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Abstract

Multimodal large language models (MLLMs) possess the
ability to comprehend visual images or videos, and show
impressive reasoning ability thanks to the vast amounts
of pretrained knowledge, making them highly suitable for
autonomous driving applications. Unlike the previous
work, DriveGPT4-V1, which focused on open-loop tasks,
this study explores the capabilities of LLMs in enhancing
closed-loop autonomous driving. DriveGPT4-V2 processes
camera images and vehicle states as input to generate low-
level control signals for end-to-end vehicle operation. A
multi-view visual tokenizer (MV-VT) is employed enabling
DriveGPT4-V2 to perceive the environment with an exten-
sive range while maintaining critical details. The model ar-
chitecture has been refined to improve decision prediction
and inference speed. To further enhance the performance,
an additional expert LLM is trained for online imitation
learning. The expert LLM, sharing a similar structure with
DriveGPT4-V2, can access privileged information about
surrounding objects for more robust and reliable predic-
tions. Experimental results show that DriveGPT4-V2 out-
performs all baselines on the challenging CARLA Longest6
benchmark. The code and data of DriveGPT4-V2 will be
publicly available.

1. Introduction
Autonomous driving has seen rapid advancements over the
past decade in both academia and industry [31, 56]. Today,
autonomous vehicles are deployed commercially in diverse
applications such as robotaxi services [62], goods delivery
[33], and security patrols [45]. Additionally, assisted driv-
ing systems are increasingly integrated into consumer vehi-
cles, enhancing safety and convenience. However, the ma-
jority of current autonomous driving systems still rely heav-
ily on rule-based decision-making modules, where plan-
ning and control are governed by predefined algorithms and
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Figure 1. DriveGPT4-V2 for closed-loop autonomous driving.
Taken as input multi-view camera images and vehicle state infor-
mation, DriveGPT4-V2 predicts high-level vehicle decisions and
converts them to low-level vehicle control signals in an end-to-end
manner. DriveGPT4-V2 presents outstanding effectiveness and ef-
ficiency, serving as a reliable baseline method for future research
on autonomous driving with LLMs.

rules. This reliance restricts the ability of these systems to
operate effectively in varied, real-world scenarios, limiting
the broader advancement of autonomous driving.

In response, recent research has shifted toward end-to-
end autonomous driving systems based on learning-based
methods [8, 9, 12, 17, 21, 23, 45]. These methods enable
more streamlined and intelligent system designs by directly
learning control from input sensor data, without the need for
complicated intermediate modules. From a learning theory
perspective, end-to-end autonomous driving can optimize
the entire system on the final outputs, rather than through
the isolated optimization of individual modules, which po-
tentially improves overall performance.

The rise of large language models (LLMs) has demon-
strated their impressive ability to perform natural language
processing (NLP) tasks [1, 2, 13, 34, 49]. Commercial
LLMs, such as ChatGPT [34] and Claude3 [1], are already



widely used in daily life. Motivated by their success in NLP
tasks, LLMs are being extended to multimodal domains, en-
abling more generalized tasks in fields like image analysis
[28–30], video comprehension [18, 26], and embodied AI
[24, 25, 46, 55]. Given their versatility, multimodal LLMs
have been applied to autonomous driving for tasks such as
interpretability [15, 36, 44, 54], vehicle control [10, 27, 27],
and risk assessment [3, 60]. While multimodal LLMs have
demonstrated promising vehicle control performance due to
their extensive pretrained knowledge, previous research has
primarily concentrated on open-loop settings, which are not
implemented for real-time vehicle control. Open-loop sys-
tems lack feedback mechanisms, making them less adapt-
able to changes and disturbances, limiting their applicability
in real-world applications. Thus, multimodal LLMs need to
be designed and evaluated specifically for closed-loop au-
tonomous driving scenarios [27, 39, 43, 51].

Behavior cloning [35, 48], the most commonly em-
ployed imitation learning algorithm, is used for most end-
to-end autonomous driving works [44, 54]. However, mod-
els trained only by behavior cloning can encounter drifting
issues in closed-loop tasks, where errors accumulate, po-
tentially leading the vehicle into unsafe situations, such as
deviating from the path, colliding, or getting stuck.

To address the aforementioned issue, we incorporate on-
line (or on-policy) imitation learning [5, 40, 41] into closed-
loop autonomous driving. Leveraging the reasoning capa-
bilities and pretrained knowledge of LLMs, we propose us-
ing a multimodal LLM as a fully automatic expert for online
imitation learning without human efforts. Let ME and MA

denote the model of expert and agent, respectively. ME can
access privileged information about nearby objects while
MA cannot, thus presenting a more powerful and reliable
performance. After being trained by behavior cloning, MA

is deployed on the training environment for data aggrega-
tion. MA might make incorrect predictions that lead the
vehicle into exception states. ME can provide MA with
on-policy supervision and take over the vehicle if the error
made by MA is large enough. When ME takes over the ve-
hicle, it collects one data sample at the moment and aggre-
gates it into the dataset. The aggregated dataset is leveraged
to further train the agent model to handle errors.

In this paper, we introduce DriveGPT4-V2, an end-to-
end autonomous driving system. DriveGPT4-V2 extends
DriveGPT4-V1 [54] to closed-loop tasks and integrates on-
line imitation learning for enhanced robustness and intel-
ligence. The “4” in the system’s name signifies its mul-
timodal capacity, inspired by the MiniGPT4 model [65].
DriveGPT4-V2 is powered by multimodal LLMs, enabling
it to directly generate low-level vehicle control signals
(i.e., throttle, brake and steer) based on multimodal input
data (i.e., vehicle states and camera images). The struc-
ture of DriveGPT4-V2 is refined for our task, including a

multi-view visual tokenizer (MV-VT) that possesses a large
enough perception range without losing details, as well as
output decision heads (DeciHeads) specially designed for
numerical vehicle decision prediction. An additional mul-
timodal LLM with access to privileged information (e.g.,
ground truth of nearby objects in text) serves as an expert
for online imitation learning, which is inspired by the LBC
framework [5]. DriveGPT4-V2 achieves state-of-the-art
performance on the challenging CARLA Longest6 bench-
mark [12], which evaluates systems over 36 long routes
demanding high levels of intelligence and reliability. The
overview of DriveGPT4-V2 is visualized in Fig. 1. The
contributions of this paper are:
• We extend DriveGPT4-V1, an open-loop autonomous

driving system with multimodal LLMs, and propose
DriveGPT4-V2 for end-to-end closed-loop autonomous
driving. DriveGPT4-V2 can better harness the capability
of LLMs and be deployed for continuous vehicle control.

• We introduce the use of LLMs with privileged informa-
tion as an expert for online (on-policy) imitation learning,
facilitating the generation of labeled data for handling er-
rors, which significantly enhances the performance and
robustness of closed-loop autonomous driving.

• We optimize the model structure of MLLMs, including
a multi-view visual tokenizer (MV-VT) that possesses a
large perception range and preserves details, as well as
output decision heads (DeciHeads) specially designed for
numerical vehicle decision prediction.

• DriveGPT4-V2 demonstrates superior performance on
the CARLA Longest6 benchmark, substantially outper-
forming existing methods.

2. Related Works
Large language models for autonomous driving. Ow-
ing to the powerful reasoning capabilities and extensive
pretrained knowledge, large language models (LLMs) have
found wide application in autonomous driving tasks, such as
vehicle decision-making [7, 10, 15, 27, 32, 39, 43, 54, 59],
scene understanding [20, 36, 44, 54], risk analysis [3, 60],
and simulation [47, 50]. GPT-Driver [32] represents the
entire surrounding environment textually and employs a
fine-tuned ChatGPT model to predict vehicle trajectories.
DriveGPT4 [54] leverages multimodal LLMs for end-to-
end vehicle action prediction and scene understanding. It
processes 8-frame video clips and human user commands
to predict vehicle control signals and action explanations.
However, most of these approaches are designed for open-
loop scenarios and present unsatisfactory performance in
closed-loop tasks, limiting their applicability to real-world
driving deployment. Additionally, many existing methods
face efficiency challenges due to heavy model architectures.
Closed-loop end-to-end autonomous driving. Closed-
loop end-to-end autonomous driving has recently emerged
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Figure 2. DriveGPT4-V2 diagram. DriveGPT4-V2 takes multimodal input data to generate numerical control signals for end-to-end
vehicle driving. The input includes multi-view images and vehicle state information. The images are transformed into the text domain
via a multi-view vision tokenizer (MV-VT). The current speed of the vehicle and target point are tokenized by the LLM tokenizer. The
LLM then outputs four tokens. Each token is used to predict one vehicle decision by an MLP decision head (DeciHead). These predicted
decisions are subsequently converted to low-level commands via PID controllers to operate the vehicle. The LLM expert model, which
shares a similar structure to DriveGPT4-V2, has access to privileged information about surroundings (shown in the purple module). The
expert provides on-policy supervision to DriveGPT4-V2 to enhance closed-loop performance. This figure is best viewed in color.

as a prominent research focus, addressing the challenge of
bridging the gap between academic research and real-world
applications. Various approaches improved transformer ar-
chitectures and training methods to enhance driving per-
formance [4, 5, 12, 16, 21, 22, 42, 58, 63]. For instance,
Transfuser++ [21] integrates multimodal sensor inputs, in-
cluding camera imagery, LiDAR point clouds and vehicle
dynamics, to predict speed and trajectory, achieving state-
of-the-art performance across multiple benchmarks. Even
though most early LLM-based methods have primarily tar-
geted open-loop tasks, recent studies [27, 39, 43, 51] have
attempted closed-loop approaches. But most of them are de-
ployed in simple environments like Highway-env [51], in-
stead of real-world scenarios. LMDrive [43], pioneering
work on end-to-end closed-loop driving with multimodal
LLMs, demonstrated the potential of LLMs in this domain.
It is deployed in the CARLA simulator [14] and controls
the vehicle like human drivers. However, it relies solely on
behavior cloning and presents unsatisfactory driving perfor-
mance. Online imitation learning has been highlighted as a
potential way to enhance model robustness.

Imitation learning in autonomous driving. Imitation
learning [19] aims to train an agent to mimic the expert be-
havior. Behavior cloning is the most widely used imitation
learning algorithm in autonomous driving [4, 12, 21, 39, 43,
44, 52–54]. In this method, data is off-policy sampled from
expert trajectories for model training to replicate expert ac-
tions. Although behavior cloning can yield reasonable per-
formance, it suffers from error accumulation during closed-
loop operation, leading the model to encounter unseen situ-
ations that may compromise safety. To mitigate this issue,
online imitation learning [40, 41] has been employed in var-
ious works [4, 5]. The LBC framework [5] uses the DAg-
ger algorithm [41], and trains an agent alongside an expert
network with privileged information that achieves superior
performance. The expert provides on-policy supervision
to the agent and collects additional data samples for data
aggregation, which can be used to further train the agent
model to handle errors. Inspired by LBC, DriveGPT4-V2
harnesses the capabilities of LLMs and leverages a privi-
leged LLM expert to provide on-policy supervision, facili-
tating improved driving performance and robustness.
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Figure 3. Multi-view visual tokenizer (MV-VT) structure. The in-
put images consist of three front views. Each patch is processed
through a visual encoder to extract features. Finally, a trained pro-
jection layer maps the downsampled feature into the text domain
for further processing.

3. DriveGPT4-V2
Building on DriveGPT4-V1 [54], a flexible multi-
modal LLM designed for open-loop autonomous driving,
DriveGPT4-V2 has been specifically developed for closed-
loop driving tasks. This paper employs LLMs both as plan-
ners and as expert models for online imitation learning. A
multi-view visual tokenizer (MV-VT) is leveraged for ef-
fective feature extraction. Unlike standard LLMs used for
NLP, the architecture of DriveGPT4-V2 is tailored for ve-
hicle planning, with additional output decision heads (De-
ciHeads) to directly optimize numerical decision-making
predictions. This design enhances model efficiency by re-
ducing the token count required for inference. The expert
model, which shares a similar architecture to DriveGPT4-
V2, has access to privileged ground-truth information about
the surroundings and is used solely for on-policy supervi-
sion during training, not for inference.

3.1. Model Design
DriveGPT4-V2 takes multimodal input data and predicts
high-level vehicle decisions for end-to-end autonomous
driving. These predictions are subsequently converted into
low-level control signals through PID controllers. The
model structure is shown in Fig. 2.
Multimodal input. The input consists of two modalities:
image and text. The image input is captured by three front-
view cameras at a resolution of 384 × 384, while the text
input includes the vehicle’s current speed and the target
point. These three front-view images ensure coverage of
both sides of the vehicle, reducing the risk of missing ad-
jacent vehicles or potential collisions. The image data is

(a) Waypoints. (b) Route points.

Figure 4. Visualization of waypoints and route points. The ego
vehicle is represented by the green rectangle, and the red point de-
notes the target point. The grey line is the route that the vehicle
should follow. (a) Waypoints (blue points) represent vehicle po-
sitions in a 4-second future. (b) Route points are evenly sampled
from the global planned route in front. These two kinds of points
can better supervise the training of DriveGPT4-V2.

mapped into the text domain via a visual tokenizer, as im-
plemented in LLaVA [30], while text inputs are tokenized
with standard LLM tokenizers.
Multi-view visual tokenizer (MV-VT). The visual tok-
enizer is visualized in Fig. 3. It first employs pretrained
visual encoders, such as CLIP [37] or SigLIP [57], to ex-
tract features from the input images. The size of each image
is specifically optimized for compatibility with the SigLIP
encoder (i.e., 384 × 384). The three images are acquired
from front-left, front, and front-right cameras respectively,
ensuring comprehensive coverage of the vehicle’s frontal
and lateral views. In CARLA benchmarks, back-view im-
ages exhibit limited utilization frequency and demonstrate
no measurable improvement in planning performance. To
maintain computational efficiency, MV-VT deliberately ex-
cludes back-view inputs.
Output representations. DriveGPT4-V2 generates three
low-level control signals to drive the vehicle, i.e., throttle,
brake, and steering. However, direct prediction of these sig-
nals requires temporal consistency; otherwise, the vehicle
may display unstable zigzag trajectories. To ensure stable
control, DriveGPT4-V2 instead predicts high-level decision
variables, which are then converted to low-level commands
by PID controllers. The predictions of the model include:
• Target Speed: The desired speed for the vehicle. A speed

PID controller adjusts longitudinal control based on the
predicted target speed and current speed.

• Target Angle: The direction in which the vehicle should
steer. A steering PID controller uses it for lateral control.

• Waypoints: Predicted x-y positions of the vehicle in the
future. Waypoints consist of eight points.

• Route Points: Points evenly sampled along the global
route in front, enhancing the vehicle’s perception ability.

Waypoints and route points are visualized in Fig. 4.
Decision heads (DeciHeads). For closed-loop autonomous
driving, DriveGPT4-V2 employs dedicated output heads
(MLPs) to predict numerical vehicle decisions. The orig-
inal LLM’s vocabulary output head is replaced with four
decision heads, each predicting a decision variable (i.e., tar-
get speed, target angle, waypoints, and route points) based
on one token. This setup allows DriveGPT4-V2 to pro-
duce only four tokens per prediction cycle, achieving a huge



speed increase over traditional text-based outputs. For ex-
ample, a float number with 3 digits (e.g., 1.538) needs 5
tokens for text output representation but only requires a sin-
gle token for our design. DeciHead also enables direct op-
timization of decision variables using regression loss.
Expert model and online imitation learning. The expert
model has a similar architecture to DriveGPT4-V2 but has
access to privileged information. The privileged informa-
tion consists of ground truth (GT) of nearby objects and
hazard information provided by the CARLA simulator (e.g.,
traffic light and stop sign violation; vehicle or pedestrian
collision). This privileged data allows the expert to better
perceive the environment, so that it can focus on vehicle de-
cisions and planning. The privileged information greatly
boosts the model capacity, resulting in enhanced closed-
loop performance. The expert model provides on-policy
supervision to DriveGPT4-V2 during training.

When DriveGPT4-V2 runs on training scenarios and
routes, the expert model receives identical input and gen-
erates concurrent predictions. If the discrepancy between
DriveGPT4-V2’s prediction and the expert’s exceeds a
threshold, the expert’s prediction is used instead to con-
trol the vehicle. Such a situation is marked as an exception
case. A data sample of the current moment is added to the
training set, where the expert’s output is used as the label.
DriveGPT4-V2 is fine-tuned on this aggregated dataset un-
der the expert’s on-policy supervision for enhanced closed-
loop autonomous driving performance.

The expert LLM is used exclusively for on-policy super-
vision during training and is not accessed during inference.

3.2. Training
The training process of DriveGPT4-V2 and the expert LLM
includes two stages. In the first stage, both models are
trained on data collected by a rule-based autopilot using be-
havior cloning. In the second stage, DriveGPT4-V2 runs
on the training scenarios and routes under the expert’s on-
policy supervision, and generates additional data for error
correction. The training process is visualized in Fig. 5.

3.2.1. Stage 1: behavior cloning
In the first stage, a rule-based autopilot [21] is deployed in
CARLA to collect data. The autopilot agent records data at
fixed time intervals, including camera images, current ve-
hicle speed, privileged information on surrounding objects
(e.g., vehicles and traffic lights), and a target point. Labels
for the vehicle decision variables are calculated using rule-
based algorithms. After data collection, both DriveGPT4-
V2 and the expert LLM are trained on the dataset, with the
expert having access to privileged information.

3.2.2. Stage 2: DAgger with on-policy supervision
The expert, with access to privileged information, achieves
notably higher performance by leveraging reliable priors on
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Autopilot
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(a) Stage 1: Behavior cloning.
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(b) Stage 2: DAgger online imitation learning.

Figure 5. Diagram of the two-stage training process. (a) In the
first stage, both DriveGPT4-V2 and the expert LLM are trained on
data collected by a rule-based autopilot. (b) In the second stage,
DriveGPT4-V2 runs on the training scenarios and routes. When
the discrepancy between DriveGPT4-V2’s predictions and those of
the expert exceeds a predefined threshold, the expert’s predictions
are used to control the vehicle. Data from these cases is then added
to the dataset for data aggregation.

surrounding objects, allowing it to handle challenging sce-
narios effectively. DriveGPT4-V2, trained only by behavior
cloning, may struggle with error accumulation and excep-
tional situations (e.g., vehicle collisions or getting stuck).
Inspired by LBC [5], the expert LLM is used as a teacher
for on-policy supervision. On-policy supervision is a train-
ing paradigm in imitation learning, where supervision or
feedback is provided to an agent while it is acting accord-
ing to its current policy. This approach contrasts with off-
policy methods, where supervision comes from data col-
lected by a different policy or behavior. During the oper-
ation of DriveGPT4-V2, the expert and DriveGPT4-V2 re-
ceive identical input, and their outputs are compared. If the
discrepancy in predicted decisions exceeds a threshold, the
expert takes control to avoid exceptions. One data sample
is collected at that moment and aggregated into the dataset.
The output of the expert is used as the training label. Af-
ter traversing the training routes under expert supervision,
DriveGPT4-V2 is fine-tuned on the aggregated dataset.

3.3. Dataset
Following Transfuser++ [21], in stage 1, the rule-based
autopilot agent is used to collect data samples in various
CARLA simulator towns under varying weather, lighting,
and daytime conditions. Vehicle speed and position are es-
timated by Kalman filters based on IMU data. Each sam-



ple records objects within a fixed radius, including vehicles,
pedestrians, traffic lights, and stop signs. Target speeds and
angles are calculated by the autopilot’s PID controller. The
ground-truth waypoints contain 8 points and record the ve-
hicle position in a 4-second future. Route points have 10
points sampled along the planned route in front.

In stage 2, DriveGPT4-V2 runs on selected training
routes for data aggregation. Simple routes are not consid-
ered in this stage for data collection efficiency. If the differ-
ence between the predicted decisions of DriveGPT4-V2 and
the expert exceeds a threshold, the expert takes control and
records the data sample. DriveGPT4-V2 is retrained on the
aggregated dataset for better performance. Under common
circumstances, DriveGPT4-V2 achieves satisfactory perfor-
mance after one round of DAgger.

3.4. Loss Function
During training, the L1 loss function supervises all pre-
dicted decision variables, including target speed (TS), tar-
get angle (TA), waypoints (WP ), and route points (RP ).
The overall loss is calculated by:

L = LTS + LTA + LWP + LRP (1)

This approach allows the model to optimize final numeri-
cal vehicle decision variables directly, instead of relying on
vocabulary-based classification as in NLP tasks.

4. Experiments
4.1. Dataset and Benchmark
All experiments in this study were conducted in the CARLA
simulator [14]. We followed Transfuser++ for training data
preparation. In stage 1, a rule-based autopilot was em-
ployed to collect 350K behavior-cloning samples. The au-
topilot traversed multiple routes in Towns 1, 2, 3, 4, 5, 6,
7, and 10 of CARLA, encountering various scenarios such
as different weather and lighting conditions. Data were col-
lected at a frequency of 2 Hz and subsequently filtered to
remove incorrect or redundant samples, such as those cap-
tured when the autopilot was stuck. This process resulted in
a dataset of 300K samples.

In stage 2, DriveGPT4-V2 trained by behavior cloning
runs on selected training scenarios and routes, utilizing the
expert for on-policy supervision. The expert can access
privileged information about objects within a 30-meter dis-
tance. Approximately 150K samples were gathered in this
stage. These aggregated data were then combined with the
original dataset to further fine-tune DriveGPT4-V2, enhanc-
ing its performance.

All methods were evaluated on the challenging CARLA
Longest6 benchmark [12], which consists of 36 extended
routes encompassing various scenarios. The length and
complexity of routes make them suitable for a comprehen-
sive evaluation of closed-loop autonomous driving.

Table 1. Infraction penalty factors.

Scene Penalty Scene Penalty

Pedestrian collision 0.5 Vehicle collision 0.6
Static object collision 0.65 Traffic light violation 0.7

Stop sign violation 0.7

4.2. DriveGPT4-V2 Configuration
LLM. For efficient data collection and inference, we used
tiny-scale LLMs in DriveGPT4-V2, such as Qwen-0.5B [2]
and TinyLLaMA [61]. These models were fine-tuned for
multimodal understanding, following methods outlined in
LLaVA [29, 30] and TinyLLaVA [64]. Large-scale LLMs,
like LLaMA3-8B [49] and vicuna-7B [11], are not con-
sidered at the moment due to their high computational de-
mands and reduced inference speed.
Training. DriveGPT4-V2 was fully fine-tuned in an end-to-
end manner, except for the SigLIP 384×384 visual encoder
[57]. The model was trained with a learning rate of 2e−5

over 60 epochs by employing a cosine annealing schedule
for better learning rate control. The training takes about 75
hours on 16 A800 GPUs.
Inference. Two PID controllers were designed to convert
DriveGPT4-V2’s predicted decision variables into low-level
control signals (i.e., throttle, steer, and brake). These con-
trol signals were used to directly drive the ego vehicle in the
CARLA simulator. In the experiments, only the predicted
target speed and target angle were used by the PID con-
trollers, while waypoints and route points served as addi-
tional supervision for improved training results. The model
runs inference on a single A800 GPU with FP16 precision.

4.3. Evaluation Criteria
Following the CARLA leaderboard, the methods were eval-
uated mainly based on three metrics: Driving Score (DS),
Route Completion (RC), and Infraction Score (IS). RC indi-
cates the percentage of routes completed, while IS penalizes
infractions such as traffic violations and collisions during
inference. Each infraction multiplicatively reduces IS by
a penalty factor. The penalty factors are listed in Tab. 1.
DS, as the product of RC and IS, provides a comprehensive
evaluation score. In the evaluation, we also report ratios of
commonly seen exception events, including pedestrian col-
lision (Ped), vehicle collision (Veh), static object collision
(Stat), red light violation (Red), route deviations (Dev), sce-
nario time out (TO) and agent block (Block).

4.4. Comparison Experiments
Baselines. We selected several representative prior works
as baselines for comparison:
• WOR [6] (ICCV 2021): WOR uses commands instead of

target points for global planning instructions, providing



Table 2. Closed-loop experiments performance on CARLA Longest6. “Visual” indicates visual input modalities, while “C” and “L”
represent camera and LiDAR, respectively. Bold numbers highlight SOTA metric scores of all models; while underlined numbers represent
the best metric scores of baseline methods. * denotes models implemented by ourselves based on official open-sourced code. † represents
the model without data augmentation.

Method Visual DS ↑ RC ↑ IS ↑ Ped ↓ Veh ↓ Stat ↓ Red ↓ Dev ↓ TO ↓ Block ↓

WOR [6] C 21 48 0.56 0.18 1.05 0.37 1.28 0.88 0.08 0.20
LAV v1 [4] C&L 33 70 0.51 0.16 0.83 0.15 0.96 0.06 0.12 0.45
Interfuser [42] C 47 74 0.63 0.06 1.14 0.11 0.24 0.00 0.52 0.06
TransFuser [12] C&L 47 93 0.50 0.03 2.45 0.07 0.16 0.00 0.06 0.10
LAV v2 [4] C&L 58 83 0.68 0.00 0.69 0.15 0.23 0.08 0.32 0.11
Perception PlanT [38] C&L 58 88 0.65 0.07 0.97 0.11 0.09 0.00 0.13 0.13
Transfuser++∗ [21] C&L 65 90 0.72 0.00 0.99 0.01 0.07 0.00 0.10 0.12
Transfuser++∗† [21] C&L 58 89 0.65 0.01 1.15 0.01 0.10 0.00 0.14 0.13

LMDrive∗ [43] C&L 36 69 0.52 0.07 1.03 0.18 1.01 0.09 0.11 0.22

DriveGPT4-V2 C 70 91 0.77 0.00 0.80 0.01 0.04 0.00 0.07 0.09

enriched labels and supervision for possible actions.
• LAV v1 & v2 [4] (CVPR 2022): LAV predicts waypoints

by integrating information from nearby vehicles, which is
further refined through a GRU.

• Transfuser [12] (TPAMI 2022): Transfuser is a widely
used baseline model for closed-loop driving that has in-
spired subsequent works.

• Perception PlanT [38] (CoRL 2022): PlanT is based on
imitation learning with object-level input representation.
Such representation is elegant and effective.

• InterFuser [42] (CoRL 2023): InterFuser predicts addi-
tional density maps and traffic rule flags to enhance way-
point prediction.

• Transfuser++ [21] (ICCV 2023): Transfuser++ predicts
target speeds and routes instead of waypoints, integrating
point cloud and camera images. It is currently the state-
of-the-art (SOTA) method for CARLA Longest6. Trans-
fuser++ utilizes triple training data by repeatedly collect-
ing expert trajectories for augmentation.

• LMDrive [43] (CVPR 2024): LMDrive is a pioneer-
ing work for closed-loop driving with multimodal LLMs,
training a vicuna-7B LLM for end-to-end vehicle control.

Comparison results. The comparison results on the
CARLA Longest6 benchmark are shown in Tab. 2. It is ob-
served that DriveGPT4-V2 outperforms all baseline models
by a large margin. Thanks to the huge amount pretrained
knowledge of LLMs and visual encoders, DriveGPT4-
V2 can better handle complex urban scenes under vari-
ous conditions, such as nighttime, rainy weather, etc. For
most baselines, we list the results reported on the CARLA
Longest6 leaderboard. However, some baselines cannot
achieve reported performance by our implementation and
test, thus we report our implemented results separately.
LMDrive [43] is the only open-sourced LLM method that
can be tested in a closed-loop environment. But it fails

Table 3. Effciency analysis.

LLM DS Train FPS

LLaVA-LLaMA3.1-8B 65 11.2h/epoch 0.4
TinyLLaVA-LLaMA-1.5B 63 3.0h/epoch 2.9
LLaVA-Qwen-0.5B 63 1.3h/epoch 8.1

to obtain satisfactory performance. It first converts multi-
modal data to BEV and projects BEV to the text domain.
However, BEV does not have good-quality pretrained mul-
timodal LLMs. Training from scratch severely degrades its
final performance, which is also discussed by DriveGPT4-
V1 [54]. Transfuser++ [21] is the SOTA method by fus-
ing point clouds and camera images for closed-loop con-
trol. Transfuser++ uses triple training data and achieves 65
DS, but only has 58 DS with the same amount of training
data (denoted by †) as our method. Thanks to the pretrained
knowledge and reasoning ability of LLMs, DriveGPT4-V2
can outperform all baselines with camera images as input.

4.5. Model Efficiency

In our experiments, DriveGPT4-V2 and the expert are im-
plemented by tiny LLMs. LLMs with 7B or even more pa-
rameters show powerful reasoning and generalization abil-
ity, but they severely enlarge the time consumption and de-
mand much more training resources, which is unaccept-
able in real-world applications. In this section, we re-
port efficiency results of DriveGPT4-V2 with LLaVA-0.5B,
TinyLLaVA-1.5B and LLaVA-7B LLMs. The results are
shown in Tab. 3. It is found that merely scaling up the LLM
model does not gain corresponding performance enhance-
ment, but slows down the whole system more than 10 times.
Therefore, DriveGPT4-V2 mainly considers 0.5B LLMs as
the planner.



4.6. Ablation Studies and Discussion
We conducted multiple ablation studies to justify the design
of DriveGPT4-V2. The results are presented in Tab. 4, 5
and 6. Due to huge time consumption, DriveGPT4-V2 in
ablation studies is not trained with DAgger data by default.
LLM visual pretraining. DriveGPT4-V2 relies on LLaVA
[30, 64] as the planner, which is pretrained on a huge
amount of visual understanding data. The visual pretrain-
ing benefits DriveGPT4-V2 on the autonomous driving task
with multimodal input. Directly training DriveGPT4-V2 on
scratch (i.e., LLM for NLP tasks without multimodal abil-
ity) slows down convergence and degrades the final results.
Visual tokenizer. The input camera images are processed
by the proposed visual tokenizer. Inspired by LLaVA 1.5
[30], the features of images are extracted separately by the
visual encoder and then concatenated as the input. This de-
sign ensures a sufficient perception range without compro-
mising image detail. If the input is a single image with a
large scope, it might lead to information loss during pre-
processing steps (e.g., resize or crop); if the input is a small
square image, the vehicle cannot have a sufficient percep-
tion range for effective planning.
Waypoints and route points. Although DriveGPT4-V2
does not rely on waypoints and route points for generating
low-level control signals, they provide valuable supervision
during training. Predicting waypoints and route points helps
the model perceive the target route and anticipate future ac-
tions. Removing them negatively impacts performance.
Expert on-policy supervision. The expert model, benefit-
ing from privileged information, provides robust on-policy
supervision to DriveGPT4-V2. Without expert guidance,
DriveGPT4-V2 relies solely on behavior cloning instead of
DAgger imitation learning, which can lead to error accumu-
lation and degraded performance.
PID controllers. Previous works often generated low-level
control signals based on waypoints or route points [12, 21]
by calculating target speed and angle from these predic-
tions. However, even minor prediction errors in waypoints
or route points can lead to substantial errors in speed and
angle. As shown in Tab. 5, using waypoints or route points
for PID control can make control signals noisy and unsta-
ble, potentially driving the vehicle into exceptional states.
Therefore it presents inferior results.
Decision heads. During inference, DriveGPT4-V2 gener-
ates four tokens in an auto-regressive manner, mapped to
vehicle decision variables by four decision heads. Predic-
tions of target speed and angle involve one-to-one mappings
(i.e., one token for one number), while waypoint and route
point predictions involve one-to-many mappings (e.g., way-
points contain 8 x-y points, thus each token is mapped to 16
numbers). Another design would involve predicting each
waypoint and route point one at a time, requiring 8 tokens
for waypoints and 10 tokens for route points. Such design

Table 4. Ablation studies of DriveGPT4-V2. “WP” and “RP”
represent waypoints and route points, respectively.

DS RC IS

Baseline 47 78 0.60
+ LLM Visual Pretraining 56 87 0.64
+ Visual Tokenizer 60 88 0.68
+ WP&RP 63 90 0.70
+ Expert Supervision 70 91 0.77

Table 5. Ablation studies on PID controllers. “WP” indicates
utilizing predicted waypoints for PID control; while “TS&RP”
means PID control by predicted target speed and route points.

PID Controller DS RC IS

WP 53 85 0.62
TS & RP 59 88 0.67

DriveGPT4-V2 63 90 0.70

Table 6. Ablation studies on decision heads. “Additional tokens”
indicates using more output tokens for prediction.

DS RC IS FPS

Additional tokens 64 91 0.70 1.4

DriveGPT4-V2 63 90 0.70 8.1

does not significantly improve performance and severely
affects efficiency. Using text to represent output numbers
would require approximately 160 tokens, making it imprac-
tical for real-time autonomous driving. The evaluation re-
sults are shown in Tab. 6

5. Conclusion and Future Work
In this paper, we presented DriveGPT4-V2, a novel LLM-
based framework for closed-loop, end-to-end autonomous
driving. DriveGPT4-V2 processes camera images and ve-
hicle states as input to generate low-level control signals
for direct vehicle operation. Leveraging the extensive
pretrained knowledge of MLLMs, DriveGPT4-V2 demon-
strates the ability to navigate complex urban scenarios under
diverse and challenging conditions. The model architecture
is specifically optimized for precise numerical vehicle de-
cision prediction. An additional expert LLM, which shares
a structure similar to DriveGPT4-V2, has been trained to
provide on-policy supervision. Experimental results high-
light that DriveGPT4-V2 achieves state-of-the-art perfor-
mance on the challenging CARLA Longest6 benchmark,
outperforming all baselines. In the future, we aim to extend
the capabilities of DriveGPT4-V2 for broader applications
in closed-loop autonomous driving tasks, including video
games and real-world deployment.
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