descriptor
is obtained by summing up all these regional MAC vectors. The
R-MAC vectors of two images can be compared by computing the
dot product between them, and this operation is equivalent to an ap-
proximate many-to-many region matching. Our method is similar
to R-MAC in that it also generates a global descriptor by aggregat-
ing regional MAC vectors. Unlike R-MAC in which the regions are
square in shape and are defined independent of the image content,
our method generates regions through feature clustering based on
feature similarity. This makes our regions, and hence our regional
MAC vectors, more content/object-aware.

Inspired by Faster-RCNN [33], Gordo et al. [12, 13] proposed
to replace the rigid grid used to define regions in R-MAC with a
region proposal network (RPN). The main idea behind the RPN is
to predict a set of candidate boxes of various size and aspect ratios,
depending on the image content. Similar to using RPN to generate
regions, our method also relies on the convolutional features of
the images in generating regions. However, different from [12, 13],

our method is totally unsupervised and class-agnostic, requiring
no training data with bounding box annotation, and the output
regions do not need to be rectangular or connected.

4 EXPERIMENTS

In this section, we discuss the implementation details of our method,
and compare our results against those produced by state-of-the-art
methods.

4.1 Experimental details

We evaluate our method on the Oxford buildings [27] and Paris
[28] datasets, which are composed of 5,063 and 6,412 images re-
spectively. These two datasets are referred to as Oxford5k and
Parisék, respectively. Besides, as in [39], 100k Flickr images [27] are
added to these two datasets to form the Oxford105k and Paris106k
datasets for evaluation at a larger scale. We use the VGG16 [36] and
ResNet101[15] as our CNN models as they are widely used in the
literature. We use MatConvNet [40] or caffe [17] to extract the con-
volutional feature maps according to the format of the pre-trained
models. Retrieval performance is measured in terms of mean aver-
age precision (mAP). We follow the standard protocol for Oxford5k
and Paris6k, and crop the query images with the provided bounding
boxes. In order to have a direct comparison with [29], we also eval-
uate queries generated by cropping the feature maps of the input
images. To have a fair comparison, we always use input images with
the same resolution as the ones used by the methods against which
we are comparing. For the implementation of Normalized Cut, we
use the source code released by Shi et al. [35]. For the VGG16 model,
we use PCA to reduce the feature dimension to 4 before calculating
the feature similarity matrix. For the ResNet101 model, we reduce
the feature dimension to 7. The post-processing PCA whitening
matrix is learned on Oxford5k when testing on Paris6k, and vice
versa. Experiments are conducted in Matlab 2014b on a machine
with an Intel(R) Core i7-4790 CPU processor(3.60GHz) and ubuntu
operating system. For the generation of regions in our method, we
use the features to generate 5 and 20 clusters respectively, and then
we use RGB values of the resized images to produce 5 additional
regions. The average time for clustering in our experiments is about
0.15 second with the unoptimized Matlab code.

4.2 Comparison with R-MAC [39]

To compare with R-MAC [39] fairly, we use the same experiment
setting as R-MAC. For each region, we first calculate a MAC vector
[3] and then post-process this MAC vector with I; normalization,
PCA whitening and I, normalization. Finally, we sum the regional
MAC vectors and [;-normalize the resulting vector again to get a
final descriptor. The results are shown in Table 1.

From Table 1, we can see that our method outperforms the orig-
inal R-MAC [39] in most cases both in the original ranking and
post re-ranking. Besides, we notice that the improvements in the
Oxford datasets are larger than that in the Paris datasets. This can
be explained by the fact that the images in the Oxford dataset have
more clutter in the background than those in the Paris dataset. As
discussed previously, the square regions used by R-MAC will cover
much clutter in the background that may contaminate the regional
MAC vectors. On the other hands, the clusters used in our method
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Figure 7: Clustering results on the Oxford5k [27] and Paris6k [28] datasets.The first row shows the input images. The second
row shows the /; norm of the D-dimensional descriptors at each spatial location extracted from the VGG16 model [36] pre-
trained on ImageNet classification tasks [34]. The last row shows the clustering results using Normalized Cut [35]. The number
of clusters is set to 10, and different clusters are represented using different colors.

Table 1: Comparison with R-MAC [39]. crop I means using
images cropped with the given bounding boxes as input;
crop X means using the whole image as input and then crop-
ping activations that fall inside the bounding boxes. R means
Re-ranking; QF means query expansion.

Table 2: Comparison with siaMac [29]. crop I means using
images cropped with the given bounding boxes as input;
crop X means using the whole image as input and then crop-
ping activations that fall inside the bounding boxes; R means
Re-ranking; OF means query expansion; PCA,, means using
the same PCA whitening as mentioned in R-MAC [39]; L,

* our implementation

can better fit the shapes and sizes of the objects of interest, and
thus can produce better regional descriptors. We also observe that
in most situations, using cropped activations as input produces
a better performance than using cropped images as input. This
suggests cropping activation may provide more useful contextual
information rather than adding more distracting noises from the
pixels outsides the bounding box of the query object.

means the learning whitening in siaMac [29].
Method Dim. datasets & 8 [29]
Oxf5k | Par6k | Oxf105k | Par106k

R-MAGC, crop I 512 | 669 |830 | 616 75.7 Method o datasets

Ours, crop I 512 | 70.3 | 83.6 | 65.0 76.2 €tho "M "Oxf5k | Par6k | Oxf105k | Parl06k

R-MAC, crop X 512 | 70.3" | 84.3" | 65.1% 77.6* siaMac, crop 512 [ 763 | 845 | 685 77.1

Ours, crop X 512 73.8 83.9 69.7 76.4 Ours, crop I 512 80.9 86.7 76.4 80.0

R-MAC, cropI + R+ QE | 512 77.3 86.5 73.2 79.8 siaMac, crop X + Ly 512 | 80.1 85.0 74.1 77.9

Ours, crop I + R+ QF 512 | 81.4 | 875 | 79.0 81.2 Ours, crop X + PCAw 512 | 814 |876 |782 814

R-MAC, crop X+R+ QE 512 79.5* 86.7* 75.7* 81.1* siaMac, crop X + Ly + R+ QE 512 84.5 86.4 80.4 79.7

Ours, crop X + R + QF 512 82.5 86.8 80.0 80.5 Ours, crop I + PCA,, + R+ QE | 512 | 85.5 88.9 | 84.2 83.6
Ours, crop X + PCA,, + R+ QE | 512 | 85.5 | 88.9 | 83.9 84.3

4.3 Comparison with siaMac [29]

To further demonstrate the benefits of generating regions through
feature clustering based on feature similarity, we compare the per-
formance of our method against siaMac [29]. The post-processing
and aggregation of regional vectors are the same as in the origi-
nal R-MAC [39]. We use input images with the same resolution
as the ones used in [29]. We do not apply a learned whitening to
the regional vectors, and use the same PCA whitening method as
described in R-MAC [39]. The results are shown in Table 2.

From Table 2, we can see that performance of our method is
always better than that of using grid regions on VGG16 fine-tune



Table 3: Comparison with DIR [13]. crop I means using im-
ages cropped with the given bounding boxes as input; PCA,,
means using the same PCA whitening as mentioned in R-
MAC [39].

datasets
Oxf5k | Par6k
Ours, crop I + PCA,, | 2048 | 82.7 93.8
DIR-grid [12] 2048 | 84.1 | 93.6
DIR-RPN [12] 2048 | 85.2 94.0

Method Dim.

model [29], even when their results are obtained using the learned
whitening L,, as described in [29] whereas ours are obtained using
the same PCA whitening PCA,, as described [39], and that it has
been proved in [29] that L,, is more effective than PCA,, .

4.4 Comparing with DIR[13]

We also test the performance of our method on the fine-tuned
model provided by Gordo et al. [13]. One thing to note is that this
fine-tuned model is trained end-to-end, with the post-processing
PCA (shifting and fully connected layer) learned in the network. In
our method, we first extract its Res5¢_relu convolutional feature
maps and then pools over the clusters. we post-process each cluster
MAC vectors with standard I, normalization, PCA whitening and
I normalization again to get the final descriptors. The PCA matrix
of our method is learned on Paris6k when testing on Oxford5k and
vice versa, whereas the PCA (Shift and fully connected layer) of DIR
is learned with the Landmarks-clean datasets [4, 13] end-to-end.
The results are shown in Table 3.

Comparing with DIR-grid [12], we have slightly better perfor-
mance on the Paris6k dataset but a little bit worse performance
on the Oxford5k datasets. From experiments in the 4.2 and the 4.3,
we have proved that our cluster-based method is better than those
grid-based methods. Our explanation for why we have worse per-
formance on oxford datasets is that the end-to-end learned PCA
(shifting and fully connected layer) may have served as something
like a metric learning technique, making the final regional vectors
more suitable to be measured with cosine distance than the regional
vectors after normal PCA whitening. Actually, we have carried out
experiments, replacing the post-processing [12] of DIR-grid with
our PCA whitening post-processing, its performance on Oxford5k
and Paris6k datasets has dropped to 81.7 and 92.7 respectively. Al-
though we want to fine-tune a shifting and fully connected layer
for our method using the landmark-clean datasets [4, 13], we find
that many URLs of the datasets has become invalid and some of
the images has wrong annotations, which fails our training. Finally,
despite the fact that using end-to-end PCA and RPN [33] can further
improve the performance on the Paris and Oxford datasets, they
need massive training data and the results are dependent on the
training data. On the other hand, our method is totally unsuper-
vised and can be applied to any pre-trained CNN model without
any fine-tuning.

5 CONCLUSION

In this paper, we introduce an aggregated deep feature based on fea-
ture clustering for particular object retrieval. Our method is similar

to R-MAC in that it generates a global descriptor by aggregating
regional MAC vectors. Unlike R-MAC in which the regions are
square in shape and are defined independent of the image content,
our method generates regions through feature clustering based on
feature similarity. This makes our regions, and hence our regional
MAC vectors, more content/object-aware. Experimental results
show that our method outperforms R-MAC. Compared with RPN
based method, our method has the advantage of not requiring any
training data with bounding box annotations, being class-agnostic,
and capable of being applied to any pre-trained models without
any fine-tuning.
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