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Abstract—Blind image restoration (IR) is a common yet challenging problem in computer vision. Classical model-based methods and
recent deep learning (DL)-based methods represent two different methodologies for this problem, each with their own merits and
drawbacks. In this paper, we propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Specifically, we construct a general Bayesian generative model for the blind IR, which explicitly depicts the degradation process. In this
proposed model, a pixel-wise non-i.i.d. Gaussian distribution is employed to fit the image noise. It is with more flexibility than the simple
i.i.d. Gaussian or Laplacian distributions as adopted in most of conventional methods, so as to handle more complicated noise types
contained in the image degradation. To solve the model, we design a variational inference algorithm where all the expected posteriori
distributions are parameterized as deep neural networks to increase their model capability. Notably, such an inference algorithm
induces a unified framework to jointly deal with the tasks of degradation estimation and image restoration. Further, the degradation
information estimated in the former task is utilized to guide the latter IR process. Experiments on two typical blind IR tasks, namely
image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current
state-of-the-arts. The source code is available at https://github.com/zsyOAOA/VIRNet.

Index Terms—Image restoration, denoising, super-resolution, generative model, variational inference.
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1 INTRODUCTION

IMAGE restoration (IR) is an active research topic in the
fields of signal processing and computer vision. It aims

at recovering the latent high-quality image z from the
observed corrupted counterpart y, i.e.,

y = Hz + n, (1)

where H is the degradation operator, and n is image noise.
With different degradation settings for H , Eq. (1) represents
different IR tasks. For example, the classical IR tasks, such
as image denoising, deblurring, and super-resolution, can be
easily obtained by setting H as an identity matrix, a blurring
operator, and a composition of blurring and downsampling
operators, respectively. The difficulties of IR tasks mainly
come from H and n. The former inclines to cause severe
information loss in some tasks, like deblurring and super-
resolution, and the latter is usually complicated due to the
accumulation of noises from multiple sourcesm e.g., captur-
ing instrument, camera pipeline and image transmission [1].
In blind IR tasks, we need to simultaneously solve the
problems of degradation estimation and image restoration,
which makes it more challenging.

In the past decades, plenty of IR methods have been pro-
posed under the maximum a posteriori (MAP) framework.
From the Bayesian perspective, it generally involves a likeli-
hood term and a prior term. More specifically, the likelihood
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term encodes the image degradation process of Eq. (1), while
the prior term reflects our subjective knowledge on the
latent high-quality image. Most of these methods mainly
focused on designing more effective image priors so as
to alleviate the ill-posedness of IR tasks. Commonly used
image priors include total variation (TV) [2], non-local sim-
ilarity [3], [4], sparsity [5], [6], [7], low-rankness [8], [9], [10]
and so on. In contrast, other works focused on the likelihood
term by constructing more flexible noise distributions, e.g.,
mixture of Gaussian (MoG) [11], mixture of Exponential
(MoEP) [12], and Dirichlet Process mixture of Gaussian (DP-
MoG) [13], [14], [15]. Even though these model-based meth-
ods are with highly intuitive physical meanings and also
generalize well in most of scenarios, they still have evident
defects. Firstly, these methods are always time-consuming,
since they require to re-solve the whole model for any new
testing images. Such one-by-one optimized paradigm tends
to bring up large computational burden, making them very
hard to be applied in real applications. Secondly, limited by
the manually designed likelihood and image priors, which
usually cannot faithfully represent the image knowledges,
they struggle to handle some complex modeling problems
in real cases, such as the blind IR tasks with complicated
image degradations.

Different from the aforementioned model-based meth-
ods, current deep learning (DL)-based methods represent
another research trend. Their core idea is to employ the
deep neural networks (DNNs), being with powerful fitting
capability, to directly learn the image knowledge from large
amount of pre-collected image pairs in an end-to-end train-
ing manner. Dong et al. [16] and Zhang et al. [17] firstly pro-
posed SRCNN and DnCNN that surpassed classical model-
based methods in image super-resolution and denoising,
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respectively. Subsequently, many DL-based methods [18],
[19], [20], [21], [22], [23], [24], [25], [26] were proposed and
they achieved unprecedent successes in the field of IR. While
they have achieved huge boost in performance, most of
them ignore the modeling mechanism underlying the im-
age degradation, especially the image noise. To be specific,
the L2 or L1 losses commonly-used in current DL-based
methods indeed imply that the noise n in Eq. (1) obeys
the independent and identically distributed (i.i.d.) Gaussian
or Laplacian distributions. This, however, always deviates
from true noise configurations in real cases. For example,
the camera sensor noises in practical image denoising are
signal-dependent and spatially variant, and thus evidently
non-i.i.d. in statistics. Neglecting such intrinsic noise prop-
erties will centainly harm the generalization capability of
the model in real scenarios with complicated noises.

As analyzed above, the model-based methods are capa-
ble of encoding the image degradation through the likeli-
hood, but hindered by the limited model capacity and the
slow inference speed. In contrast, the DL-based methods,
equipped with DNNs, are with large model capacity and
powerful non-linear fitting capability. What’s more, in the
testing phase, these methods are much faster than the
model-based method, since they only need one feedforward
pass for any newly coming image. This naturally inspires
us to develop a new IR method, which is expected to
combine both the advantages of the classical model-based
methods and recent DL-based methods. In this work, we
take one step forward along this research line by proposing
a deep variational model for blind IR. It firstly constructs
a traditional probabilistic model for IR, and then embeds
the powerful DNNs into its posteriori inference to increase
the model capacity. Specifically, the contributions of this
work can be summarized from two aspects, namely model
construction and algorithm design, as follows:

On one hand, a Bayesian generative model is built for
general IR tasks, and thus naturally inherits the advan-
tages of classical model-based methods. Furthermore, we
also consider more complicated degradation process when
building our model in this study:

• Instead of the simple i.i.d. Gaussian or Laplacian noise
assumptions in most of the current methods, a pixel-
wise non-i.i.d. distribution is adopted in our model to
handle more complicated noise types. In essence, such
noise model induces a learnable re-weighted loss purely
relying on data-self, thus is more flexible.

• A concise kernel prior is specifically designed for super-
resolution, which makes our model able to deal with the
task of blind image super-resolution.
On the other hand, we elaborately design an amor-

tized variational inference (VI) algorithm to solve the pro-
posed generative model. Compared with the classical mean
field VI methodology, two-fold substantial modifications are
made to better comply with blind IR tasks:

• Different from the commonly used independent factor-
ization strategy in VI, we factorize the expected poste-
rior, namely the joint distribution of the degradation in-
formation and the latent clean image, into a conditional
form. Such a formulation derives a unified framework
to simultaneously deal with the tasks of degradation

estimation and image restoration, in which the degrada-
tion information estimated by the former provides sound
guidance for the subsequent restoration task.

• To largely increase the fitting capability of our model,
the desirable posteriori distributions are parameterized
by DNNs, and then optimized in an amortized manner
during training. In the testing phase, the well-trained
model is capable of fastly inferring the posteriori dis-
tribution of any new testing image in an explicit man-
ner, and thus evidently more efficient than the classical
model-based methods.
In summary, this work aims to explore a novel modeling

paradigm, which is expected to integrate the merits both
of the classical model-based methods and recent DL-based
methods, for the IR problem. A preliminary version of
this work has been published in NeurIPS 2019 [27] which
focuses only on image denoising. This present work makes
substantial improvements on model construction, the in-
ference algorithm, and the empirical evaluations over the
conference version. Especially, we consider a more general
degradation process (i.e., Eq. (1)) to build the Bayesian
generative model, making it capable of handling more com-
plicated and general IR tasks, such as blind image super-
resolution.

The remainder of the paper is organized as follows:
Section 2 introduces the related work. Section 3 proposes
our generative model, and discusses two typical IR tasks.
Section 4 presents the designed stochastic VI algorithm for
solving our model. In Section 5, experiments are demon-
strated to evaluate the performance of our method. Section
6 finally concludes the paper.

2 RELATED WORKS

In this section, we firstly review model-based and DL-based
IR methods. We then briefly summarize recent explorations
that attempts to combine both of these two methodologies.

2.1 Model-based Methods

Most of the classical model-based methods can be formu-
lated into the MAP framework, which contains a likelihood
(fidelity) term and a prior (regularization) term from the
Bayesian perspective. Relevant developments thus mainly
focused on these two terms.
Prior Modeling Methods. Aiming at alleviating the ill-
posed issue of IR, many studies attempted to exploit rational
image prior knowledge. Statistical regularities exhibited in
images were firstly employed, e.g., TV denoising [2] and
wavelet coring [28]. Then, NLM [3] and BM3D [4] were
both proposed for denoising based on the non-local self-
similarity prior, meaning that small image patches in a
non-local image area possess similar configurations. Later,
low-rankness [8], [9], [10] and sparsity [4], [5], [6], [7] pri-
ors, which also aim to explore the characteristics of image
patches, became popular and were widely used in IR tasks.
To further increase the model’s capacity and expression abil-
ity, some other methods moved from analytical technolo-
gies to data-driven approaches. E.g., Roth and Black [29]
proposed the fields of experts (FoE) to learn image priors.
Barbu [30] trained a discriminative model for the Markov
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random field (MRF) prior, while Sun and Tappen [31]
proposed a non-local range MRF (NLR-MRF) model. More
related works can be found in [32], [33].
Noise Modeling Methods. Different from the prior mod-
eling methods, noise modeling methods focus on the like-
lihood (fidelity) term of the MAP framework. In fact, the
widely used L1 or L2 loss functions implicitly make the i.i.d.
Gaussian or Laplacian assumptions on image noise, which
often under-estimates the complexity of real noise. Based
on this observation, Meng et al. [11] proposed the MoG
noise modeling method under the low-rankness framework.
Furthermore, Zhu et al. [13], [34] and Yue et al. [14], [15] both
introduced the non-parametric Dirichlet Process into MoG
to increase its flexibility, leading to the adaptive adjustment
for the component number of MoG.

2.2 DL-based Methods

DL-based methods represent a data-driven trend for the
IR task. They straightforwardly train an explicit mapping
function parameterized by DNN on large amount of image
pairs. The earliest convolutional neural network (CNN)
method can be traced back to [35], in which a five-layer
network was employed. Some auto-encoder based methods
were then proposed in [36], [37]. Due to the insufficient
research of DL technologies, however, these methods were
inferior to the model-based methods in performance.

The first significant improvement of DL-based methods
was achieved by [38] which obtained comparable perfor-
mance with BM3D [4] in denoising task using a plain multi-
layer perceptron. Subsequently, Dong et al. [16] proposed the
first CNN model for super-resolution, and it outperformed
the classical model-based methods. With the advances of
deep learning, Zhang et al. [17] trained a deep CNN model
named DnCNN and achieved state-of-the-art performance
in denoising, JPEG deblocking, and super-resolution. Since
then, the DL-based methods began to dominate the research
trend in almost all of the IR tasks, especially in denois-
ing [18], [20], [23], [25], [39] and super-resolution [40], [41],
[42], [43], [44], [45], [46].

Inspired by the development of generative adversial
network (GAN) [47], some DL-based methods also followed
the research line of noise modeling introduced in Sec. 2.1.
Typically, Chen et al. [48] proposed a noise generator to
simulate the real noise under the adversial training mech-
anism, and Kim et al. [49] further introduced some camera
settings (e.g., ISO level and shutter speed) into the generator
as extra guidance. More recently, Yue et al. [24] proposed
a dual adversial loss to implement the noise removal and
noise generation tasks into one unique Bayesian framework.
Different from these GAN based implicit noise modeling
manners, this study adopts a more powerful and flexible
non-i.i.d. Gaussian distribution to explicitly model the im-
age noise, which avoids the instability in training GAN.

2.3 Some Relevant Explorations

The researches to combine the model-based methods and
the DL-based methods have attracted increasingly atten-
tions in recent years. Some significant explorations have
been attempted towards this goal.

Deep plug-and-play methods [50], [51], [52], [53], [54]
usually replace the denoising subproblem in model-based
methods with one or multiple pre-trained DNN denoisers,
so as to leverage the abundant image prior knowledge
learned by such deep denoisers. Due to the lacking of
end-to-end training, they always rely on tedious hyper-
parameters tuning to guarantee stable performance. To alle-
viate this drawback, deep unfolding methods [55], [56], [57],
[58], [59] take a step forward by embedding the DNNs into
traditional optimization algorithms (e.g., HQS, ADMM).
Attributed to the end-to-end training manner, these deep
unfolding method achieve promising performance in some
IR tasks.

Deep image prior (DIP) [60] and its related methods [61],
[62], [63], [64] represent another significant approach along
this research line. These methods aim to seek a correspond-
ing DNN model that maps the pre-sampled noise to the
desirable clean image for any given corrupted image under
the MAP framework. Similar to the model-based methods,
they are mainly limited by the time-consuming optimization
process in the testing phase.

In this study, we develop a general and novel deep IR
model which is evidently different from the above research
approaches. From the model perspective, a Bayesian gen-
erative model is constructed for general IR tasks, naturally
inheriting the capability of modeling the image degradation
from the classical model-based methods. From the algo-
rithm perspective, we design an amortized VI algorithm
which parameterizes all the involved posteriori distribu-
tions with DNNs. The embedded DNNs in our algorithm
equip it with powerful fitting ability and fast testing speed
as recent DL-based methods.

3 THE PROPOSED METHOD

3.1 Basic Settings
In this paper, we consider two commonly used settings on
the degradation operator H of Eq. (1). In the first case, H is
an identity matrix, corresponding to the task of image de-
noising. The difficulties of this task are naturally attributed
to the complexity of the image noise, which is often spatially
variant and signal-dependent in real scenarios. Besides,
their statistics (e.g., the noise levels) are always unknown
in blind image denoising. It is thus necessary to devise
methods to estimate the noise distribution and recover the
latent high-quality image simultaneously.

In the second case, we consider a more general IR task,
namely image super-resolution, in which H is a compo-
sition of blurring and downsampling. The downsampling
operation leads to serious information lost, especially in
the case of large scale factor, making it more challenging
compared with denoising. Similarly, blind super-resolution
also involves two subtasks, i.e., estimating the degradation
information, including both of the blue kernel and noise
distribution, and restoring the high-resolution image.

In addition, we briefly introduce some necessary settings
on the training and testing data. The training data consists of
multiple triplets, i.e., D = {y(j),x(j), H(j)}Nj=1, where y(j)

and x(j) denote the corrupted image and the underlying
high-quality image, respectively. H(j) represents the degra-
dation operator, which is an identity matrix for denoising
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and a blur kernel for super-resolution. The superscript j of
H(j) indicates that the degradation model varies from one
sample to another in our training data. It should be noted
that, in the real-world image denoising task, x(j) is usually
estimated by averaging several noisy images taken under
the same camera conditions [65]. In the testing phase, given
only one corrupted image, our goal is to firstly estimate the
degradation information, and then recover the high-quality
image based on such information.

Next, we formulate a rational Bayesian generative model
for the tasks of denoising and super-resolution.

3.2 Model Formulation for Denoising
Let {y,x} ∈ D denote any noisy/noise-free image pair in
the training dataset. For the noisy image y, we assume that
it is generated as follows:

yi ∼ N (yi|zi, σ2
i ), i = 1, 2, · · · , d, (2)

where N (·|µ, σ2) denotes the Gaussian distribution with
mean µ and variance σ2, z denotes the latent clean image,
d is the number of pixels in the noisy image. Notably,
different from the commonly used i.i.d. Gaussian/Laplacian
assumption, we model the image noise as pixel-wise non-
i.i.d. Gaussian distribution in Eq. (2). Such an non-i.i.d.
noise assumption largely increases the degrees of freedom
of the noise distribution, and is thus expected to better fit
complicated real noise as illustrated in Sec. 5.3.1.

Next, we introduce some prior knowledges for the latent
clean image z and the noise variance map σ2. In the
real dataset, x provides an approximate estimation to the
underlying clean image z by some statistical method [65].
Therefore, it can be embedded into the following prior
distribution as a constraint for z:

zi ∼ N (zi|xi, ε
2
0), i = 1, 2, · · · , d, (3)

where ε0 is a hyper-parameter that reflects the closeness
between x and z. In some synthetic experiments where the
underlying clean image is accessable, x is indeed the true
clean image z, which can be easily formulated by setting
ε0 as a small number close to 0. Under this setting, Eq. (3)
degenerates to the Dirac distribution centered at x.

As for the variance map σ2, we construct the following
inverse Gamma distribution as its conjugate prior:

σ2
i ∼ IG

(
σ2
i

∣∣∣∣α0 − 1, α0ξi

)
, i = 1, 2, · · · , d, (4)

where
ξ = G

(
(ŷ −Hx̂)2; p

)
. (5)

G(·; p) is the Gaussian filter with window size p, ŷ, x̂ ∈
Rh×w are the matrix (image) forms of y,x ∈ Rd, and α0 is
the shape1 parameter of the inverse Gamma distribution.

Actually, ξi in Eq. (5) provides an estimation for the
variance σ2

i . It is calculated using a Gaussian filter in the
p×p window centered at the i-th pixel. The elaborate design
on the shape and scale parameters (i.e., α0 − 1 and α0ξi) in
Eq. (4) guarantees that the mode of this prior distribution
is ξi exactly. The hyper-parameter α0 controls the strength

1. For an inverse Gamma distribution IG(·|α, β), we usually call α
and β as the shape parameter and the scale parameter respectively.

of this prior distribution, and it is set as p2/2 in our method
following [66]. More explanations on this hyper-parameter
can be found in the supplementary material.

3.3 Extension to Blind Super-resolution
For the problem of image super-resolution, the degradation
model in Eq. (1) can be reformulated as:

y = (z ∗ k) ↓s +n, (6)

where k denotes the blur kernel, ∗ is the convolution opera-
tor, and ↓s is the downsampler with scale factor s. Based on
this degradation model, we extend the noise assumption of
Eq. (2) as follows:

yi ∼ N (yi|[z ∗ k]i, σ2
i ), i = 1, 2, · · · , d, (7)

where [z ∗ k]i represents the i-the pixel of z ∗ k.
To handle blind super-resolution, the most challenging

part is how to model the blur kernel. Recently, lots of
related literatures [57], [63], [67], [68], [69] have found that
the anisotropic Gaussian kernels are sufficient to guarantee
pleasing results for image super-resolution. In this study,
we follow these related works and adopt the anisotropic
Gaussian kernels. Thus, the blur kernel k with size (2r +
1)× (2r + 1) can be defined as:

kij = g(λ2
1, λ

2
2, ρ)

=
1

2πλ1λ2

√
1− ρ2

exp

{
−1

2
STΣ−1S

}
, (8)

where Σ =

[
λ2
1 λ1λ2ρ

λ1λ2ρ λ2
2

]
is the covariance matrix, ρ is

the Pearson correlation coefficient, S =
[
i j

]T denotes the
spatial coordinate with i, j ∈ {−r, · · · , r}. By denoting Λ =
{ρ, λ2

1, λ
2
2}, one can easily observe that the blur kernel k is

completely determined by Λ when the kernel size is fixed.
This inspires us to design a prior distribution for Λ instead
of k.

In essense, Eq. (8) represents the blur kernel k through
two Gaussian distributions with variance parameters λ2

1 and
λ2
2 along the horizontal and vertical directions, and their

correlations is depicted by ρ. For {λ1, λ2} and ρ, we impose
the inverse Gamma and Dirac distributions for them as prior
constraints, respectively, i.e.,

Λ ∼ p(Λ) = Dirac(ρ|ρ̂)
2∏

l=1

IG(λ2
l |κ0 − 1, κ0 ∗ λ̂2

l ), (9)

where {ρ̂, λ̂2
1, λ̂

2
2} reflect the corresponding true kernel in-

formation contained in the training data. Similar to the α0

of Eq. (4), κ0 is also a hyper-parameter controlling the shape
of the inverse Gamma distributions. For the purpose of easy
optimization, we employ a Gaussian distribution with small
variance to approximate the Dirac distribution. Thus, based
on Eq. (8), the blur kernel k is modelled as:

k = g(Λ), (10)

Λ ∼ p(Λ) = N (ρ|ρ̂, r20)
2∏

l=1

IG(λ2
l |κ0 − 1, κ0 ∗ λ̂2

l ), (11)

where the variance r20 is empirically set as 1e-4 throughout
all our experiments.
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Fig. 1. The inference framework of the proposed generative model for blind image super-resolution. It can be decomposed into two sub-tasks of
degradation estimation and image restoration. Given any corrupted image y, we firstly infer the posteriori parameters β of q(σ2|y) by SNet and
{m, η1, η2} of q(Λ|y) by KNet in the phase of degradation estimation, and then recover the desirable high-quality image (i.e., the mean value µ of
q(z|y,σ2,Λ)) by RNet under the guidance of the estimated degradation information.

Combining Eqs. (3)-(5), (7), and (10)-(11) (or Eqs. (2)-
(5)) together, a full Bayesian model for blind image super-
resolution (or image denoising) can be obtained. The
goal then turns to infer the posterior of latent variables
{z,σ2,Λ} (or {z,σ2}) from y, namely p(z,σ2,Λ|y) (or
p(z,σ2|y)).

4 STOCHASTIC VARIATIONAL INFERENCE

In this section, a stochastic variational inference algorithm
is designed for the proposed generative model. In the fol-
lowing part, we take blind super-resolution problem as an
example to present our algorithm, since it can be easily
degenerated into the denoising task by setting the blur
kernel as Dirac delta function and the scale factor as 1.

4.1 Form of Variational Posterior

Inspired by the VI techniques [70], we firstly construct a
variational distribution q(z,σ2,Λ|y) to approximate the
true posterior p(z,σ2,Λ|y) led by our generative model.
The variational posteriori distribution is then conditionally
factorized as:

q(z,σ2,Λ|y) = q(z|y,σ2,Λ)q(σ2|y)q(Λ|y). (12)

Next, we begin to design specific forms for these three
factorized posteriori distributions.

The conjugate prior of Eq. (4) inspires us to assume
q(σ2|y) as the following inverse Gamma distribution:

q(σ2|y) =
d∏
i

IG(σ2
i |α0 − 1, α0βi(y;WS)), (13)

where βi(y;WS) is a mapping function parameterized as a
DNN named as sigma network (SNet) with parameters WS .
It aims to predict the scale parameter of q(σ2|y) directly
from the corrupted image y. As for the shape parameter of
q(σ2|y), we simply fix it as the same to the prior distribu-
tion, i.e., α0 − 1. Different from the strategy of setting them
both as learnable parameters in our previous version [27],
such a modification largely simplifies the evidence lower

bound of Sec. 4.2 and also makes our algorithm more stable
during training. Similarly, we formulate q(Λ|y) as:

q(Λ|y) = N (ρ|m(y;WK), r20)
2∏

l=1

IG(λ2
l |κ0 − 1, κ0ηl(y;WK)), (14)

where m(y;WK) and ηl(y;WK) are jointly parameterized
as a DNN with parameters WK , named as kernel network
(KNet). It takes the low-resolution image y as input and
outputs the posteriori parameters for q(Λ|y).

As for q(z|y,σ2,Λ), we set it as Gaussian distribution:

q(z|y,σ2,Λ) =
d∏
i

N (zi|µi(y,σ
2,Λ;WR), ε

2
0), (15)

where µi(y,σ
2,Λ;WR) represents the mapping function to

evaluate the mean value of the posteriori Gaussian distri-
bution of z. Naturally, it is parameterized as a DNN with
parameters WR, named as restoration network (RNet). For
the ease of training, we set the variance parameter of this
posteriori distribution as a constant, i.e., ε20, being the same
with that of the prior distribution in Eq. (3).

It is necessary to emphasize that the posteriori distribu-
tion q(z|y,σ2,Λ) is conditioned on σ2 and Λ, which means
that RNet depends on the noise variance map estimated
by SNet and the kernel informations predicted by KNet.
Generally speaking, the conditional assumption of Eq. (12)
decomposes the task of blind super-resolution into two
cascaded sub-tasks, namely degradation estimation imple-
mented by SNet and KNet, and non-blind image restoration
implemented by RNet. The whole inference procedure is
shown in Fig. 1.
Remark. In Eq. (13), the mode of q(σ2|y) is just equal to
β(y;WS), which is predicted by SNet. In other words, we
leverage SNet to only estimate the core posteriori parameter,
namely the mode, instead of the whole posteriori distri-
bution. The reasons underlying this setting are two-fold.
on one hand, this strategy inclines to alleviate the learning
burden of SNet to some extent. On the other hand, we can
directly utilize the output of SNet as an estimated variance
map to solve some downstream problems that depends
on pre-known noise levels. Similarly, we also employ this
partially learning strategy in Eq. (14) and Eq. (15).
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4.2 Evidence Lower Bound

In this part, we induce a rational objective function to
jointly train the networks of SNet, KNet, and RNet. For the
convenience of presentation, we simply denote βi(y;WS),
m(y;WK), ηl(y;WK), and µi(y,σ

2,Λ;WR) as βi, m, ηl,
and µi respectively. Given any corrupted image y, its loga-
rithm marginal probability can be decomposed as

log p(y) = L(z,σ,Λ;y)

+KL
[
q(z,σ2,Λ|y)∥p(z,σ2,Λ|y)

]
, (16)

where

L(z,σ,Λ;y) = Eq

[
log p(y|z,σ2,Λ)p(z)p(σ2)p(Λ)

− log q(z,σ2,Λ|y)
]
. (17)

Here Eq[·] denotes the expectation w.r.t. the posteriori dis-
tribution q(z,σ2,Λ|y). The second term of Eq. (16) repre-
sents the KL divergence between the variational posterior
q(z,σ2,Λ|y) and the true posterior p(z,σ2,Λ|y). Due to
the non-negtiveness of KL divergence, L(z,σ,Λ;y) consti-
tutes a lower bound of log p(y), generally called evidence
lower bound (ELBO). Therefore, we can naturally approx-
imate the true posteriori p(z,σ2,Λ|y) with q(z,σ2,Λ|y)
through maximizing the ELBO.

Combining the factorized assumption of Eq. (12), the
ELBO can be rewritten as

L(z,σ,Λ;y) = Eq(z,σ,Λ|y)

[
log p(y|z,σ2,Λ)

]
− Eq(σ,Λ|y)

[
KL

[
q(z|y,σ2,Λ)∥p(z)

] ]
−KL

[
q(σ2|y)∥p(σ2)

]
−KL

[
q(Λ|y)∥p(Λ)

]
, (18)

where q(σ,Λ|y) = q(σ|y)q(Λ|y).
Next, we consider how to calculate each term in Eq. (18)

step by step. The first term is intractable, mainly because
the posterior q(z,σ,Λ|y) is parameterized as complicated
forms of DNNs. Fortunately, we can use the reparameter-
ization trick [71] to obtain multiple differentiable samples
from the posteriors, and then use them to estimate these
two terms by Monte Carlo (MC) like VAE [71]. Concretely,
the re-sampling process from q(z|y,σ2,Λ) can be easily
implemented as

z̃ = µ+ ε0τ , τ ∼ N (τ |0, I). (19)

To sample from q(Λ|y) and q(σ2|y), we adopt the pathwise
derivative technology [72] and denote the re-sampled data
example as Λ̃ and σ̃2. Based on z̃, Λ̃ and σ̃2, the first term
of Eq. (18) can be approximated as follows:

Eq(z,σ,Λ|y)
[
log p(y|z,σ2,Λ)

]
≈ −1

2

d∑
i=1

{
log σ̃i + wi

(
yi − [z̃ ∗ k̃]i

)2 }
, (20)

where wi = 1
σ̃2
i

, k̃ = g(Λ̃), and g(·) is defined in Eq. (10).
Note that we have omitted a constant that is independent of
the learnable parameters in Eq. (20).

As for the last three terms of Eq. (18), they can all be
analytically calculated as follows:

Eq(σ,Λ|y)

[
KL

[
q(z|y,σ2,Λ)∥p(z)

] ]
=

d∑
i=1

(µi − xi)
2

2ε20
, (21)

KL
[
q(σ2|y)∥p(σ2)

]
=

d∑
i=1

α0

(
ξi
βi

+ log
βi

ξi
− 1

)
, (22)

KL
[
q(Λ|y)∥p(Λ)

]
=

(m− ρ̂)2

2r20
+

2∑
l=1

κ0

(
λ̂l

ηl
+ log

ηl

λ̂i

− 1

)
.

(23)
Finally we can get the expected objective function, namely

the negative ELBO on the entire training dataset, to optimize
the network parameters of WS , WK , and WR as follows:

min
WS ,WK ,WR

−
N∑

j=1

L(z(j),σ(j),Λ(j);y(j)), (24)

where z(j), σ(j), and Λ(j) denote the posteriori parameters
for the j-th image pair in training dataset D.

With the negative ELBO loss in Eq. (24), it is easy to
train our model in an end-to-end manner like the DL-
based methods. Actually, each term of the ELBO can be
intuitively explained: the last three terms of KL divergence
in Eq. (18) control the discrepancy between the variational
posteriors and the priors, and the first term is the likeli-
hood of the observed low-resolution images in the training
dataset, which enforces the recovered high-resolution image
can be mapped back to the low-resolution one through the
estimated degradation model. During training, SNet, KNet,
and RNet are refined and guided by each other under the
supervision of this loss function.
Remark. Most of the current IR methods assume that each
element of the data fidelity (i.e., the likelihood) term is with
the same importance, i.e.,

∑
i

(
yi − [z̃ ∗ k̃]i

)p
. In this work,

we novelly exploit an adaptive manner to re-weight the data

fidelity in terms of l2-norm, i.e.,
∑

i wi

(
yi − [z̃ ∗ k̃]i

)2
in

Eq. (20). Each pixel is re-weighted by wi =
1
σ̃2
i

, in which σ̃2
i is

sampled from the noise distribution estimated by SNet. This
re-weighting strategy based on noise variance is generally
used in Bayesian statistics, like in [11], [13].

4.3 Network Structure and Learning
As shown in Fig. 1, SNet takes the corrupted image y as
input and outputs the scale-related parameter of q(σ2|y),
achieving the goal of noise estimation. In practice, it consists
of five convolutional layers, and each is followed with a
Leaky ReLU activation except for the first and last layers.
As for the KNet, it is designed to predict the posteriori
distribution of the kernel parameter Λ from the corrupted
image y. In implementation, we firstly employ one convolu-
tional layer and eight channel attention blocks (CAB) [23] to
extract abundant feature maps, and then fuses them by one
convolutional layer followed by an average pooling layer to
obtain the posteriori parameters in q(Λ|y).

The design of RNet, aiming to infer the conditional
posteriori distribution of the desirable high-quality image,
plays the most important role in blind IR. We adopt the
commonly used ResUNet [54], [56] in low-level vision as
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TABLE 1
The PSNR and SSIM results of different methods on three groups of testing datasets. The best and second best results are highlighted in bold

and underline, respectively. Note that * denotes non-blind methods that rely on the pre-given noise-level.

Cases Datasets Metrics Methods
NLM [3] CBM3D [4] DnCNN [17] FFDNet∗ [20] S2S [73] Ne2Ne [74] DRUNet∗ [50] VIRNet

Case 1
CBSD68 PSNR 24.06 26.73 28.74 28.79 28.23 27.92 29.05 29.28

SSIM 0.6190 0.7660 0.8181 0.8181 0.7968 0.7948 0.8349 0.8353

McMaster PSNR 25.08 27.47 29.49 30.17 29.87 29.63 30.86 31.00
SSIM 0.6910 0.7800 0.8218 0.8394 0.8374 0.8263 0.8640 0.8642

Case 2
CBSD68 PSNR 22.40 25.42 28.15 28.42 27.87 25.26 28.64 28.93

SSIM 0.5582 0.7040 0.7989 0.8079 0.7859 0.6870 0.8251 0.8269

McMaster PSNR 23.26 25.82 28.84 29.74 29.43 27.23 30.38 30.58
SSIM 0.6126 0.7120 0.7994 0.8315 0.8284 0.7314 0.8545 0.8572

Case 3
CBSD68 PSNR 24.07 26.85 28.64 28.68 28.14 27.33 29.12 29.19

SSIM 0.6153 0.7360 0.8143 0.8141 0.7931 0.7629 0.8321 0.8323

McMaster PSNR 25.13 27.62 29.36 30.02 29.75 28.97 30.82 30.85
SSIM 0.6845 0.7520 0.8184 0.8365 0.8354 0.7982 0.8610 0.8612

our backbone. It replaces the plain convolutional layer in
UNet [75] with residual block [76], and thus makes the gra-
dient flow propagate much faster. Furthermore, in purpose
of leveraging the estimated noise and kernel informations
by SNet and KNet, we concatenate their outputs with the
corrupted image y together (see Fig. 1), and then feed
them into RNet to recover the high-resolution image. We
empirically find that such a simple concatenated operation
performs very well and stably in our inference framework.

It should be noted that this work does not aim to de-
sign more effective network architectures to surpass current
SotA methods, but mainly focus on devising a probabilistic
framework based on the deep variational inference to deal
with the blind IR task. Therefore, we simply select the com-
monly used networks in low-level vision as our backbones
for SNet, KNet, and RNet, so as to better verify the generality
of the proposed model.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our proposed
method on two typical IR tasks, namely image denoising
and image super-resolution. We denote our Variational
Image Restoration Network as VIRNet for notation conve-
nience in the following presentation.

To optimize the network, we adopted the Adam [77]
algorithm with a mini-batch size of 16 and other default
settings of PyTorch [78]. The initial learning rate was set as
10−4 and decayed gradually using the consine annealing
strategy [79]. For computational stability, the gradient clip-
ping strategy was also used during training. In the task of
image denoising, we cropped small image patches with a
size of 128 × 128 for training. The hyper-parameter ε20 of
Eq. (3) was set to be 10−6, and the window size p of Eq. (5)
was set to be 7. In the task of image super-resolution, the
patch size during training was fixed as 96, 144, and 192 for
scale factor 2, 3, and 4 respectively. The hyper-parameter ε20
was set to be 10−5, while the window size p was set as a
larger value 11 than that in denoising, since image noise in
super-resolution is usually assumed to be i.i.d. Gaussian. As
for the shape parameter κ0 of the kernel prior distribution
in Eq. (11), we empirically set it as 50.

(a)

(d1)

(d2)

(c1)

(c2)

(b1)

(b2)

Fig. 2. (a) The spatially variant map M for noise generation in training
data. (b1)-(d1): Three different Ms on testing data in Cases 1-3. (b2)-
(d2): Predicted Ms by our method on testing data.

5.1 Image Denoising Experiments

5.1.1 Synthetic Non-I.I.D. Gaussian Noise Removal

To verify the effectiveness and robustness of VIRNet under
non-i.i.d. noise configurations, we synthesized a large set of
noisy/clean image pairs as training data. Similar to [20], a
set of high quality source images was firstly collected as
clean ones, including 432 images from BSD500 [80], 400
images from the ImageNet [81] validation set and 4744
images from Waterloo Database [82]. We then randomly
generated non-i.i.d. Gaussian noise as

n = n1 ⊙M , n1 ∼ N (n1|0, I), (25)

where I is identity matrix, M is a spatially variant map
with the same size as the source image. Finally, the noisy
image was obtained by adding the generated noise n to the
source image. As for the testing images, two commonly-
used datasets, i.e., BSD68 [80] and McMaster [83], were
adopted to evaluate the performance of different methods.
Note that we totally generated four kinds of Ms as shown
in Fig. 2. The first one (Fig. 2 (a)) was used for generating
noisy images in training data, and the others (Fig. 2 (b1)-
(d1)) for three groups of testing data (denoted as Cases 1-3).
Under these settings, the noise in training data and testing
data are evidently different, which is suitable to verify the
generalization capability of VIRNet.

Comparison with the SotAs. We compare VIRNet with
several current denoising methods, including two typical
model-based methods NLM [3] and CBM3D [4], two deep
self-supervised methods S2S [73] and Ne2Ne [74], three
supervised learning-based methods, namely DnCNN [17],
FFDNet [20], and DRUNet [54]. The PSNR and SSIM results
of all comparison methods on three groups of testing data



8

(a) Noisy (b) DnCNN (c) FFDNet (d) S2S (e) DRUNet (f) VIRNet 

C
ase 1

C
ase 2

C
ase 3

Fig. 3. Denoising results of different competing methods on three typical test examples of synthetic non-i.i.d. Gaussian Noise Removal.

TABLE 2
The PSNR/SSIM results of different methods under AWGN noises. The best and second best results are highlighted in bold and underlinse,

respectively. Note that * denotes non-blind methods that rely on the pre-given noise level.

Cases Datasets Metrics Methods
CBM3D [4] DnCNN [17] FFDNet∗ [20] S2S [73] Ne2Ne [74] RNAN∗ [21] DRUNet∗ [50] VIRNet

σ = 15
CBSD68 PSNR 33.56 33.88 33.87 32.16 33.55 - 34.18 34.27

SSIM 0.9237 0.9288 0.9288 0.9026 0.9262 - 0.9341 0.9340

McMaster PSNR 34.05 33.45 34.65 33.20 34.49 - 35.33 35.33
SSIM 0.9105 0.9034 0.9214 0.9014 0.9208 - 0.9323 0.9312

σ = 25
CBSD68 PSNR 30.81 31.22 31.20 30.22 31.07 - 31.50 31.65

SSIM 0.8700 0.8824 0.8817 0.8563 0.8815 - 0.8917 0.8918

McMaster PSNR 31.68 31.50 32.34 31.56 32.27 - 33.02 33.08
SSIM 0.8700 0.8691 0.8857 0.8745 0.8876 - 0.9028 0.9017

σ = 50
CBSD68 PSNR 27.47 27.91 27.95 27.58 27.83 28.25 28.15 28.45

SSIM 0.7680 0.7885 0.7882 0.7716 0.7829 0.8010 0.8082 0.8092

McMaster PSNR 28.53 28.61 29.17 29.11 29.10 29.69 29.84 30.02
SSIM 0.7894 0.7984 0.8138 0.8191 0.8147 0.8326 0.8445 0.8433

TABLE 3
Comparison results with current DL-based methods on model

parameters (in M) and FLOPs (in G).

Metrics Methods
DnCNN FFDNet RNAN DRUNet VIRNet

# Param 0.67 0.85 8.96 32.64 10.54
FLOPs 175 56 3420 574 680

are listed in Table 1. We can easily see that: 1) the pro-
posed VIRNet outperforms the other methods in all cases,
indicating its superiority on handling these complicated
non-i.i.d. noise types; 2) on the whole, DL-based methods
(including the self-supervised methods) evidently surpass
classical model-based methods NLM and CBM3D, owning
to the powerful non-linear fitting capability of DNNs; 3)
FFDNet and DRUNet are both non-blind methods that rely
on the pre-given noise level as input. In contrast, VIRNet is
designed toward blind IR, and thus able to simultaneously
infer the noise distribution and remove the noise. Even so,
VIRNet still achieves obvious performance improvements
compared with FFDNet and DRUNet. This indicates the
effectiveness of the Bayesian generative model and the
variational inference framework.

Fig. 3 shows the visual results of different methods

under testing cases 1-3 of Table 1. Note that we only display
the best five DL-based methods due to page limitation. It
can be easily seen that the comparison methods are able
to remove most of the noises, but also often generate over-
smooth and blurry recovery, especially in the heavy-noise
areas. This can be explained by the fact that they do not
consider the spatial noise variations. To handle such non-
i.i.d. noise, the proposed VIRNet elaborately considers the
noise configurations and is thus capable of preserving more
image details (e.g., edges, structures) than other methods.

Even though our VIRNet is designed and trained on the
non-i.i.d. noise settings, it also performs well in additive
white Gaussian noise (AWGN) removal tasks. Table 2 lists
the average PSNR and SSIM results of different methods
under three noise levels (i.e., σ=15, 25, 50) of AWGN. In
this part, we further add the method RNAN [21] for a
more thorough evaluation. It is noteworthy that RNAN is
separately trained on some specific noise levels for AWGN,
and hence we can only compared with it on the noise level
50. It is easy to see that VIRNet obtains the best (8 out of 12
cases) or at least second best (4 out of 12 cases) performance
compared with these comparison methods. Combining the
results in Table 1 and Table 2, it should be rational to say
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(a) Noisy (b) VDN (c) SADNet (d) DANet (e) CycleISP (g) VIRNet (f) MPRNet 
Fig. 4. Denoising results of all competing methods on two typical real-world examples from DND [84] (upper) and SIDD [65] (lower) datasets.

that the proposed VIRNet is more robust. Specifically, it is
hopeful to handle a wider range of noise types, due to its
more flexible noise modeling essence.

In Table 3, we further list the comparison results on the
number of model parameters and FLOPs with four DL-
based methods. The FLOPs listed in this table are calculated
on images with a size of 512 × 512. It should be noted
that, for the sake of fair comparisons, the self-supervised
methods S2S [73] and Ne2Ne [74] are not reported in Table 3.
It can be easily observed that VIRNet exhibits a better
compromise over current SotA methods RNAN [21] and
DRUNet [46] when taking both the model parameters and
FLOPs into consideration. The proposed VIRNet is thus
expected with better practical applicability in real scenarios.

5.1.2 Real-world Noise Removal
In this part, we evaluate the performance of VIRNet on
two widely used real-world benchmark datasets, namely
DND [84] and SIDD [65]. DND2 consists of 50 high-
resolution images with realistic noise from 50 scenes taken
by 4 consumer cameras, but it does not provide any other
noisy/clean image pairs as training data. SIDD3 is another
real-world denoising benchmark, containing about 30,000
real noisy images captured by 5 cameras under 10 scenes.
Different from DND, each noisy image in SIDD comes with
an almost noise-free counterpart as groundtruth, which is
estimated by some statistical methods [65]. Further, SIDD
also provides a small version dataset containing 320 im-
age pairs, called SIDD-Medium, which is commonly-used
as training data in recent works [23], [24], [27]. In order
to compare with them fairly, we also train VIRNet only
based on the SIDD-Medium dataset. As for the metrics, we
adopt PSNR and SSIM [85] calculated on the sRGB space to
quantitatively evaluate different methods.

We compared VIRNet with several typical real-world
denoising methods, including MPRNet [25], CycleISP [88],
DANet [24], SADNet [87], VDN [27] and so on (see Table 4).
To the best of our knowledge, current SotA method on
this two benchmarks is PNGAN [89]. This work, however,
mainly focuses on simulating the camera pipeline to gen-
erate large amount of image pairs as training data so as to
further improve the performance, instead of designing more

2. https://noise.visinf.tu-darmstadt.de
3. https://www.eecs.yorku.ca/∼kamel/sidd/benchmark.php

TABLE 4
Comparisons of different methods in terms of denoising performance,
the number of model parameters (in M), FLOPs (in G), and running

time (in seconds). Note that PNGAN follows the same network
architecture and the training strategy with MPRNet, and further

improves the performance by simulating more training data. Thus we
mark its results with gray color to denote unfair comparisons.

Methods SIDD DND Model Profile
PSNR SSIM PSNR SSIM # Param FLOPs Time

CBM3D [4] 25.65 0.685 34.51 0.851 - - 21.49
DnCNN [17] 23.66 0.583 32.43 0.790 0.67 175 0.22
CBDNet [22] 30.78 0.801 38.06 0.942 4.37 161 0.19
RIDNet [23] 38.71 0.951 39.26 0.953 1.5 393 0.68

AINDNet [86] 38.95 0.952 39.37 0.951 13.76 1284 0.49
VDN [27] 39.23 0.955 39.38 0.952 7.81 168 0.20

SADNet [87] 39.46 0.957 39.59 0.952 4.23 76 0.22
DANet [24] 39.47 0.957 39.58 0.955 9.15 59 0.12

CycleISP [88] 39.52 0.957 39.56 0.956 2.83 739 1.36
MPRNet [25] 39.62 0.958 39.80 0.954 15.74 2296 2.75

VIRNet (Ours) 39.64 0.958 39.83 0.954 15.40 658 0.88
PNGAN [89] 40.06 0.960 40.25 0.962 15.74 2296 2.75

Fig. 5. Seven Gaussian kernels used to generate the LR images in the
synthetical super-resolution experiments.

effective denoising algorithm. Its denoiser architecture and
the training strategy completely follow MPRNet. Therefore
we mainly compare with MPRNet in this work.

In order to comprehensively evaluate all competing
methods, Table 4 lists the denoising performance, as well
as the model profiles, including the number of network
parameters, the FLOPs, and the feedforward running time
of the denoisers. The FLOPs and running time are both
counted on images with a size of 512 × 512. From the
perspective of denoising performance, the proposed VIR-
Net achieves a slight performance improvements compared
with current SotA method MPRNet, indicating its effective-
ness. However, VIRNet is with pronounced superiorities in
terms of model profiles, especially in the comparisons of
FLOPs and running time, which more faithfully reflect the
relative efficiency of our method. To intuitively compare the
denoising results, we visualize two typical real examples in
Fig. 4, which are consistent with the quantitative results in
Table 4.

https://noise.visinf.tu-darmstadt.de
https://www.eecs.yorku.ca/~kamel/sidd/benchmark.php
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TABLE 5
Quantitative comparisons of different methods under a scale factor of 4. The PSNR/SSIM/LPIPS values in this table are all averaged over the
seven kernels as shown in Fig. 5. The results of the non-blind methods that rely on the pre-given groundtruth blur kernel and noise level are
marked in gray color to denote unfair comparisons. Besides, some commonly considered model profiles, namely, the number of learnable

parameters (in M), the FLOPs (in G), and the running time (in seconds), are also listed for more comprehensive comparison. Note that the FLOPs
and running time are calculated in the case of super-resolving the low-resolution images with a size of 256× 256.

Methods Noise
Level

Set14 CBSD68 DIV2K100 Model Profile
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ # Param FLOPs Times

Bicubic

0

24.54 0.6352 0.5257 24.68 0.6144 0.6044 25.50 0.6762 0.5349 - - 0.006
HAN [90] 25.36 0.6731 0.4693 25.35 0.6494 0.5477 26.30 0.7115 0.4775 16.07 4653 4.933
IKC [44] 27.24 0.7388 0.3534 26.70 0.7105 0.4253 28.00 0.7741 0.3517 9.05 11537 7.392

DAN [57] 27.49 0.7464 0.3442 26.96 0.7204 0.4053 28.31 0.7832 0.3354 4.33 5013 2.012
DASR [69] 27.74 0.7512 0.3314 27.12 0.7231 0.4026 28.32 0.7805 0.3380 7.25 839 0.525

BSRNet [46] 26.84 0.7129 0.3819 26.38 0.6860 0.4540 27.49 0.7503 0.3829 16.70 4706 1.557
VIRNet (Ours) 27.89 0.7573 0.3165 27.27 0.7330 0.3868 28.60 0.7919 0.3165 5.72 370 0.161
GT+SRMD [68] 27.83 0.7587 0.3180 27.12 0.7283 0.3962 28.44 0.7874 0.3250 1.55 407 0.106

GT+USRNet [56] 27.90 0.7747 0.3181 26.88 0.7408 0.3988 28.84 0.8086 0.3042 17.20 38893 9.214
Bicubic

2.55

24.51 0.6314 0.5590 24.67 0.6114 0.6332 25.44 0.6713 0.5777 - - 0.006
DnCNN [17]+HAN [90] 25.24 0.6596 0.5213 25.23 0.6350 0.6024 26.11 0.6925 0.5618 16.07 4653 4.933
DnCNN [17]+IKC [44] 25.80 0.6795 0.4590 25.66 0.6546 0.5297 26.59 0.7144 0.4702 9.05 11537 7.392

DnCNN [17]+DAN [57] 25.43 0.6685 0.4873 25.46 0.6475 0.5524 26.32 0.7062 0.4964 4.33 5013 2.012
DASR [69] 27.05 0.7197 0.3672 26.50 0.6881 0.4479 27.58 0.7491 0.3830 7.25 839 0.525

BSRNet [46] 26.70 0.7093 0.3801 26.23 0.6797 0.4562 27.31 0.7431 0.3858 16.70 4706 1.557
VIRNet (Ours) 27.18 0.7255 0.3524 26.63 0.6975 0.4305 27.86 0.7597 0.3588 5.72 370 0.161
GT+SRMD [68] 27.15 0.7270 0.3549 26.54 0.6954 0.4367 27.76 0.7578 0.3647 1.55 407 0.106

GT+USRNet [56] 27.42 0.7484 0.3395 26.53 0.7125 0.4249 28.27 0.7809 0.3366 17.20 38893 9.214
Bicubic

7.65

24.25 0.6051 0.6749 24.38 0.5836 0.7662 25.08 0.6381 0.7460 - - 0.006
DnCNN [17]+HAN [90] 24.30 0.5623 0.6899 24.24 0.5321 0.7934 24.78 0.5613 0.7837 16.07 4653 4.933
DnCNN [17]+IKC [44] 25.37 0.6566 0.4639 25.28 0.6323 0.5351 26.13 0.6935 0.4738 9.05 11537 7.392

DnCNN [17]+DAN [57] 25.05 0.6474 0.4991 25.12 0.6253 0.5702 25.97 0.6869 0.5094 4.33 5013 2.012
DASR [69] 26.19 0.6845 0.4055 25.75 0.6516 0.4935 26.75 0.7165 0.4229 7.25 839 0.525

BSRNet [46] 25.58 0.6703 0.4195 25.20 0.6385 0.5083 26.08 0.7023 0.4442 16.70 4706 1.557
VIRNet (Ours) 26.22 0.6873 0.3973 25.81 0.6576 0.4830 26.91 0.7227 0.4103 5.72 370 0.161
GT+SRMD [68] 26.20 0.6881 0.3999 25.74 0.6556 0.4893 26.83 0.7212 0.4156 1.55 407 0.106

GT+USRNet [56] 26.81 0.7115 0.3705 26.09 0.6745 0.4616 27.43 0.7440 0.3818 17.20 38893 9.214

(a) LR Image (b) HR Image (c) Bicubic (d) HAN (e) IKC (f) DAN (g) DASR (h) BSRNet (i) VIRNet

Fig. 6. Visualized super-resolution results of different methods on a synthetic example of Set14 [91] under a scale factor of 4. Specifically, the noise
level is 2.55, and the blur kernel is shown on the upper-right corner of the LR image.

5.2 Image Super-resolution Experiments

In this section, we apply our proposed VIRNet to blind
image super-resolution. Following [69], the DF2K dataset
(containing 800 images from DIV2K [92] and 2650 images
from Flickr2K [93]) was employed as our training data.
When synthesizing the LR images, we followed the settings
of current blind SR literatures [57], [69], i.e.,

y = (z ⊗ k) ↓ds +n, (26)

where y and z denote the low-resolution and high-
resolution image respectively, ⊗ is the 2-D convolution, ↓ds

is the direct4 downsampler with a scale factor of s, and n is
the i.i.d. Gaussian noise with noise level σ. For blur kernel
k, we adopted the general anisotropic Gaussian kernel with
a size of 21×21, and its covariance matrix Σ was generated
as [94], i.e.,

U =

[
cos θ − sin θ
sin θ cos θ

]
, Λ =

[
l21 0
0 l22

]
, Σ = UΛUT . (27)

To be specific, l1, l2, and θ are randomly sampled from [0, s],
[0, s], and [0, π] respectively. For the noise level σ, we set its
range to be [0, 15].

4. Extracting the upper-left pixel for each p× p patch.
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(a) LR Image (b) Bicubic (c) HAN (d) IKC (e) DAN (f) DASR (g) BSRNet (h) VIRNet

Fig. 7. Visualized super-resolution results of different methods on three examples of RealSRSet [46] under a scale factor of 4.

(a) LR Image (b) Bicubic (c) HAN (d) IKC (e) DAN (f) DASR (g) BSRNet (h) VIRNet
Fig. 8. One typical super-resolution result on an example from RealSRSet [46] with a scale factor of 4. In this example, most of the methods fail to
obtain one high-quality HR image except for BSRNet, mainly owning to their mismatch on image degradation.

TABLE 6
The non-reference comparison results of different methods on the

real-world dataset SRRealSet [46] under a scale factor of 4. Best and
second best results are highlighted by bold and underline, respectively.

Metrics Methods
Bicubic HAN IKC DAN DASR BSRNet VIRNet

NRQM↑ 3.35 4.53 4.72 4.43 4.18 4.30 4.68
PI↓ 6.36 5.55 5.33 5.54 5.73 5.50 5.39

5.2.1 Results on Synthetic Data
To be capable of quantitatively evaluating different meth-
ods, we firstly conducted some synthetical experiments
on three commonly used datasets, including Set14 [91],
CBSD68 [80], and DIV2K100 (the validation set of
DIV2K [92]). For the purpose of making a thorough com-
parison on various degradations, we considered seven rep-
resentive and diverse kernels as shown in Fig. 5, includ-
ing three isotropic Gaussian kernels with different ker-
nel widths (i.e., 0.4s, 0.6s, and 0.8s) and four anisotropic
Gaussian kernels, where s is the scale factor. In addition,
three noise levels (i.e., 0, 2.55, and 7.65) are considered
following [56]. As for the metrics, aside from the commonly
used PSNR and SSIM [85], we also adopted LPIPS [95] to
measure the preceptual similarity. Note that PSNR and SSIM
are calculated on the Y channel of the YCbCr space, while
LPIPS is calculated in the sRGB space.

We consider three categories of comparison methods:
1) classical Bicubic interpolation method; 2) five blind
super-resolution methods, including HAN [90], IKC [44],
DAN [57], DASR [69], and BSRNet [46]; 3) two non-blind
methods, i.e., SRMD [68] and USRNet [56], which rely on the
pre-given blur kernel and noise level as input. For these non-
blind methods, we provided the groundtruth blur kernel

and noise level for them, and denoted their results with
the format of “GT+X” (e.g., GT+SRMD). In addition, for
the methods of HAN, IKC and DAN, we firstly denoised
the noisy low-resolution image using DnCNN [17] and then
super-resolved it in the cases of σ = {2.55, 7.65}, since these
methods do not consider image noise during training.

Table 5 lists the comparison results of different methods
under a scale factor of 4, and more results under scale factors
of 2 and 3 are put into the supplementary material. From
Table 5, it can be seen that the proposed VIRNet achieves
the best performance among blind methods in all cases.
Especially, compared with the non-blind methods, VIRNet
is still able to obtain a slightly better or at least compara-
ble results even though they make use of the groudtruth
information of blur kernel and noise level. This indicates
the effectiveness of the proposed blind framework which is
capable of handling the tasks of degradation estimation and
image restoration simultaneously. Further, taking the model
profiles into consideration, the superiorities of VIRNet is
more evident. Specifically, VIRNet has fewer number of
parameters, fewer FLOPs, and faster speed than both the
SotA blind method DASR [69] and the non-blind method
USRNet [56].

In Fig. 6, we display the denoising results on three
typical visual examples of Set14 with a scale factor of 4.
Note that we only show the results of blind super-resolution
methods for a fair comparison. It can be easily seen that
the proposed VIRNet is able to recover more realistic and
sharper results, which are evidently closer to the groudtruth
high-resolution images than other methods. The results of
most comparison methods are relatively blurry and lose
some image details. In the second example (the middle
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TABLE 7
The PSNR results of FFDNet [20] with the groudtruth noise level and

with that estimated by the proposed VIRNet on CBSD68 [80] under the
i.i.d. Gaussian noise setting.

Methods Noise Levels
σ = 15 σ = 25 σ = 50

FFDNetGT 33.87 31.20 27.95
FFDNetVIR 33.87 31.20 27.92

TABLE 8
The PSNR results of FFDNet [20] with the groudtruth noise variance

map and with that estimated by the proposed VIRNet on CBSD68 [80]
under the non-i.i.d. Gaussian noise.

Methods Noise Cases
Case 1 Case 2 Case 3

FFDNetGT 28.79 28.42 28.68
FFDNetVIR 28.75 28.39 28.65

row), IKC and DAN lead to a relatively severe corruption
on the original image color. That’s possibly caused by the
inconsistency of their multiple iterations, since they both
adopt the coarse-to-fine manner to gradually adjust the
results. Due to the careful considerations on the degradation
model, DASR and BSRNet also perform well compared with
other methods. However, VIRNet still evidently surpasses
them in terms of the quantitative and qualitative results.
This further substantiates the effectiveness of the proposed
variational framework.

5.2.2 Results on Real Data
In this part, we further justify the effectiveness of the pro-
posed VIRNet on the real-world dataset RealSRSet [46]. It
contains 20 real images that are commonly used in previous
literatures [20], [97], [98], [99] or downloaded from internet.
Since the underlying high-resolution images for them are
not available, we thus mainly evaluate different methods
by visual comparisons. Fig. 7 displays three typical super-
resolution examples with a scale factor of 4. In the first (top
row) and second (middle row) examples, the LR images
both contain some image noises, which makes the super-
resolution goal more challenging. The methods of Bicubic,
HAN, IKC, and DAN all fail to deal with such cases, and
produce some artifacts in the areas with image noises. As
for DASR and BSRNet, they unfortunately erase the high
frequency image details when removing the image noises.
One can easily observe that the proposed VIRNet makes a
good trade-off between preserving the image details and re-
moving the image noises. In the third (bottom row) example,
the results of IKC and VIRNet are more natural and realistic
than others that are all blurry to different extent. These
results verify the stable and consistently well performance
of VIRNet in the real-world super-resolution task.

In Table 6, we adopt two non-reference metrics (i.e.,
NRQM [100] and PI [101]) to further quantitatively eval-
uate different methods. It can be seen that the proposed
VIRNet achieves the second best results in terms of both
metrics, only slightly worse than IKC, which indicates the
effectiveness of our method. Combining its better visual per-
formance as shown in Fig. 7, especially compared with those
obtained by IKC, the relative superiority of the proposed
method can still be validated.

5.2.3 Discussion on Blur Kernel
The degradation model, especially the blur kernel, is still an
open yet challenging research topic in the field of image

TABLE 9
The average kernel MSE (1E-5) values of different methods on

DIV2K20 with a scale factor of 4.

Metrics Methods
KernelGan [96] DIPFKP [63] BSRDM [64] VIRNet

MSE↓ 4.34 1.73 1.60 0.89

TABLE 10
The average comparison results of USRNet combined with different
kernel estimation methods on DIV2K20 with a scale factor of 4. Note
that “GT+USRNet” denotes the results of USRNet with the pre-given

groudtruth kernels.

Methods Metrics
PSNR↑ SSIM↑ LPIPS↓

KernelGan [96]+USRNet [56] 14.52 0.358 0.522
DIPFKP [63]+USRNet [56] 24.02 0.676 0.363
BSRDM [64]+USRNet [56] 27.07 0.771 0.326

VIRNet+USRNet [56] 28.53 0.796 0.313
GT+USRNet [56] 29.19 0.805 0.302

super-resolution [46], [102]. In this work, we adopt the
anisotropic Gaussian assumption for the blur kernel follow-
ing most of related literatures [44], [57], [63], [67], [68], [69].
Even though such general kernel hypothesis is sufficient in
most of scenarios, it still possibly leads to some unsatis-
factory results in some cases. For instance, Figure 8 shows
one typical failed example. In this example, the LR image
contains some obvious “ringing artifacts” that looks like
bands or ghosts near edges, which are usually produced by
the sharping algorithm or image compression. The Gaussian
kernel based methods (i.e., IKC [44], DAN [57], DASR [69],
and the proposed VIRNet) all cannot successfully resolve
this image, while BSRNet [46] performs well in this case,
mainly because it integrates multiple complicated kernel
settings. Therefore, it is necessary to exploit more rational
and general kernel (or degradation) modeling method for
image super-resolution, and we leave this to our future
work.

5.3 Degradation Estimation Experiments
In this subsection, we empirically verify the effectiveness of
our method in the task of degradation estimation, including
noise estimation and kernel estimation.

5.3.1 Noise Estimation
Different from most of the current IR methods, the pixel-
wise non-i.i.d. Gaussian assumption is adopted to fit the
noise distribution in our method. Next, we analyse the
performance of our method with such an assumption under
several common noise types in IR tasks:
I.I.D. Gaussian Noise. Even though VIRNet is designed on
the basis of non-i.i.d. Gaussian noise assumption, it can be
generalized well to the i.i.d. Gaussian noise as shown in
Table 2. To further quantitatively illustrate this point, we
take the estimated noise level by our method as the input
of FFDNet [20], which is a typical non-blind i.i.d. Gaus-
sian denoising method that relies on the pre-known noise
level. Table 7 lists the PSNR comparison results of FFDNet
with different noise level settings, in which FFDNetVIR and
FFDNetGT denote the results of FFDNet taking the predicted
noise level by VIRNet and the groundtruth noise level
as input respectively. We can see that FFDNetVIR is able
to achieve the same performance with FFDNetGT when
σ = {15, 25}, or very close performance when σ = 50, even
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TABLE 11
The qualitative comparisons of different posteriori factorizations on DIV2K100 with scale factor 4. Note that these results are averaged on the

seven kernels shown in Fig. 5, and the noise level is set as 2.55.

Models Posteriori Factorizations Metrics
PSNR↑ SSIM↑ LPIPS↓

Baseline1 q(z,σ2,Λ|y) = q(z|y)q(σ2|y)q(Λ|y) 27.69 0.7568 0.3641
Baseline2 q(z,σ2,Λ|y) = q(z|y,σ2)q(σ2|y)q(Λ|y) 27.71 0.7561 0.3632
Baseline3 q(z,σ2,Λ|y) = q(z|y,Λ)q(σ2|y)q(Λ|y) 27.86 0.7596 0.3611
VIRNet q(z,σ2,Λ|y) = q(z|y,σ2,Λ)q(σ2|y)q(Λ|y) 27.86 0.7597 0.3588

（a) Noisy Image （b) Groundtruth （c) Noise （d) Variance Map

Fig. 9. One typical visual example in SIDD [65] dataset. From left to right:
(a) noisy image y; (b) noise-free image x; (c) image noise calculated
through |y − x|; (d) variance map predicted by the proposed method.

though FFDNetGT makes use of the true noise level. This
indicates that VIRNet is capable of properly estimating the
noise levels of the i.i.d. Gaussian noise.
Non-I.I.D. Gaussian Noise. In Sec. 5.1.1, we adopt three
groups of noise variance maps (see Fig. 2 (b1-d1)) to syn-
thesize the testing data, so as to evaluate the performance
of VIRNet under the non-i.i.d. Gaussian noise. Correspond-
ingly, Fig. 2 (b2-d2) further displays the variance maps
predicted by VIRNet for easy visualization. It can be seen
that these predicted variance maps have very similar spatial
variation with the groundtruth ones, which are expected
to facilitate the subsequent denoising task or other non-
blind denoising methods. To justify this point, we also
apply these predicted variance maps in FFDNet [20] to
test its performance under the non-i.i.d. Gaussian noise,
and the quantitative comparisons are listed in Table 8. One
can see that FFDNetVIR and FFDNetGT have very similar
performance, and the performance difference between them
is less than 0.04dB PSNR. This indicates that VIRNet is able
to effectively handle such complicated noise distribution.
Signal-dependent Noise. The challenge in real-world image
denoising is mainly attributed to the signal-dependentness
of the image noise. Fig. 9 shows one typical real-world
noisy example coming from SIDD [65] dataset and the
corresponding variance maps predicted by VIRNet. Note
that the variance map has been enlarged several times
for easy visualization. It is easy to see that the estimated
noise variance map depicts strong relevance to the pixel
illumination, implying that the proposed VIRNet is able to
finely approximate the signal-dependent real noise.

5.3.2 Kernel Estimation
As is well known, kernel estimation plays an important
role in blind image super-resolution [103]. To evaluate the
effectiveness of VIRNet in this subtask, we compare three
recent kernel estimation methods specifically designed for
super-resolution, including KernelGan [96], DIPFKP [63],
and BSRDM [64]. Since these three methods are all relatively
time-consuming, we randomly select 20 images from the
validation set of DIV2K [92] (denoted as DIV2K20) as testing
data. The LR images are synthesized using the last four
anisotropic Gaussian kernels in Fig. 5 under a scale factor
of 4, and the noise level is set as 2.55.

As for the evaluation, we use two ways to compare
the performance of different methods. Firstly, the mean
square error (MSE) between the estimated kernel and the
groudtruth kernel is an intuitive metric that directly reflects
the accurancy of the estimate kernel. The detailed compari-
son results are listed in Table 9. Secondly, we apply the esti-
mated blur kernels in a non-blind super-resolution method
USRNet [56] and then compare the recovered HR image in
terms of PSNR, SSIM [85], and LPIPS [95]. The comparison
results on these three metrics are listed in Table 10. From
both tables, one can easily observe that the proposed VIRNet
exhibits evident superiority over other competing methods.

5.4 Analysis on Posteriori Factorization

When designing the variational inference algorithm in
Sec. 4, we factorize the variational distribution q(z,σ2,Λ|y)
into a conditional format of Eq. (12), which fundamentally
induces the cascaded inference framework in Fig. 1. In
fact, different factorized assumptions on q(z,σ2,Λ|y) will
lead to different designs on the inference framework. For
example, the following unconditonal factorization

q(z,σ2,Λ|y) = q(z|y)q(σ2|y)q(Λ|y), (28)

will induce a parallel inference architecture. Specifically, the
three sub-networks, namely SNet, KNet, and RNet, will feed-
forward independently in such a parallel framework, but
they are able to interact during back propagation through
ELBO. Please refer to our previous conference version [27]
for a thorough overview on this point.

To validate the superiority of the conditional form of
Eq. (12), we consider different posteriori factorizations and
empirically compare their performance on the task of im-
age super-resolution, since it involves more general degra-
dations than image denoising. Table 11 lists the average
comparison results on DIV2K100 with a scale factor of 4.
As compared with Baseline1, it can be seen that VIRNet
achieves evident performance gain, which indicates that the
degradation information (i.e., the noise level and the blue
kernel) can facilitate the image restoration task. In fact, such
a conditional factorization in VIRNet is consistent with the
classical model-based methods that decompose the blind IR
in two subproblems, namely degradation estimation and
image restoration. The superiority of Baseline3 over Base-
line2 demonstrates that the kernel information can bring up
more marginal performance improvement than the noise
level, complying with the conclusion in [103]. However,
the performance gain of VIRNet over Baseline3 on LPIPS
substantiates that conditioning on the noise level can further
improve the perceptual quality of the recovered images.
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6 CONCLUSION

In this paper, we have proposed a novel deep variational
network for blind IR, which aims to finely integrate the
merits of both classical model-based methods and recent
DL-based methods. On one hand, we have constructed a
Bayesian generative model for blind image denoising and
image super-resolution, by carefully considering the image
degradation from the perspectives of image noise and blur
kernel. On the other hand, a variational inference algorithm
has been elaborately designed to solve the proposed model,
in which the posteriori distribution are all parameterized
by DNNs to increase the non-linear fitting capability. Most
notably, this variational algorithm induces a unified frame-
work to simultaneously deal with the tasks of degradation
estimation and image restoration. Extensive experiments
have also been conducted to demonstrate the superiority
of our method on image denoising and super-resolution.
In the future, we will make further effort to extend our
method to deal with more complicated and general image
degradations.
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