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Abstract Discovering a latent common space between

different modalities plays an important role in cross-

modality pattern recognition. Existing techniques often

require absolutely-paired observations as training data,

and are incapable of capturing more general seman-

tic relationships between cross-modality observations.

This greatly limits their applications. In this paper, we

propose a general framework for learning a latent com-

mon space from relatively-paired observations (i.e., two

observations from different modalities are more-likely-

paired than another two). Relative-pairing information

is encoded using relative proximities of observations in

the latent common space. By building a discriminative

model and maximizing a distance margin, a projection

function that maps observations into the latent com-

mon space is learned for each modality. Cross-modality

pattern recognition can then be carried out in the latent

common space. To speed up the learning procedure for

large scale training data, the problem is reformulated

into learning a structural model, which is efficiently

solved by the cutting plane algorithm. To evaluate the

performance of the proposed framework, it has been

applied to feature fusion, cross-pose face recognition,

and text-image retrieval. Experimental results demon-

strate that the proposed framework outperforms other

state-of-the-art approaches.
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1 Introduction

It is very common that an object can have very differ-

ent presentations in different modalities. For instance,

printed and hand-written forms of the same charac-

ter can look very different, so are face photo and face

sketch of the same person. Humans have little problem

in recognizing objects across different modalities (e.g.,

matching face sketches to face photos). In contrast, con-

ventional machine learning methods, such as k-NN clas-

sifiers, perform poorly in cross-modality pattern recog-

nition since they assume both the training data and test

patterns are randomly sampled from the same distri-

bution (which is not the case in cross-modality pattern

recognition) (Tenenbaum and Freeman, 2000).

There exist a number of research studies in the lit-

erature targeting at cross-modality pattern recognition,

which can be roughly classified into one of the three

main approaches. The first approach consists of trans-
forming one modality into another in a preprocessing

step (Zhou et al, 2012; Blanz et al, 2005). The second
approach is by extracting modality-invariant features to

represent an object (Lowe, 2004; Zhang et al, 2011). A

major limitation of these two approaches is that meth-

ods based on these approaches are usually tailor-made

for each different modality pair involved in different

recognition tasks. The third approach is to find an un-

derlying latent common space shared between different

modalities (Tenenbaum and Freeman, 2000; Knutsson

et al, 1997; Lin and Tang, 2006; Sun et al, 2008; Prince

et al, 2008). Unlike the first two approaches, the third

approach does not depend on task-dependent knowl-

Manuscript
Click here to download Manuscript: template.tex 
Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



2 Zhanghui Kuang, Kwan-Yee K. Wong

edge. Methods based on the third approach are there-

fore general frameworks that can be applied to different

applications. Existing methods of the third approach

often require absolutely-paired observations as train-

ing data. We refer to them as Absolutely-Paired Space

Analysis (APSA). These methods assume the projec-

tions of paired observations being dependent in the la-

tent space, and can only represent a binary relationship

between observations (i.e., either paired observations or

non-paired observations).

In many application scenarios, however, it is more

suitable to consider relatively-paired observations (i.e.,

two observations from different modalities are more-

likely-paired than another two) than absolutely-paired

observations. For instance, given an input text query,

an image search-engine (such as Google) will return

a list of most probable images. The images selected

by the user are not absolutely-paired with the input

text, but instead are more-likely-paired with the in-

put text than other returned images. In fact, relative-

pairing is a general pairing relationship that also cov-

ers absolute-pairing. One can safely consider two ob-

servations that are absolutely-paired being more-likely-

paired than other non-paired observations. Another ad-

vantage of considering relatively-paired training data is

that label information of the observations can be eas-

ily integrated to boost recognition performance. It is

reasonable to assume observations with the same label

being more-likely-paired than those with different la-

bels. This strategy can be used to reduce within-class

scatter while maximizing between-class scatter in the

latent common space, as well as increase the minimum

distance between observations with different labels in

the latent common space.

In this paper, we introduce a general framework

named Relatively-Paired Space Analysis (RPSA) which

works on relatively-paired observations. Note that RPSA

is not a trivial extension of APSA as they are based on

completely different models. APSA methods are often

based on generative models (Knutsson et al, 1997; Bach

and Jordan, 2005; Prince et al, 2008) which either ex-

plicitly or implicitly assume the distributions of model

parameters and noise (e.g., Gaussian distribution). The
final estimation will be unreliable when real data do not

fit the assumption. As opposed to APSA, our method

is based on a discriminative model that has no dis-

tribution assumption. Besides, APSA methods learn a

projection function for each modality by exploring the

statistics dependence of the projections of absolutely-

paired observations in the latent common space. This
one-to-one absolute-pairing requirement makes them not

suitable for relatively-paired observations. In our pro-

posed framework, we compute the projection functions

by preserving the relative proximities of observations in

the latent common space.

Figure 1 illustrates the principle of the proposed

method based on the data set Wiki Text-Image (Rasi-

wasia et al, 2010) used in our experiments. The data

set has two modalities, namely image modality and text

modality. We select three images a, b and c and one text

article d from it. a, b and c show a soccer player, a base-

ball player, and a building respectively while d describes

a soccer team “Chelsea” and their team members. Ob-

viously, d is highly relevant to a, slightly relevant to b

(since both b and d have the concept of sports), and lit-

tle relevant to c. Therefore, a is more likely paired with

d than b, which is more likely paired with d than c. As-

sume pa, pb, pc and pd are projections of a, b, c and d

in the latent common space respectively. The proposed

method attempts to learn one projection function for

each modality so that the distance between pa and pd
is shorter than that between pb and pd which is shorter

than that between pc and pd.

We first learn the model parameters of RPSA via al-

ternating variable method (Shen et al, 2011), and find

that the training time increases dramatically as the

number of training triplets increases. To this end, we

reformulate the RPSA problem into learning a struc-

tural model (Tsochantaridis et al, 2004), and a scalable

approach based on the cutting plane algorithm is pro-

posed to solve this problem.

We validate our RPSA framework by applying it to

feature fusion, cross-pose face recognition, text-image

retrieval and attribute-image retrieval. Experimental

results demonstrate that our proposed framework out-

performs other state-of-the-art approaches. The main

contributions of this paper are

1. We propose a general framework called Relatively-

Paired Space Analysis (RPSA) for automatically learn-

ing a latent common space between different modal-

ities from relatively-paired observations, which, to

the best of our knowledge, has not been explored
before.

2. We propose a scalable optimization approach based

on the cutting plane algorithm to learn the model

parameters of RPSA.

3. We apply our proposed RPSA framework to feature

fusion, cross-pose face recognition, text-image re-

trieval and attribute-image retrieval. RPSA achieves
significant improvement in recognition and retrieval

performance compared with other state-of-the-art

methods.

Preliminary results of this work had been published

in the proceedings of the British Machine Vision Con-

ference 2013 in Bristol, UK (Kuang and Wong, 2013).
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Fig. 1 Illustration of the proposed method. (a) shows the relative-pairing relationships between observations from image and
text modalities. ∨ indicates being more likely paired. (b) shows the distances between the projections of observations in the
latent common space.

The differences between this version and the previous

one are as follows:

1. A more detailed and up-to-date survey of multi-

modality analysis is included in Section 2.

2. A term which measures the sum of the distances be-

tween points and their corresponding target neigh-

bors is added in the proposed objective energy func-

tion to boost the performance of RPSA.

3. The RPSA problem is reformulated as a structural

learning model and a scalable approach based on

the cutting plane algorithm is proposed to solve it.

4. New experiments onWiki Text-Image data set (Rasi-

wasia et al, 2010) and Public Figures Face Database

(Parikh and Grauman, 2011; Kumar et al, 2009)

have been carried out for testing and the results are

compared with state-of-the-art techniques.

2 Related Work

There exist a large number of research studies on cross-
modality pattern recognition in the literature. Due to

page limitation, however, we focus our discussion only

on those most relevant work that automatically learn

a latent common space between different modalities.

Knutsson et al (1997) proposed the Canonical Corre-

lation Analysis (CCA) which finds a latent common

space by maximizing the correlation of the projections

of cross-modality observations. Sun et al (2008) ex-

tended CCA by maximizing the within-class correla-

tions and minimizing between-class correlations. Torre

and Black (2001) developed the Asymmetric Coupled

Component Analysis (ACCA) to explicitly learn the

dependence of projections in a latent common space.

Similarly, Lin and Tang (2005) explored the coupled

space by alternatively maximizing the correlation of

projections of cross-modality observations and finding

the relations between these projections. Different from

CCA, Partial Least Square (PLS) (Prince et al, 2008;

Rosipal and Krämer, 2006) chooses linear mappings

such that the covariance between projections of cross-

modality observations in the latent common space is

maximized. Bilinear Model (BLM) (Tenenbaum and

Freeman, 2000) was proposed to separate style and con-

tent. Observations with different styles (from different

modalities) for an object are encouraged to map to the

same content in a latent common space by solving two-

factor tasks. Recently, Sharma and Kumar (2012) pro-

posed a General Multi-view Analysis (GMA) approach

which learns a latent common space by solving a gener-

alized eigenvalue problem. Kan et al (2012) introduced
a Multi-view Discriminant Analysis (MvDA) method

to seek for a projection function for each modality by
optimizing a generalized Rayleigh quotient. Besides, re-

searchers have proposed advanced nonlinear methods

based on the Gaussian Process Latent Variable Model

(GPLVM) (Shon et al, 2006; Navaratnam et al, 2007; Ek

et al, 2008). All the above methods require absolutely-
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paired observations as training data. Recently, Lam-

pert and Krömer (2010) learned a latent space based

on weakly-paired data (i.e., subsets of observations of

one modality are paired with those of another modal-

ity) by alternatively finding element pairs and maxi-

mizing covariance of projections of cross-modality ob-

servations. Different from previous work, our proposed

framework depends on neither prior distribution as-

sumptions nor statistics computations, and learns a la-

tent common space by preserving relative proximities

of the relatively-paired training data in the latent com-

mon space.

Metric learning can be interpreted as finding a la-

tent space for a single-modality observation space by

linear projection. Xing et al (2002) proposed to mini-

mize the distances between samples from a similar set

while keeping the distances of those from a dissimilar

set above a threshold. Goldberger et al (2004) directly

maximized a stochastic variant of the leave-one-out k-

NN score on the training set. Since then, many other

methods (Weinberger et al, 2006; Davis et al, 2007;

Shen et al, 2009; Zheng et al, 2013) were proposed to

achieve a similar goal. Specifically, Zheng et al (2013)

proposed a metric learning approach named Relative

Distance Comparison (RDC) to solve reidentification.

They formulated RDC to maximize the likelihood of

a pair of true matches having a relatively smaller dis-

tance than that of a wrong match pair in a soft dis-

criminant manner. However, these methods only focus

on a single modality. For cross-modality pattern recog-

nition problems as studied in this paper, observations

from different modalities are heterogeneous, and metric

learning approaches cannot get good results (Knutsson

et al, 1997; Sun et al, 2008; Torre and Black, 2001;

Wu et al, 2010). Our experiments on cross pose face

recognition support this conclusion. In some cases, ob-

servations from different modalities have different num-

bers of dimension (our experiments on feature fusion

and image-text retrieval are examples). Metric learning

approaches cannot be used to do cross-modality pat-
tern recognition since metrics such as Mahalanobis dis-

tance, require the same dimension number for different
observations (which is not the case in this task). Our

work is not a trivial extension of metric learning. First,

the relative-pairing information which encodes the re-

lationship between observations from different modali-

ties is novel. Second, the scalable optimization method

based on structural learning to speed up multi-modality

analysis was not explored before. Recently, Quadrianto

and Lampert (2011) extended metric learning to mul-

tiple modalities by explicitly modeling linear projec-
tions. Their objective function is non-convex and thus

the final optimum obtained depends on initialization.

Moreover, their method requires the dimension of the

latent common space to be known a priori. As opposed

to their method, our model is convex which guarantees

a global optimum, and can find a latent common space

with any dimension in a single optimization.

Exploiting latent spaces can also be found in re-

lated research studies, such as local metric learning

(Andrea et al, 2007), hashing (Bronstein and Bronstein,

2010), multi-task learning (Parameswaran and Wein-

berger, 2010), domain adaption (Saenko et al, 2010)

and ranking (Wang et al, 2009). However, their goals

are very different from the one in this paper.

3 Relatively-Paired Space Analysis

In this Section, we describe our RPSA framework for

learning a latent common space from relatively-paired

observations. The goal is to find linear mappings that

project observations from different modalities into a la-

tent common space in which the relative proximities of

the relatively-paired observations are preserved.

3.1 Preliminaries

Let us define some notation first. We use boldface up-

percase, lowercase and calligraphic letters (e.g., X,x

and X) to denote matrices, vectors and sets, respec-

tively. Xij denotes the (i, j)th entry of X, xi denotes

the ith entry of x, and xij denotes the jth entry of xi.

X � 0 denotes X being a positive semi-definite matrix.

Let Tr(X) denote the trace of X and XT its transpose,

and the inner product of two matrices �X,Y� can then

be represented by Tr(XTY). For a symmetric matrix

X, its eigenvalue decomposition is given byX = UΛUT

with U being an orthogonal matrix. The positive part

of the matrix X is defined as

(X)+ = Umax(Λ,0)UT, (1)

and the negative part as

(X)− = Umin(Λ,0)UT. (2)

Clearly, X = (X)+ + (X)− always holds true.

3.2 The RPSA Model

Consider a set of M modalities {Ω1,Ω2, . . . ,ΩM} with
dimensions {d1, d2, . . . dM} respectively, and a train-

ing data set of N observations {x1,x2, . . . ,xN} with

a corresponding flag set {t1, t2, . . . , tN} such that ti ∈
{1, . . . ,M} indicates that xi comes from Ωti . Let the
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relative-pairing knowledge of the observations be rep-

resented by a set of triplets T = {(i, j, k)}, where each

triplet (i, j, k) encodes that xi and xj are more-likely-

paired than xi and xk. Note that xi, xj and xk can

come from either the same or different modalities. When

they are from the same modality, “being more-likely-

paired” means “being more similar”.

To learn a latent common space Z with dimension

dz, we seek a dz×dm linear projection matrix WΩm for

each modality Ωm such that the relative proximities of

the projections of the relatively-paired observations are

preserved in Z, i.e.,

d(i, j) ≤ d(i, k) ∀(i, j, k) ∈ T, (3)

where

d(i, j) = �WΩti
xi −WΩtj

xj�2 (4)

denotes the squared Euclidean distance between the

projections of xi and xj in Z. Let W = [W1 . . .WM ]

and SΩm
be a (

�
dn)×dm matrix with all elements be-

ing zero except for row (
�

n<m dn)+1 to row
�

n≤m dn
being an identity matrix, such that WΩm

= WSΩm
.

Substituting this into (4) gives

d(i, j) = (SΩti
xi − SΩtj

xj)
TWTW(SΩti

xi − SΩtj
xj)

= Tr(ACi,j), (5)

where A = WTW and

Ci,j = (SΩti
xi − SΩtj

xj)(SΩti
xi − SΩtj

xj)
T. (6)

Substituting (5) into (3) gives

Tr(ACi,k)− Tr(ACi,j) ≥ 0 ∀(i, j, k) ∈ T. (7)

(7) defines the relative proximity constraints onA which

encodes W (i.e., the set of projection matrices). Since

ti, tj , tk ∈ {1, . . . ,M}, there are M3 possible modality

configurations for a triplet (i, j, k). When ti = tj = tk,

xi, xj and xk are from the same modality, and (7) pro-

vides constraints in one modality which is the same as

metric learning. Now to learn the latent common space,

we find a positive-semidefinite matrix A (i.e., A � 0.)

which fulfills constraints (7). Note that if A∗ is a so-

lution, multiplying A∗ by any arbitrary positive scalar
will also give a solution. To specify a unique solution,

we let Ci,j,k = Ci,k −Ci,j and optimize an SVM style
energy function, given by

min
1

2
�A�2F + γ1

�
ξi,j,k + γ2

�
Tr(ACi,j)

s.t. Tr(ACi,j,k) ≥ 1− ξi,j,k, A � 0 and

ξi,j,k ≥ 0, ∀(i, j, k) ∈ T, ∀(i, j) ∈ P,

(8)

𝐱𝑗  𝐱𝑖  

𝐱𝑘  

𝑥𝑖  

𝑥𝑗  
𝑑(𝑖, 𝑗) 

𝐖Ω𝑡𝑖
 𝐖Ω𝑡𝑗

 

𝐖Ω𝑡𝑘
 

𝐖Ω𝑡
𝑖
 

𝐖Ω𝑡
𝑗
 

Fig. 2 Illustration of the effects of optimizing (8). Given
xh from different modalities, where h ∈ {i, j, k, i, j} with
(i, j, k) ∈ T and (i, j) ∈ P, we attempt to learn projection
matrices WΩth

so that a distance margin d(i, k) − d(i, j) is
maximized while the distance between points in target neigh-
borhood d(i, j) is minimized.

where both γ1 and γ2 are non-negative weights, and

P is a set of pairs (i, j) which indicates xj is a target

neighbor of xi. We will discuss how to set γ1, γ2, T and

P in Section 5.2. The first term in (8) is a regularization

term which controls the complexity of the model we

learn. The second term is the standard hinge loss term

which gives a penalty for any violated constraint defined

in (7). Minimizing the hinge loss term is equivalent to

maximizing a distance margin, which makes the learned

model robust against noise. The third term encourages

the Euclidean distance between the projections of xi

and xj in the latent common space (i.e., d(i, j)) to be

as short as possible. The effects of optimizing (8) is
illustrated in Figure 2.

3.3 Optimization

We consider the Lagrangian of (8):

L(A, ξ,X,u,p) =
1

2
�A�2F + γ1

�
ξi,j,k+

γ2
�

Tr(ACi,j)−
�

ui,j,kTr(ACi,j,k)+
�

ui,j,k −
�

ui,j,kξi,j,k − pTξ − Tr(AX)

s.t. X � 0, and ui,j,k ≥ 0 and pi,j,k ≥ 0,

∀(i, j, k) ∈ T, ∀(i, j) ∈ P,

(9)

where X, ui,j,k and p are the Lagrangian multipliers

for the primal variable A, the constraint corresponding
to the training triplet (i, j, k) in (8), and ξ respectively.

Setting the gradient of (9) with respect to the primal

variables A and ξ to 0 gives

A∗ = X∗ +
�

u∗
i,j,kCi,j,k − γ2

�
Ci,j , (10)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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and u∗
i,j,k = γ1w

∗
i,j,k − pi,j,k. Substituting the above

expressions into the Lagrangian (9) gives the negative

of the dual problem:

min
1

2

���X− Ĉ
���
2

F
−
�

ui,j,k

s.t. X � 0 and γ1 ≥ ui,j,k ≥ 0,

∀(i, j, k) ∈ T,

(11)

where Ĉ = −�
ui,j,kCi,j,k+B with the matrixB being

γ2
�

Ci,j .

(11) has two variables, namely X and u. It is opti-

mized by alternating variable method, where one vari-

able is optimized while another is fixed at one time. X

is first optimized while fixing u, and u is then optimized

while fixingX in each iteration. Specifically, while fixing

u, (11) fortunately has a close-form optimal solution:

X∗ = (Ĉ)+. (12)

FixingX leads to the following box constraints quadratic

programming (QP) over u:

min
1

2

���X∗ −B+
�

ui,j,kCi,j,k

���
2

F
−
�

ui,j,k

s.t. γ1 ≥ ui,j,k ≥ 0, ∀(i, j, k) ∈ T.
(13)

The off-the-shelf first order Newton algorithm L-BFGS-

B (Liu and Nocedal, 1989) is employed to solve this

QP problem. L-BFGS-B is an iterative algorithm, in

each iteration of which, u is updated till the algorithm

converges.

In normal alternating variable method framework,

one variable (e.g., X) is updated after another variable

(e.g., u) stop changing. For fast convergence, X is up-

dated once u is changed in each iteration of L-BFGS-B.
Therefore, the gradient of (13) is given by

G(ui,j,k) = Tr((X−B+
�

ui,j,kCi,j,k)Ci,j,k)− 1

= Tr(−(Ĉ)−Ci,j,k)− 1.

(14)

The overall optimization procedure is summarized

in Algorithm 1. Its main body is the off-the-shelf al-

gorithm L-BFGS-B. The code for computing objective
value and gradient, and updating Z (Line 5-8) is imple-

mented by callback functions. The code for updating u
and its approximated Hessian (Line 9) is provided in-

ternally in L-BFGS-B. Therefore, there is no need to

implement it.

After getting the optimum A∗, we obtain W by
minimizing

��A∗ −WTW
��
F
. Suppose the rows of W

are orthogonal to each other, WTW will then be a

positive-semidefinite matrix with rank dz (i.e., the di-

mension of the latent common space Z). According to

Algorithm 1 Algorithm of RPSA

1: Input: {xi}, {ti}, T, P, λ1 and λ2

2: Output: A∗

3: Initialize u;
4: while not converge do
5: Compute Ĉ according to the current u;
6: Compute (Ĉ)+ and (Ĉ)− by performing the eigenvalue

decomposition;
7: Compute the first derivative of (13) by (14);
8: Compute the objective value of (11) by

1
2
Tr((Ĉ)−(Ĉ)−)−�

ui,j,k;
9: Update u and its approximated Hessian;
10: end while
11: Let A∗ = (Ĉ)+ − Ĉ = −(Ĉ)−;

Eckart-Young theorem (Stewart, 1993), WTW will be

the rank-dz approximation of A∗ . We perform eigen-

value decomposition over the positive-semidefinite ma-

trix A∗, getting A∗ = UΛUT with U being an or-

thogonal matrix and Λ a real diagonal matrix with de-

creasing singular values σ1 ≥ . . . ≥ σ�
dm

. We obtain

W = Λ�UT with Λ� being a diagonal matrix with de-

creasing diagonal values
√
σ1,

√
σ2, . . . ,

√
σdz

, 0, . . . , 0.

Linear projections WΩm for different dimensions of Z

can be obtained after optimizing (8) and one eigenvalue

decomposition. Note that the appropriate latent com-

mon space dimension dz is application dependent, and

is determined by cross validation in this paper.

3.4 Time Complexity

In this Section, we discuss the time complexity of Al-

gorithm 1. In each iteration, the time complexity for

computing Ĉ is O(Ks2) whereK is the number of train-

ing triplets (i.e., |T|) and s is the averaged sparsity of

SΩti
xi −SΩtj

xj or that of SΩti
xi −SΩtk

xk, whichever

is bigger (Line 5). The eigenvalue decomposition of Ĉ

has O(D3) time complexity with D =
�

dm (Line 6).

Computing gradient has the time complexity of O(Ks2)

(Line 7) while O(D2 +K) for computing objective val-

ues (Line 8). The cost for updating u and approxima-

tion Hessian (Shen et al, 2011) is O(rK) with r being

a constant (Line 9).

If K is not much greater than D, the eigenvalue de-
composition of Ĉ dominates the computation complex-

ity in each iteration and the optimization algorithm can

converge in a small number of iterations. In this case,

the overall time complexity is O(T1D
3) with D =

�
dm

and T1 being the iteration number.

However, in real applications, for learning stable
models, one prefers collecting large scale data set so

that the distribution of training data can converge the

true, underlying data distribution. In general, one has

O(N3) training triplets for the data set with size N if
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Relatively-Paired Space Analysis: Learning a Latent Common Space from Relatively-Paired Observations 7

enumerating all possible combinations. Although one

can cut down on the number of training triplets with

heuristics as in the work of Rakotomamonjy (2004), the

number is still very large. For instance, the number of

triplets in our experiments on the Wiki data set in Sec-

tion 5 is as large as 1 million. In this case, K is much

greater than D, and the time spent on the eigenvalue

decomposition can be ignored. The overall time com-

plexity is O(T1r1K) with r1 being a constant.

To validate the above discussion, an experiment was

conducted on the Wiki data to show the relationship

between the training time and the number of training

triplets (Figure 3). It has been observed the time of

eigenvalue decomposition (Line 6) dominates the total

training time when the number of training triplets is

small while that of computing gradient (Line 7) domi-

nates when the number of training triplets is large (see

Figure 3(a)). Figure 3(b) shows that the training time

of Algorithm 1 is a linear function w.r.t. the number of

training triplets when the number is large. These ob-

servations are consistent with our previous discussion.

4 Efficient Relatively-Paired Space Analysis

As discussed in the previous Section, the optimization

procedure of (8) slows down dramatically as the num-

ber of training triplets increases. The underlying reason

is that large scale training triplets would lead to a long

vector u and thus a large scale QP problem (13). One

possible way to speed up the optimization procedure

is to reduce the number of training triplets involved.

In the literature, Stochastic Gradient Descent (SGD)

(Bottou, 2010) is usually employed to train models over

large scale training samples by randomly selecting a

mini-batch of them each time. Although it is success-

fully used in many applications such as training SVM

(Shalev-Shwartz et al, 2007), however, there is no the-

oretical guarantee that SGD converges to optimal so-

lutions and thus its usefulness heavily dependents on

users’ parameter tuning experience. Structural learn-

ing (Taskar, 2004) can also be used to speed up train-

ing models by selecting the most violated constraint
(training sample) in each iteration. Joachims (2006) re-

formulated a linear SVM model into a structural SVM

model which is solved by the cutting plane algorithm.

The reformulation model is proved to be equivalent to

the original SVM model. Making thing interesting, the

structural learning based approach is several orders of

magnitude faster than decomposition methods when
feature vector is highly sparse. Our model solved in this

paper is different from SVM. However, both of them
involve optimizations with constraints. It is not clear

whether structural learning can speed up our multi-

modality analysis model or not.

To this end, we first reformulate the problem of

relatively-paired space analysis into learning a structure

model. The cutting plane algorithm (Tsochantaridis et al,

2004) is then used to solve this problem, in each itera-

tion of which only a few training triplets are involved.

The efficiency of Algorithm 1 and structural learning

based approach is finally compared in terms of time

complexity and empirical training time.

4.1 Reformulating RPSA into Structural Learning

By introducing a binary variable ci,j,k ∈ {0, 1} for each

triplet (i, j, k), the RPSA model can be reformulated

into a structural learning problem which can be learned

by solving the following optimization problem:

min
1

2
�A�2F + γ1Kξ + γ2

�
Tr(ACi,j)

s.t.
1

K

�
ci,j,kTr(ACi,j,k) ≥

1

K

�
ci,j,k − ξ,

A � 0 and ξ ≥ 0, ∀c ∈ {0, 1}K .

(15)

While (15) has 2K constraints, one for each possible vec-

tor c ∈ {0, 1}K , it has only one slack variable variable

ξ which is shared across all constraints. Interestingly,

(15) and (8) are equivalent.

Theorem 1 Any solution A∗ of (15) is also the solu-

tion of (8) (and vice verse) with ξ∗ = 1
K

�
ξ∗i,j,k.

Proof The following derivation will show for any A,

(8) and (15) have the same objective value. Given A,

ξi,j,k can be optimized individually such that the ob-

jective value of (8) is as small as possible. i.e., ξ∗i,j,k =

max(0, 1− Tr(ACi,j,k)). For (15), we have

γ1Kξ∗ =γ1Kmax(0,max
c

(
1

K

�
ci,j,k−

1

K

�
ci,j,kTr(ACi,j,k))) (16a)

=γ1 max(0,max
c

(
�

ci,j,k−
�

ci,j,kTr(ACi,j,k))) (16b)

=γ1 max(0,
�

max
ci,j,k

(ci,j,k−

ci,j,kTr(ACi,j,k))) (16c)

=γ1
�

max(0, 1− Tr(ACi,j,k)) (16d)

=γ1
�

ξ∗i,j,k (16e)
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Fig. 3 Training time of RPSA against the number of training triplets. (a) shows the training time ratio of each step in
Algorithm 1 as the number of training triplets increases. (b) shows the training time of Algorithm 1 as the number of training
triplets increases.

(16a) follows directly from the definition of ξ∗; (16c)
holds because each element of c is independent and can

be optimized individually. (16c) and (16d) are equiva-

lent because ci,j,k ∈ {0, 1}; again, (16e) follows directly
from the definition of ξ∗i,j,k. The above equations prove

that the objective values of (8) and (15) are the same

for any given A. Additionally, (8) and (15) have iden-

tical solution space. ��

4.2 Optimization

Theorem 1 guarantees that (8) and (15) have the same

optima. One may spot that (15) has even more con-

straints (2K) than (8) (K), and wonder what one may

benefit from this kind of reformulation. Note that there
is only one slack variable which is an upper bound for

the penalty of all possible constraints in (15). It sug-

gests that only a small subset of constraints are in-

formative. Ignoring other non-informative constraints

would lead to a simple reduced problem which can be

efficiently solved as only a few constraints are involved

in its primal problem or a few dual variables in its

dual problem. Joachims (2006) employed the cutting-

plane algorithm to find a small set of most violated

constraints to speed up the training procedure of lin-

ear support vector machine. It has been proven that

one can approximate the SVM problem by a reduced

problem with a small constant number of constraints.

Surprisingly, the number of constraints in the reduced

problem is independent of that in the original SVM.

The cutting-plane algorithm is employed to solve
(15). In each iteration, the most-violated constraint is

first found:

c∗ = argmaxc
�

ci,j,k −�
ci,j,kTr(ACi,j,k), (17)

and put it into the most-violated constraint set Γ . i.e.,

Γ = Γ ∪c∗. ci,j,k are independent and thus can be opti-

mized individually. One has c∗i,j,k = 1 if Tr(ACi,j,k) <

1, otherwise 0. A is then updated by optimizing the

following reduced problem:

min
1

2
�A�2F + γ1Kξ + γ2

�
Tr(ACi,j)

s.t.
1

K

�
ci,j,kTr(ACi,j,k) ≥

1

K

�
ci,j,k − ξ,

A � 0 and ξ ≥ 0, ∀c ∈ Γ.

(18)

Obviously, the number of constraints is |Γ |, which usu-

ally is a small number. Let Cc = 1
K

�
ci,j,kCi,j,k and

wc = 1
K

�
ci,j,k. The negative dual problem of (18) is

given by:

min 1
2

���X− Ĉ
���
2

F
−�

wcuc

s.t.
�

uc ≤ Kγ1, and uc ≥ 0, ∀c ∈ Γ,
(19)

where X and uc are the Lagrangian multiplier of A and

Cc respectively. Ĉ = −�
ucCc + B. Similar to (11),

(19) also has two variables and can be optimized by

alternating variable method. Again, X has a close-form

optimal solution while fixing u. i.e.,

X
∗
= (Ĉ)+, (20)

Fixing X and optimizing uc gives a quadratic program-

ming (QP) with a sum constraint:

min
1

2

���X∗ −B+
�

ucCc

���
2

F
−
�

wcuc

s.t. X � 0 and
�

uc ≤ Kγ1, uc ≥ 0, ∀c ∈ Γ.

(21)
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Relatively-Paired Space Analysis: Learning a Latent Common Space from Relatively-Paired Observations 9

Algorithm 2 Algorithm of efficient relatively-paired

space analysis

1: Input: {xi}, {ti}, T, P, λ1, and λ2

2: Output: A∗

3: Initialize A = I,Γ = ∅;
4: while not converge do
5: Compute the most violated constraint c∗ by (17), Γ =

Γ
�

c∗;
6: while not converge do
7: Update u by (21);

8: Update X by X = (Ĉ)+, and A by A = −(Ĉ)−;
9: end while
10: end while
11: Let A∗ = A;

Since L-BFGS-B cannot solve QP problems with a sum

constraint, the quadprog function with interior points

option1 in Matlab is employed to optimize it efficiently.

The optimization procedure of (15) is summarized

in Algorithm 2. In Line 3, A is initialized to an identity

matrix I. In Line 7, we initialize the problem (21) using

previous u to speed up convergence.

4.3 Time Complexity

In each outer iteration of Algorithm 2, the time com-

plexity of computing the most violated constraints (Line

5) is O(Ks2). Line 6-9 solve the reduced problem (18)

which is actually an RPSA problem and can be opti-

mized by Algorithm 1. Since it has very limited con-

straints (i.e., |Γ | is small and thus u is a short vector),

it can be solved with time complexity O(T1D
3) as dis-

cussed in Section 3.4. For large scale training triplets,

the time of computing the most violated constraints
dominates the total time of each outer iteration while

that of solving the reduced problem is negligible. There-

fore, the time complexity of Algorithm 2 is O(T2Ks2)

with the constant T2 being the outer iteration number.

Both Algorithm 1 and 2 have a linear time com-

plexity for each outer iteration when a huge number

of training triplets are available. However, Algorithm 2
empirically converges much faster than Algorithm 1.

Theoretically, its outer iteration number T2 does not de-

pend on the number of training examples K (Joachims
et al, 2009).

4.4 Efficiency Comparison

Algorithm 1 and 2 both converge to an identical solu-

tion which is guaranteed by Theorem 1. One concerns

only their efficiency. We conducted two experiments on

1 The number of variables is very small.

the Wiki text-image data set to compare them. The

number of training triplets is set to 4× 104 in the first

experiment while 106 in the second one (other settings

can be found in Section 5.5).

Figure 4 plots the energy of (8) against training

time. Figure 4(a) shows that Algorithm 1 converges

faster than Algorithm 2 when the number of triplets

(K) is small. This is reasonable since Algorithm 1 in-

vokes more eigenvalue decomposition which dominates

computation time in this case than Algorithm 2. More-

over, Algorithm 1 has more stable energy decreasing

procedure. The underlying reason is that Algorithm 2

finds a most violated constraint in each of its outer iter-

ations. Figure 4(b) shows that Algorithm 2 is typically

several orders of magnitude faster than Algorithm 1

when the number of triplets (K) is huge.

4.5 Discussion

In analogy to previous work (Tsochantaridis et al, 2004;

Joachims, 2006), Algorithm 2 also uses a 1-slack energy

function. However, there are two significant differences.

First, Algorithm 2 is a reformulation of a semi-definite

programming problem while Tsochantaridis et al (2004)’s

work is a general framework for structural learning and

Joachims (2006)’s work is a reformulation of a linear

SVM. Second, Algorithm 2 has very different property

from that of Joachims (2006)’s work. Algorithm 2’s re-

formulation has advantage when K is huge compared

with the original formulation while Joachims (2006)’s

reformulation has advantage when feature vectors are

highly sparse. From above discussion, our main techni-

cal contribution is to seamlessly integrate semi-definite

programing with the cutting plane algorithm. Another

technical contribution is detailed analysis of time com-

plexity of Algorithm 1 and 2 and their empirical com-

parison.

5 Experiments

The performance of our proposed RPSA framework was

evaluated by applying it to feature fusion, cross-pose

face recognition, text-image retrieval and attribute-image
retrieval.

5.1 Training Triplets and Pairs

Training triplets (i, j, k) ∈ T can be generated in an

unsupervised or supervised fashion. Relatively-paired

data can be collected from clickthrough data of search

engines or priori knowledge about relative-pairing. This
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Fig. 4 Efficiency comparison between Algorithm 1 and 2 on the Wiki Text-Image data set with different numbers of training
triplets.

kind of data is naturally gotten. It can also be gener-

ated from category labels based on the principle that

observations with the same label are expected to be

more-likely-paired than those with different labels. Let

li denote the label of an observation xi. Given a pair of

cross-modality observations (xp,xq) (where tp �= tq) for

an object, we define four types of triplets to describe the

relative-pairing knowledge (see Table 1). Each triplet

(i, j, k) suggests that xi is more-likely-paired with xj

than with xk. Euclidean distance between two obser-

vations is used in defining nearest neighbor in Table 1.

Figure 6 gives a graphical illustration for these four

types of triplets. If the numbers of these four types of

triplets are n1, n2, n3 and n4, respectively, for each

given pair (xp,xq), we say that the training triplets

have a structure of (n1, n2, n3, n4). The total number

of triplets is therefore (n1 + n2 + n3 + n4)×Np, where

Np is the number of pairs.

Similarly, we generate training pair set P from la-

bels. Given a pair of cross-modality observations (xp,xq)

(where tp �= tq) for an object, three types of pairs are

defined to describe target neighborhood (see Table 2).

Each pair (i, j) suggests that xi is a target neighbor

of xj and vise versa. Again, if the number of these
three types of pairs are n1, n2 and n3, respectively,

for each given pair (xp,xq), we say that the training

pairs have a structure of (n1, n2, n3). Therefore, we have

(n1 + n2 + n3) × Np training pairs in total. Note that

n1 has only two choices 0 or 1.

5.2 Parameter Settings

There are two weights, namely γ1 and γ2 in our en-

ergy function (8). In our experiments, we found that

γ1 is not sensitive to other settings, such as the num-
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Fig. 5 Performance of RPSA on validation data with differ-
ent numbers of training triplets. RPSA is used to fuse the
feature pair (Zer, Mor). n1, n2, n3 and n4 are set to n while
other parameters are tuned to maximize the performance for
each specific n.

ber of training triplets. The underlying reason is that

the hinge loss term only penalize violated constraints in

(7) no matter how many training triplets we have. We

therefore fixed it to 1 in all our experiments. Because γ2
is the weight of the sum of the distance between points

in neighborhood, it is affected by the scale of feature

vectors. Hence, we individually tuned γ2 for different

data sets using validation data. Detailed analysis can

be found in each corresponding Section.

Theoretically, the more training triplets we use, the

more constraint information and better performance we
get. It can also be observed from experimental results

(See Figure 5). Therefore, we used as many as possi-

ble triplets in our experiments. Because the numbers of

training data of each category in different data sets are

different, we have different training triplets in different

tasks. Detailed triplet structures for different tasks can

be found in their corresponding Section.
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The parameters regarding training pairs P is insen-

sitive to other settings. If one expects the distance be-

tween the projections of xp and xq to be short, then

n1 should be set to 1, otherwise 0. The second and

third kind of training pairs encourage small distances

between projections of observations with the same label

in each modality. We found that small target neighbor-

hood (i.e., n2 and n3 is set to a small number, e.g.,

5) works well in our experiments. For feature fusion,

diversity of projections of exactly-paired observations

from different modalities and small distances between

projections of observations with the same label in target

neighborhood in each modality are desirable. Therefore,

we set n1 = 0 and n2 = n3 = 5. For cross modality pat-

tern recognition tasks, namely, cross pose face recogni-

tion, text-image retrieval and attribute-image retrieval,

similar projections of exactly-paired observations are

desirable, and thus we set n1 = 1 and n2 = n3 = 0.

To summarize, only γ2 should be tuned for each data

set while other parameters are fixed in advance.

5.3 Feature Fusion

For classifying patterns with different kinds of features

stemming from different sources, a critical issue is to

efficiently utilize these cross-modality features. A com-

mon solution is feature fusion by first projecting cross-

modality features into a latent common space to re-

duce dimension and suppress noise, and then adding

the paired projections together as a final feature vec-

tor. The fused feature for two modalities (Sun et al,

2008; Zhang and Zhang, 2011) is usually given by

y = WΩti
xi +WΩtj

xj , (22)

where xi and xj are two feature vectors for different

modalities of an object (i.e., ti �= tj). The proposed

method was used to fuse features of UCI Multiple Fea-

tures data set2. This data set consists of 2000 instances

of ten hand-written numerals (‘0’-‘9’). Each instance

has six features, namely Fou, Fac, Kar, Pix, Zer and

Mor, with dimensions 76, 216, 64, 240, 47, and 6 re-

spectively. We considered each feature as one modality.

In our experiment, any two kinds of features were se-
lected to fuse, and we had C6

2 = 15 combination pairs.
In the training phase, for each feature pair, the number

of training data for each digit (Nt) was set to 100. The
latent common space had a dimension of 25, except for

feature pairs involving Mor where it had a dimension

of 6. In the testing phase, we find the nearest training

fused feature with label for each testing fused feature.

2 http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Fig. 7 Performance of RPSA on validation data when fusing
the modality pair (Zer Mor) with different γ2.

The experiment was repeated 10 times by randomly se-

lecting fixed number of training data (i.e., Nt×10, here

10 is the number of digit categories). We evaluated our

method by mean recognition rates.

To determine γ2, we used
1
5 of training data as vali-

dation data and the rest as “training data”. The struc-

ture of training triplets are fixed to be (79,79,79,79)

(given a digit xp, the number of digits with the same

label as xp is 79 in the “training data”). The pair of

modalities (Zer, Mor) are fused with different γ2. The

recognition rates are shown in Figure 7. It has been ob-

served that the proposed method gets the best result

with γ2 = 10. Therefore, we fixed γ2 to 10 in this ex-

periment. After parameter tuning, RPSA was trained

with all training data with fixed parameters.

The proposed method was compared with Canonical

Correlation Analysis (CCA) (Hardoon et al, 2004), Dis-

criminative Canonical Correlation Analysis (DCCA) (Sun

et al, 2008), Partial Least Squares (PLS) (Prince et al,

2008; Rosipal and Krämer, 2006), bagging CCA (bgCCA),

bagging DCCA (bgDCCA), boosting CCA (bsCCA),

boosting DCCA (bsDCCA) (Zhang and Zhang, 2011)

and Random Correlation Ensemble (RCE) (Zhang and

Zhang, 2011). For fair comparison, all the methods em-

ploy nearest neighbor method as the classifier. The re-

sults of competitors are from Table 2 in Zhang and

Zhang (2011). From Table 3, we see that RPSA is clearly

superior to CCA, DCCA, bgCCA, bgDCCA, bsCCA,
bsDCCA and PLS. RPSA achieves better accuracy than

RCE for 12 pairs, and identical accuracy for the remain-
ing 3 pairs. Note that RCE is a sophisticated method

which first finds random cross-view correlations between

within-class examples and then boosts performance by

ensemble learning.

Our proposed RPSA is a general framework of multi-

modality analysis. It is natural to extend RPSA to fuse

features from three modalities. We conducted feature

fusion over all possible three features compared with

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Zhanghui Kuang, Kwan-Yee K. Wong

Table 1 Four types of triplets defined for describing relative-pairing information of a given pair of observations (xp, xq).

Type Form Num. Remark

1 (p, q, q1) n1
xq1

is the kth (k ≤ n1) nearest neighbor of xq

s.t. tp �= tq ∧ tq = tq1
∧ lp = lq ∧ lq �= lq1

2 (q, p, p1) n2
xp1

is the kth (k ≤ n2) nearest neighbor of xp

s.t. tq �= tp ∧ tp = tp1
∧ lq = lp ∧ lp �= lp1

3 (p, p1, p2) n3
xp1

is the kth (k ≤ n3) nearest neighbor of xp s.t. tp = tp1
∧ lp = lp1

xp2
is the kth (k ≤ n3) nearest neighbor of xp s.t. tp = tp2

∧ lp �= lp2

4 (q, q1, q2) n4
xq1

is the kth (k ≤ n4) nearest neighbor of xq s.t. tq = tq1
∧ lq = lq1

xq2
is the kth (k ≤ n4) nearest neighbor of xq s.t. tq = tq2

∧ lq �= lq2

Table 2 Three types of pairs defined for describing target neighborhood of a given pair of observations (xp, xq).

Type Form Num. Remark

1 (p, q) n1 n1 = 0 or 1

2 (p, p1) n2
xp1

is the kth (k ≤ n2) nearest neighbor of xp

s.t. tp = tp1
∧ lp = lp1

3 (q, q1) n3
xq1

is the kth (k ≤ n3) nearest neighbor of xq

s.t. tq = tq1
∧ lq = lq1

Type 1 Type 2 Type 3 Type 4

Fig. 6 Four types of triplets defined for describing relative-pairing information of a given pair of observations (xp, xq).
xp������xq means xp and xq are paired observations from different modalities. Grids on the same horizontal line contain
cross-modality observations with the same label.

Table 3 Recognition rates on Multiple Features Data set.

❳❳❳❳❳❳❳❳Pair
Method

CCA DCCA bgCCA bgDCCA bsCCA bsDCCA PLS RCE RPSA

Fac Fou 0.86 0.89 0.86 0.89 0.84 0.88 0.94 0.95 0.98
Fac Kar 0.95 0.98 0.95 0.98 0.93 0.98 0.94 0.98 0.98
Fac Pix 0.86 0.97 0.86 0.97 0.86 0.97 0.94 0.95 0.98
Fac Zer 0.85 0.88 0.86 0.88 0.84 0.87 0.96 0.97 0.97
Fac Mor 0.73 0.82 0.75 0.82 0.74 0.81 0.88 0.88 0.97
Fou Kar 0.90 0.90 0.90 0.90 0.88 0.89 0.97 0.96 0.97
Fou Pix 0.76 0.89 0.77 0.89 0.74 0.87 0.98 0.95 0.98
Fou Zer 0.82 0.83 0.82 0.83 0.80 0.81 0.81 0.85 0.86
Fou Mor 0.75 0.77 0.75 0.77 0.74 0.76 0.44 0.80 0.84
Kar Pix 0.94 0.95 0.94 0.95 0.93 0.94 0.98 0.96 0.98
Kar Zer 0.90 0.88 0.90 0.88 0.89 0.86 0.83 0.96 0.96
Kar Mor 0.75 0.80 0.77 0.80 0.76 0.79 0.62 0.86 0.97
Pix Zer 0.83 0.87 0.83 0.87 0.80 0.86 0.84 0.94 0.97
Pix Mor 0.72 0.79 0.73 0.79 0.71 0.77 0.71 0.84 0.98
Zer Mor 0.68 0.75 0.72 0.75 0.70 0.74 0.72 0.77 0.84
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Multi-View CCA (Rupnik and Shawe-Taylor, 2010; Gong

et al, 2014). Therefore, we have C6
3 = 20 configurations.

Due to space limitation, we only reported the average of

the mean recognition rates over 20 configurations. The

average of the mean recognition rates of RPSA over

three features is 0.97 while that of Multi-View CCA

is 0.93. The average of the mean recognition rates of

RPSA over two features is 0.95, which suggests that

fusing more features can obtain better recognition re-

sults.

5.4 Cross-Pose Face Recognition

Faces observed under a particular pose can be consid-

ered as being sampled from one modality, and therefore

faces observed under different poses correspond to dif-

ferent modalities. RPSA can be used to recognize faces

under different poses, in which gallery faces are in one

pose while probe faces are in another pose. Note that

our method requires knowing the rough pose of each

photo (i.e., to which modality it belongs) as in the work

of Sharma and Jacobs (2011). CMU PIE face database
3 was used in our experiments. This data set consists of

68 subjects, each of which has face photos in 13 different

poses (indexed by c27/05/29/37/11/07/09/02/14/22/34

/25/31). Photos in the same pose were aligned by the

eyes and mouth. All photos were cropped and down-

sampled to 48×40. Each photo was then reshaped into

a column vector giving an observation xi. In our ex-

periments, subject 1 to 34 were used as training data,

while the rest were used as testing data. In the train-

ing phase, we learned one projection matrix for each

modality. The learned latent common space had a di-
mension of 25. In the testing phase, the nearest gallery

face of each probe face was found in the learned latent

common space, and the recognition rates were reported.

To tune γ2, we randomly selected 1
5 of training data

as validation data and the rest as “training data”. The

structure of training triplets are fixed to be (26,26,0,0)

(given a face xp, the number of faces with different la-
bels is 26 while the number of faces with same label as

xp is 0). RPSA is used to do cross pose face recognition
with c22 as gallery and c07 as query. Figure 8 plots the

recognition rates with different γ2. It has been shown

that RPSA is not sensitive to γ2 as long as γ2 > 0.01.

Therefore, we fixed γ2 = 10. and retrained our model

over all training data.

In Table 4, we compare our method with those using

frontal faces (photos indexed by c27 in CMU PIE data

set) as gallery, in terms of mean recognition rates over

different subsets of probe poses. The subsets of probe

3 http://vasc.ri.cmu.edu/idb/html/face/
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Fig. 8 Performance of RPSA over the validation set with
different γ2.

poses are set to be the same as those in Sharma and Ja-

cobs (2011). The results of competitors are from Table 3

in Sharma and Jacobs (2011). It can be seen that RPSA

outperforms all competitors. Note that TFA requires 14

user-elaborately-clicked points for photo alignment and

Gabor filter for extracting complex features, whereas

our method only needs 3 points (eyes and mouth) for

photo alignment and directly employs the face image

as a feature vector.

We also compare our method with PLS (Sharma

and Jacobs, 2011) and Multi-view Discriminant Anal-

ysis (MvDA) (Kan et al, 2012) which, to the best of

our knowledge, report the best performance in the re-

cent literature. Two arbitrary poses were selected as a

gallery-probe pair, and we therefore had P 13
2 = 156 con-

figurations. The results are shown in Table 5. The result

of PLS is from Table 1 in Sharma and Jacobs (2011) and

that of MvDA is collected by running its publicly avail-

able code4. It can be seen that the proposed RPSA is

much better than PLS and MvDA. RPSA achieves the

best average recognition rates for all different galleries.

It gets the best results in 140 configurations and the sec-

ond best results in 16 configurations. RPSA is slightly

worse than MvDA for the configurations (c22,c07) and

(c07, c22) (c22 is a side view while c07 is a frontal view).

This might be due to big pose difference between c22

and c07.

The overall accuracy of the proposed RPSA for all

gallery-probe pairs is 0.957 while those of PLS and

MvDA are 0.901 and 0.922 respectively. Our method

improves the state-of-the-art result by 3.8%.

In this experiment, observations from different modal-

ities have the same number of dimension. Therefore,

metric learning methods designed for one modality can

be used to do cross pose face recognition without con-

sidering modality difference. We evaluated the perfor-

4 http://vipl.ict.ac.cn/members/mnkan
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Table 4 Mean recognition rates for frontal faces (c27) gallery.

Gallery Probe Method Accuracy Method Accuracy

c27 c05/37/25/22/29/11/14/34 PGFR Liu and Chen (2005) 0.86 RPSA 0.98
c27 c05/22 TFA Prince et al (2008) 0.95 RPSA 0.96
c27 c05/29/37/11/07/09 LLR Chai et al (2007) 0.95 RPSA 1.00
c27 c05/29/37/11/07/09 ELF Gross et al (2004) 0.90 RPSA 1.00

mance of the state-of-the-art metric learning method

Information Theoretic Metric Learning (ITML) on this

task. The average accuracies are 0.409, 0.390, 0.547,

0.532, 0.542, 0.471, 0.583, 0.446, 0.449, 0.569, 0.463,

0.529, and 0.392 when c34, c31, c14, c11, c29, c09, c27,

c07, c05, c37, c25, c02 and c22 are gallery respectively.

Its overall accuracy is only 0.486. It has been observed

that multi-modality analysis methods greatly outper-

form metric learning methods designed for one modal-

ity on cross modality pattern recognition problems.

5.5 Text-Image Retrieval

Text and image are two different modalities. Using text

query to retrieve images or image query to retrieve texts

are cross-modality problems, which requires common

representations. The proposed RPSA was validated by

text-image retrieval on Wiki Text-Image data set (Rasi-

wasia et al, 2010). The data set consists of 2173 training

and 693 testing image-text pairs with 10 different cate-

gories. The images are represented by 128-dimensional

SIFT feature vectors while texts are encoded by 10-

dimensional latent Dirichlet allocation model-based fea-

ture vectors (Blei et al, 2003). In the training phase,

we learned one projection matrix for each modality. In

the testing phase, queries and probes were projected

into the learned latent space with the dimension of 10,

and then text-image retrieval was conducted by find-

ing the nearest neighbors of the projections of queries.

It is considered to be correct if the retrieved image

(or text) has the same label as the query text (or im-

age). As in Sharma and Kumar (2012), the precisions

of retrieval are evaluated at 11 different recall levels

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}; the Mean Av-

erage Precision (mAP) given by 1
11

�11
i=1 precisioni is

finally reported.

To tune γ2,
1
8 of training data were selected as val-

idation data and the rest as “ training set”. The struc-
ture of training triplets were fixed to be (119,119,119,119)

(given an image xp, the number of images with the

same label as xp is 119). We evaluated RPSA with text
as query on validation data. We found that the per-

formance was best when γ2 = 100. Therefore, we fixed

γ2 = 100. RPSA was retrained over all training data

with fixed parameters.

In our experiments, we found that overweighting

the first type of training triplets (i.e., when tp is im-

age modality) will greatly boost the performance of

RPSA with image as query while the second type train-

ing triplets (i.e., when tp is text modality) with text as

query. This might be because the model we learned is

too simple (the dimension of the latent common space

is too low) to satisfy all training triplet constraints at

the same time. The results reported in this Section were

obtained by overweighting the first and the second type

of training triplets by 20 times when image and text are

used as queries respectively.

The performance of RPSA is compared with that of

the state-of-the-art multi-modality analysis techniques:

CCA, PLS, BLM, Semantic Matching (SM) (Rasiwa-

sia et al, 2010), Semantic Correlation Matching (SCM)

(Rasiwasia et al, 2010), Generalized Multi-view Marginal

Fisher Analysis (GMMFA) (Sharma and Kumar, 2012)

and Generalized Multi-view LDA (GMLDA) (Sharma

and Kumar, 2012) in Table 6. The results of competi-

tors are from Table 3 in Sharma and Kumar (2012). It

has been shown that the proposed method achieves the

best performance in terms of mAP with image query,

that with text query, and the average mAP. Specifically,

RPSA improves the state of the art result by 4.7%. Fig-

ure 10 shows recall precision curves of RPSA compared

with others. It has been shown that RPSA performs

better than CCA and PLS with an obvious margin.

Figure 9 shows mAP of each category with text query

obtained by CCA, PLS and RPSA. It has been shown

that RPSA consistently performs better than its com-

petitors for each category except sport.

5.6 Attribute-Image Retrieval

In the previous experiments, all the training triplets

are generated with category labels as shown in Table 1.

In this Section, we would like to evaluate PRSA us-

ing natural relative-pairing information. The data set
we used is Public Figures Face Database (Kumar et al,

2009). In Parikh and Grauman (2011), a subset con-
sisting of 241 training faces and 531 test faces are se-

lected to study relative attributes. These faces belong

to 8 persons. They have 11 attributes, namely, “Male”,

“White”, “Yong”, “Smiling”, “Chubby”, “Visible Fore-
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Table 5 Recognition rates for different gallery-probe pose pairs on CMU PIE.

❵❵❵❵❵❵❵❵Gallery
Probe

c34 c31 c14 c11 c29 c09 c27 c07 c05 c37 c25 c02 c22 Avg.

c34
RPSA – 0.97 1 0.94 0.94 0.91 0.94 0.91 0.88 0.91 0.76 0.91 0.85 0.912
MvDA – 0.91 0.97 0.94 0.85 0.82 0.85 0.91 0.71 0.91 0.62 0.82 0.82 0.846
PLS – 0.88 0.94 0.94 0.91 0.88 0.91 0.97 0.85 0.88 0.70 0.85 0.61 0.862

c31
RPSA 0.97 – 1 1 1 0.94 0.94 1 0.97 1 0.91 0.97 0.91 0.968
MvDA 0.94 – 1 1 1 1 0.94 1 0.94 1 0.79 0.85 0.74 0.934
PLS 0.85 – 1 1 1 0.88 0.85 0.91 0.85 0.88 0.76 0.85 0.76 0.884

c14
RPSA 0.94 1 – 1 1 0.97 1 1 0.94 1 0.91 1 0.94 0.98
MvDA 0.94 1 – 0.97 1 0.97 1 1 0.79 1 0.76 0.82 0.79 0.922
PLS 0.97 1 – 1 0.97 0.91 0.97 1 0.91 1 0.82 0.91 0.67 0.928

c11
RPSA 0.97 1 1 – 1 0.94 0.97 1 1 1 0.85 0.97 0.82 0.961
MvDA 0.94 1 0.97 – 1 0.91 1 1 0.94 0.97 0.76 0.97 0.79 0.939
PLS 0.79 0.97 1 – 1 0.88 1 1 0.97 0.97 0.85 0.88 0.67 0.916

c29
RPSA 0.91 0.94 0.97 1 – 1 1 1 1 1 0.82 0.97 0.91 0.961
MvDA 0.88 0.94 0.97 1 – 0.97 1 1 1 0.97 0.76 0.88 0.79 0.931
PLS 0.76 0.94 1 1 – 1 1 1 1 1 0.85 0.91 0.73 0.933

c09
RPSA 0.97 0.97 0.97 1 1 – 1 1 1 1 0.94 0.97 0.91 0.978
MvDA 0.88 1 0.97 1 0.97 – 1 0.97 1 0.97 0.91 0.82 0.85 0.946
PLS 0.76 0.88 0.91 0.94 0.94 – 0.97 0.94 0.91 0.88 0.82 0.79 0.70 0.872

c27
RPSA 0.94 0.94 1 1 1 1 – 1 1 1 0.97 1 0.91 0.980
MvDA 0.88 0.94 0.97 1 1 0.94 – 1 1 0.97 0.82 1 0.91 0.953
PLS 0.85 0.91 0.97 1 1 1 – 1 1 1 0.85 0.88 0.79 0.939

c07
RPSA 0.91 1 1 1 1 1 1 – 1 1 0.85 0.97 0.82 0.963
MvDA 0.85 0.91 0.97 1 1 0.94 1 – 1 0.97 0.94 0.97 0.88 0.953
PLS 0.79 0.91 0.97 1 1 0.97 1 – 1 0.97 0.85 0.91 0.76 0.929

c05
RPSA 0.88 1 1 0.97 1 1 1 1 – 1 0.97 1 0.94 0.980
MvDA 0.85 0.97 0.88 1 1 1 1 1 – 1 0.94 1 0.91 0.963
PLS 0.79 0.97 0.97 0.94 1 0.94 1 1 – 0.97 0.91 0.91 0.82 0.936

c37
RPSA 0.88 0.94 1 1 1 0.97 1 1 1 – 0.97 1 0.94 0.976
MvDA 0.91 0.94 1 0.97 1 0.97 0.94 0.97 0.94 – 0.94 1 0.88 0.956
PLS 0.79 0.94 1 0.94 0.94 0.88 0.94 0.94 0.97 – 1 1 0.94 0.941

c25
RPSA 0.76 0.91 0.88 0.88 0.88 0.91 0.91 0.88 0.91 0.97 – 0.97 0.85 0.895
MvDA 0.68 0.79 0.85 0.88 0.82 0.91 0.85 0.91 0.91 0.94 – 0.91 0.82 0.858
PLS 0.67 0.82 0.76 0.79 0.88 0.88 0.88 0.91 0.94 0.97 – 0.97 0.76 0.855

c02
RPSA 0.85 0.94 0.94 0.97 1 0.97 1 1 1 1 1 – 1 0.973
MvDA 0.74 0.82 0.79 0.94 0.97 0.85 0.97 0.97 1 1 0.97 – 0.97 0.917
PLS 0.76 0.88 0.88 0.94 0.94 0.88 0.97 0.94 1 1 1 – 0.97 0.931

c22
RPSA 0.82 0.94 0.94 0.88 0.91 0.94 0.91 0.85 0.97 0.94 0.91 0.97 – 0.918
MvDA 0.85 0.79 0.85 0.79 0.82 0.85 0.91 0.91 0.82 0.88 0.91 0.94 – 0.863
PLS 0.64 0.70 0.64 0.79 0.76 0.67 0.82 0.82 0.85 0.91 0.85 0.91 – 0.784

Table 6 mAP on Wiki Text-Image data set.
❵❵❵❵❵❵❵❵❵❵Query

Method
PLS BLM CCA SM SCM GMMFA GMLDA RPSA

Image 0.207 0.237 0.182 0.225 0.277 0.264 0.272 0.280
Text 0.192 0.144 0.209 0.223 0.226 0.231 0.232 0.249
Avg. 0.199 0.191 0.196 0.224 0.252 0.248 0.253 0.265

head”, “Bush Eyebrows”, “Narrow Eyes”, “Pointy Nose”,

“Big Lips” and “Round Face”. Each face is encoded

by a 542-d feature vector based on Gist and color his-
togram extracted from its image. It is also encoded by

11-d binary attribute vector. e.g., the attribute vec-

tor (1,1,0,0,0,0,0,0,0,0,0) indicates a white male face. In

this experiment, face image feature is considered as im-

age modality while attribute code as attribute modality.

We learn a 11-d latent common space between image

modality and attribute modality, and then retrieve im-

age (attribute) with attribute (image) as query. The

evaluation measure is the same as that in Image-Text

retrieval in Section 5.5.

Different from text-image retrieval experiment, we

used natural training triplets instead of those generated
with category labels. In Parikh and Grauman (2011),

each image is assigned a relative strength for each at-

tribute. If face image a has higher strength for the k

th attribute than image b, then image a is more-likely

paired with the attribute code c than image b, where c

being a 11-d zero vector except the kth element being 1.

Figure 11 shows one example. We used 73470 training

triplets by enumerating all attribute comparison given

in the data set.

We set n1 = 1 and n2 = n3 = 0 as attribute-image
retrieval is a cross modality retrieval problem. To tune

γ2,
1
8 of training data were selected as validation data

and the rest as “ training set”. we found that RPSA per-

formed best with γ2 being 100. Therefore, γ2 was fixed

to 100. In order to evaluate RPSA trained only on nat-

ural relative-pairing information, we also reported the
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Fig. 9 Comparisons between mAP of each category obtained by CCA, PLS and RPSA.
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Fig. 10 Comparison between recall precision curves of CCA, PLS, and RPSA. (a) shows recall precision curves with image
query. (b) shows recall precision curves with text query.

performance of RPSA without training pairs (named

by RPSAn). i.e., P = ∅.

RPSA is compared with CCA and PLS. The results

are listed in Table 7. It has been shown that RPSA

outperforms its competitors with a large margin. RPSA

improves the results of CCA and PLS by 129.7% and

91.3% in terms of the average mAP. RPSAn is infe-

rior to RPSA. The reason is that training pairs used by
RPSA can encourage the projections of exactly-paired

observations from different modalities to be identical,

which is important in cross modality pattern recog-

nition or retrieval as discussed in Section 5.2. Even

though, RPSAn is superior to CCA and PLS. Note that

both RPSA and RPSAn are trained without category

labels.

Table 7 mAP on Public Figures Face Database.

❵❵❵❵❵❵❵❵❵❵Query
Method

CCA PLS RPSAn RPSA

Image 0.323 0.323 0.589 0.668
Attribute 0.215 0.323 0.329 0.568

Avg. 0.269 0.323 0.459 0.618

6 Conclusion and Future work

In this paper, we have proposed a framework called

Relatively-Paired Space Analysis (RPSA) which can

automatically learn a latent common space between
multiple modalities from relatively-paired observations.

Relative-pairing can explore more general semantic re-
lationships between observations than absolute-pairing,

and allows easy integration of label information. The-

oretically, RPSA is a discriminative model which does

not assume any parameter or noise distribution, and is
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Fig. 11 Illustration of training triplets generated with rela-
tive attribute. ∨ indicates being more likely paired. Face a is
more smiling than face b. Therefore, a is more likely paired
with the smiling (the fourth) attribute code c than b.

a general framework which can be used in any cross-

modality pattern recognition. We have evaluated the

performance of RPSA by applying it to feature fusion,

cross-pose face recognition, text-image retrieval and

attribute-image retrieval. Experimental results show that

RPSA outperforms other state-of-the-art techniques,

some of which are tailored for the particular problems.

In future work, we would like to extend RPSA to a

nonlinear version.
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