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ABSTRACT

Estimation of local multiple orientations plays an important
role in many image processing and computer vision tasks. It
has been shown that the detection of orientations in an image
patch corresponds to fitting multiple axes to its Fourier trans-
form. In this paper, k-medoids are introduced to detect local
multiple orientations in the Fourier domain. Medoids are re-
lated to a well-known matrix eigenvector problem. A hierar-
chical schema with eigensystem and energy distribution anal-
ysis is employed to determine the number of orientations in an
image patch. The proposed approach detects two types of ori-
entation structure (ridges and edges) without difference. Ex-
perimental results on synthetic and real images show that the
proposed method can detect multiple orientations with high
accuracy and is robust against noise.

Index Terms— Image processing, local multiple orienta-
tions, k-medoids

1. INTRODUCTION

Image local orientation is an important feature used in many
image processing and computer vision tasks, such as texture
analysis, edge detection, and image segmentation [1]. Lo-
cal single orientation can be used to describe image features
like lines and edges [2]. Local multiple orientations (corners,
T-junctions, Y-forks, and X-sings) are widely used in appli-
cations like image registration [3], motion estimation [4] and
tracking [5], and they can describe textures and fabrics in a
more explicit manner in comparison to single one. This paper
presents a unified framework of multiple orientations detector
to overcome the restriction of single orientation detectors.

Many techniques for orientation estimation have been
proposed in the literature. Most local orientation estimation
approaches are based on the analysis of the spatial domain.
Rao and Schunck [6] divided a texture image into an angle
image and a coherence image using an oriented filter, namely
the gradient of Gaussian, and performed manipulations on
resulting gradient vector field. How to deal with noise is the
major problem that gradient-based methods have to face be-
cause local gradients are very sensitive to noise, making the
estimation of local orientations rather unreliable [7]. Freeman

and Adelson [8] introduced steerable filters to calculate the
filter response at various orientations. Similarly, Paris et al.
[9] employed Canny, Gabor, and Gaussian second derivative
filters with different orientations to detect the local orienta-
tions of hair images. Nevertheless, they are often limited in
precision [7].

In parallel with research effort focused in the spatial do-
main, Knutsson and Granlund [1] showed that the frequency
properties of an image patch reflect changes in its gradient di-
rection in the spatial domain, and they introduced quadrature
filters to detect local orientations. Bigun et al. [10] posed the
orientation estimation problem as a least squares fitting of an
axis in the Fourier domain. However, these two approaches
only deal with single orientation and errors arise when han-
dling complex texture.

In order to deal with image features occluded at object
boundaries which go beyond single local orientation, Aach
et al. [11] introduced a framework of double orientations
estimation. However, modeling all the signals as the super-
position of two oriented signals is still too restrictive. For
instance, plant roots generate ”Y-forks” and this implies that
three independent orientations have to be modeled. Muh-
lich and Aach [2, 11] developed a mathematical model for
multiple orientations, which allows a unified treatment of
additively and occludingly superimposed structures as well
as combinations of these. Nevertheless, their method is
restricted to superimposed model. Vliet and Faas [12] em-
ployed a clustering method to divide gradient vectors into at
most 3 clusters. Since one cluster collects the background
pixels and each cluster was analyzed separately using the
structure tensor, their method only handles two orientations.

Two types of orientations, namely ridges (a light-dark-
light signal orthogonal to the orientation direction or vice
versa) and edges (only a single light-dark transition or vice
versa), can be treated in the Fourier domain without differ-
ence since frequency reflects the changes in intensity of an
image independent of the spatial location. Noise can be rel-
atively easily removed using a Gaussian envelope. Different
from the approaches discussed above, this paper introduces k-
medoids to detect local multiple orientations in the frequency
domain. Radial vectors are weighted by the corresponding
energy of Fourier transform, and then k-medoids are utilized



to fit axes to the weighted vectors of the Fourier transform,
where the medoid of each cluster is related to the solution
of a well-known matrix eigenvector problem. Eigensystem
and energy distribution analysis are employed to determine
the number of orientations. Experimental results show that
the proposed method can obtain multiple orientations with
high accuracy and is robust against noise. Application such
as estimation of hair orientation field is discussed.

The rest of the paper is organized as follows: Section 2
models and analyzes the local multiple orientations problem.
Main steps of the proposed algorithm is given in Section 3.
Performance evaluation of the proposed algorithm is de-
scribed in Section 4. Section 5 is devoted to conclusions.

2. MODELING LOCAL MULTIPLE ORIENTATIONS
PROBLEM

The frequency properties of an image patch reflect the
changes in intensities. If an image patch has a preference
for some orientation, most of the energy in the Fourier do-
main will be concentrated in a sector oriented at the same
angle as the gradients inside the patch. The more orienta-
tion specific the patch is, the narrower the sector will be [1].
Therefore, to detect local multiple orientations in the spatial
domain is consequently the same as to check for the existence
of energy concentration along lines (highlight lines) in the
Fourier domain. Two types of orientations including ridges
and lines can be treated without difference as frequency re-
flects changes in intensity of image independent of the spatial
location.

Let f(x, y), with f : R2 → R, denote a gray-level image
and w be a m × n (m and n are odd and set to be 11 in our
experiments) patch with its center at (x0, y0). Transforming
w into the Fourier domain and shifting direct component (DC)
to the center gives F (u, v)(u = −(m−1)/2, . . . , 0, . . . , (m−
1)/2, v = −(n − 1)/2, . . . , 0, . . . , (n − 1)/2). In practice,
both w and F (u, v) are weighted by a Gaussian envelope with
variance 0.03n to emphasize the central pixel and eliminate
noise, respectively. Since this weighting does not influence
our considerations, we drop it for ease of notation. Each term
of the Fourier transform can be further represented by a vector

ωuv = ‖F (u, v)‖2
(

u
v

)
. More weight is assigned to a

term with high energy and far away from the origin (0, 0).
(see Fig. 1)

Vector ω can also be represented as (l, θ) in polar coor-
dinates, where l and θ are amplitude and angle of the vector,
respectively. Sorting ω according to its angle gives the or-
dered set {ωi|i = 1, . . . , N}, where N = mn. To detect
local K orientations is the same as finding K axes to fit its
Fourier transform with a minimal error. These axes can be
given by K unit vectors µj = (1, θj). Briefly, it minimizes

Fig. 1. Example of an image patch and its corresponding
Fourier transform and vector representation. Left: original
image patch. Middle: Fourier transform of the left. Right:
vector representation of the middle.

the following distortion measure

E =
N∑

i=1

min
1≤j≤K

(ν(ωi, µj)) (1)

where ν(ωi, µj) is the dissimilarity between two vectors ωi

and µj . It can be defined as following

ν(ωi, µj) = −lτi cos2(θi − θj) (2)

where τ denotes the impact of the amplitude of vector ωi.
Usually, τ is set to be 2, and the dissimilarity term would
become the negative value of the square of the projection from
vector ωi onto the unit axis µj .

The objective function E is a piecewise trigonometric
function with multiple local minima, resulting in a difficult
optimization.

3. K-MEDOIDS FOR LOCAL MULTIPLE
ORIENTATIONS

K-medoids algorithm, being the most common generalization
of k-mean, is widely used for its simplicity [13]. It aims at
partitioning observations into clusters in which each observa-
tion belongs to the cluster with the nearest medoid. Minimiz-
ing the objective function (1) is the same as minimizing

E =
N∑

i=1

K∑

j=1

rijν(ωi, µj) (3)

where rij are indicators (rij ∈ {0, 1}) describing which of
the K clusters the vector ωi is assigned to.

An iteration approach is applied to minimize E. Consider
first the determination of the rij with fixed µj . Since E in
(3) is a linear function of rij and the terms involving different
i are independent, it can be optimized for each i separately
by choosing rij to be 1 for whichever value of j that gives
the minimum value of ν(ωi, µj). More formally, this can be
expressed as

rij =
{

1 if j = arg minkν(ωi, µk)
0 otherwise (4)



After each vector ωi is assigned to a cluster, the medoids
should be updated, i.e., optimization of the µj with the rij

held fixed. Since µj is independent, it can be computed sepa-
rately by minimizing the following

e(µj) =
N∑

i=1

rijν(ωi, µj) (5)

Let qj = (cos(θj), sin(θj))T . Eq. (5) is equivalent to
−qT

j Cjqj , where

Cj =




N∑
i=1

rij l
τ
i cos2(θi) 1

2

N∑
i=1

rij l
τ
i sin(2θi)

1
2

N∑
i=1

rij l
τ
i sin(2θi)

N∑
i=1

rij l
τ
i sin2(θi)


 (6)

Minimizing −qT
j
Cjqj is a standard eigenvalue problem,

which is discussed in [7]. The optimal vector qj is the unit
eigenvector of Cj corresponding to the largest eigenvalue.

The process of building rij and updating µj is repeated
until the medoid of each cluster converges. Finally, the lo-
cal multiple orientations of pixel (x0, y0) in an image can be
achieved at {θ1 + π

2 , · · · , θk + π
2 }.

Since corners, T-junctions, Y-forks, X-sings are the most
frequent features of interests in many practical situations and
unstable and little useful results will arise when too many ori-
entations are being considered, the maximal number of local
orientations estimated is set to be 3. A hierarchical schema is
introduced to test whether or not to accept the zero-, single-,
double- or triple-orientation hypotheses. Clearly, high ratio
between F (0, 0) and all the energy of Fourier transform indi-
cates a homogeneous neighborhood without a clear oriented
structure. Confidence for the zero-orientation assumption is
high if

‖F (0, 0)‖2
m∑
u

n∑
v
‖F (u, v)‖2

> ε1 (7)

where ε1 is a confidence parameter.
In regions where the zero-orientation model is rejected

(K ≥ 1), we test other hypotheses using eigensystem analy-
sis. The single-orientation is first tested where the number of
orientation K is set to be 1. Two eigenvalues λ1 and λ2 (λ1 ≥
λ2) of C1 are obtained. Since eigenvalues are positively cor-
related with the energy in the corresponding axis directions,
they can be used as a measure of confidence of the hypothesis.
The energy independent quantity R = (λ1 − λ2)/(λ1 + λ2)
will be suitable for this task [10]. Confidence for the single-
orientation assumption is high if

R > ε2 (8)

where ε2 is a threshold for judging whether the number of
orientations is more than one.

Table 1. Mean errors for local multiple orientations estima-
tion in the noise-free image and images corrupted by noise

Noise Noise-free Gaussian Gaussian Gaussian Gaussian
SNR +∞dB 6.5dB 5.5dB 4.9dB 4.6dB
Error 0.05rad 0.05rad 0.07rad 0.08rad 0.09rad
Noise Poisson Uniform Uniform Uniform Uniform
SNR 41.5dB 5.7dB 5.4dB 5.0dB 4.7dB
Error 0.05rad 0.06rad 0.07rad 0.07rad 0.08rad

The case that (8) does not hold indicates more than
one orientations exist in the neighborhood (K ≥ 2). Con-
tinue to test triple-orientation assumption (K = 3), getting
λ1

1, λ
1
2, λ

2
1, λ

2
2, λ

3
1, λ

3
2, where λj

i are the eigenvalues of Cj

and λj
1 ≥ λj

2. Obviously, λj
1 + λj

2 = Trace(Cj), which
is positively correlated with the energy that is concentrated
in the jth orientation. If the assumed number of orienta-
tions is too many, then energy distribution does not appear
uniformly. Therefore, a suitable confidence criterion for the
triple-orientation assumption is

min
1≤j≤3

(λj
1 + λj

2)

max
1≤j≤3

(λj
1 + λj

2)
≥ ε3 (9)

If (9) does not hold, then double-orientation assumption
is confidence.

4. EXPERIMENTS AND APPLICATION

The proposed approach is evaluated using both synthetic and
real images. Experimental results show that the proposed
method can detect multiple orientations with high accuracy
and is robust against noise. Applications such as estimation
of orientation field as well as feature points of hair are dis-
cussed.

Using a specially constructed test image, the technique
proposed previously is evaluated in terms of accuracy and ro-
bustness against noise. Fig. 2 shows the synthetic image,
which consists of sine waves with decreasing amplitude in the
radial direction, including all possible directions. Gaussian
uncorrelated white noise, Poisson noise, and uniform noise
are added into noise-free images, respectively. The orienta-
tions of points (including the ones with single-, double, or
triple-orientations) in each image are estimated. The number
of local orientations can be estimated correctly and local mul-
tiple orientations can be obtained with little errors even the
image is polluted by noise. The mean errors for orientations
in images corrupted by different kinds of noise with various
levels are given in Table 1. Fig. 2 shows the estimation of lo-
cal multiple orientations of a noise-free image and an image
with Gaussian noise at SNR 4.6 dB, respectively.

Fig. 3 shows the performance of the proposed approach
and the algorithm proposed by Aach et. al. [11]. Our method
can judge the number of orientations of all the points detected



correctly while Aach’s cannot. The parameter setting is: ε1 =
0.9, ε2 = 0.5 and ε3 = 0.88.

Fig. 2. Synthetic image for local multiple orientations detec-
tion. Left: orientations of an noise-free image. Right: orien-
tations of an image with Gaussian noise at SNR 4.6 dB.

Fig. 3. Multiple orientations estimation applied to texture im-
age. Left: texture image. Middle: orientations of the left
obtained by the proposed approach. Right: orientations of the
left obtained by [11].

Fig. 4. Estimate the orientation field of hair

To show the robust performance and wide usefulness of
the proposed algorithm, it is utilized to estimate the orienta-
tions of hair which is a challenging problem [14] since hair
fibers are smaller than a pixel, and aliasing and hair light-
ing properties make it diffcult to predict any strong properties
[9]. Fig. 4 shows an image of hair. The proposed algorithm
can divide the hair image into background (zero-orientation,
marked by ◦), smooth partition of hair (single-orientation,

marked by line segment in its corresponding orientation) and
mess partition of hair (more than two orientations, marked by
×).

5. CONCLUSION

K-medoids are introduced to detect local multiple orientations
of images in the Fourier domain. Medoids are related to the
solutions of a well-known matrix eigenvector problem. A hi-
erarchical schema is employed to estimate the number of ori-
entations using eigensystem and energy distribution analysis.
The proposed approach can obtain multiple orientations with
high accuracy and is robust against noise. Experiment results
on texture image show that it performs better in estimation
of the number of orientations compared with other existing
methods. An application in capturing the orientation field of
hair is also illustrated.
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