Greater New York event spansors
Programming Contest

) 201 1 Adelphi University = _=__5;-_5 " \
Garden Gity, NY ——=T=, J

=

ao

A ¢ Repeating Characters

For this problem, you will write a program that takes a string of characters, S, and creates a new
string of characters, T, with each character repeated R times. That is, R copies of the first character
of S, followed by R copies of the second character of S, and so on. Valid characters for S are the QR
Code “alphanumeric” characters:

0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZSS*+—./:
Input

The first line of input contains a single integer P, (1 < P < 1000), which is the number of data sets
that follow. Each data set is a single line of input consisting of the data set number N, followed by a
space, followed by the repeat count R, (1 <= R <= 8), followed by a space, followed by the string S.
The length of string S will always be at least one and no more than 20 characters. All the characters
will be from the set of characters shown above.

Output

For each data set there is one line of output. It contains the data set number, N, followed by a single
space which is then followed by the new string T, which is made of each character in S repeated R
times.

Sample Input Sample Output

2 1 AAABBBCCC

1 3 ABC 2 /////HHHHHTTTTTPPPPP
2 5 /HTP

Greater New York Regional A + Repeating Characters

Greater New York event spansors
dCimn -

) Programming Contest e —
Adelphi University = =:== '*\
@ 201 1 Garden Gy, NY ===7= TV

el

B ¢ The Rascal Triangle

The Rascal Triangle definition is similar to that of the Pascal Triangle. The rows are numbered from
the top starting with 0. Each row n contains n+1 numbers indexed from 0 to n. Using R (n, m) to
indicate the index m item in the index n row:

R(n,m) = 0forn < 0 ORm < 0 ORm > n
The first and last numbers in each row (which are the same in the top row) are 1:
R(n,0) = R(n,n) =1

The interior values are determined by (UpLeftEntry * UpRightEntry + 1)/UpEntry
(see the parallelogram in the array below):

R(n+l,m+1) = (R(n,m) * R(n,m+1l) + 1)/R(n-1,m)
1

1 1

1 2 1
/\

1 3 3 1
\ /

Write a program which computes R (n, m) the mt" element of the n" row of the Rascal Triangle.
Input

The first line of input contains a single integer P, (1 < P < 1000), which is the number of data sets
that follow. Each data set is a single line of input consisting of 3 space separated decimal integers.
The first integer is data set number, N. The second integer is row number n, and the third integer is
the index m within the row of the entry for which you are to find R (n, m) the Rascal Triangle entry (0
<= m <= n <= 50000).

Greater New York Regional B * The Rascal Triangle

dCm
G4 8 2011

ao

Output

Greater NeW York event sponsors
Programming Contest

Adelphi University =\
Garden City, NY ===7=, U |J

For each data set there is one line of output. It contains the data set number, N, followed by a single
space which is then followed by the Rascal Triangle entry R (n, m) accurate to the nearest integer

value.

Sample Input Sample Output
5 11

140 2 5

2 4 2 3 411495886
3 45678 12345 4 24383845

4 12345 9876 5 264080263
5 34567 11398

Greater New York Regional

B * The Rascal Triangle

Greater New York event spansors
acim Programming Contest i

I) 2 01 1 Adelphi University
Garden City, NY

C ¢ Programming the EDSAC

:Ft\J

ao

The world's first full-scale, stored-program, electronic, digital computer was the EDSAC (Electronic
Delay Storage Automatic Calculator). The EDSAC had an accumulator-based instruction set,
operating on 17-bit words (and 35-bit double words), and used a 5-bit teletypewriter code for input
and output.

The EDSAC was programmed using a very simple assembly language: a single letter opcode
followed by an unsigned decimal address, followed by the the letter ‘F' (for full word) or ‘D' (for double
word). For example, the instruction “A 128 F” would mean “add the full word at location 128 to the
accumulator’, and would be assembled into the 17-bit binary value, 11100000100000000,
consisting of a 5-bit opcode (11100 = “add”), an 11-bit operand (00010000000 = 128), and a single
0 bit denoting a full word operation (a 1 bit would indicate a double word operation).

Although arithmetic on the EDSAC was fixed point two's complement binary, it was not mere integer
arithmetic (as is common with modern machines). The EDSAC hardware assumed a binary point
between the leftmost bit and its immediate successor. Thus the hardware could handle only values in
therange -1.0 <= x < 1.0. For example:

Value Binary Representation
-1.0 10000000000000000

¥ 01000000000000000

%4 01100000000000000

-3 11000000000000000

As you can see, the largest possible positive value was:

01111111111111111 = 0.9999847412109375

and the smallest possible positive value was:

00000000000000001 = 27** = 0.0000152587890625

(This also happens to be the increment between successive values on the EDSAC).

By a curious coincidence (or an elegant design decision), the opcode for the add operation (11100)
was the same as the teleprinter code for the letter ‘A’. The opcode for subtract was the same as the
teleprinter code for ‘s’ (01100), and so on. This simplified the programming for the assembler
(which, incidentally, was a mere 31 instructions long). The EDSAC teleprinter alphabet was
‘PQWERTYUIOJ#SZK*?F@D!HNM&LXGABCV” (with ‘P’ = 00000, ‘Q' = 00001, and so on, up to V'’
=11111).

Greater New York Regional C * Programming the EDSAC

Greater New York event spansors
dCimn -

Programming Contest
!Q) 2 01 1 Adelphi University
Garden City, NY

el

[{rml|
b
|;:”||
‘1-..
&

Unfortunately, the EDSAC assembler had no special directives for data values. On the other hand,
there was no reason that ordinary instructions couldn't be used for this, thus, an EDSAC programmer
desiring to reserve space for the constant 3 (represented as 01100000000000000) would use the
instruction “s 0 F” and for ' /5 (which is approximately represented as 00101010101010101) “T
682 D”, and so on.

Your job is to write a program that will translate decimal input values into the appropriate EDSAC
instructions.

Input

The first line of input contains a single integer P, (1 < P <1000), which is the number of data sets that
follow. Each data set is a single line that consists of two space separated values N and D. N is the

data set number. D is the decimal number of the form sd.ddd...., where s is an optional minus sign,
and d is any decimal digit (0-9). There will be at least 1 and at most 16 digits after the decimal point.

Output

For each data set there is one line of output. It contains the data set number (N) followed by a single
space, followed by the EDSAC instruction necessary to specify the given constant. The instruction
should be printed as follows: the “opcode” character followed by a space followed by the operand (as
a non-negative decimal integer) followed by a space followed by an ‘F’ or ‘D’ (as appropriate). If the
constant cannot be represented exactly in 17 bits, the value is to be rounded toward zero (up for
negative, down for positive numbers). If the input value D is notinthe range -1.0 <= D < 1.0, the
string “INVALID VALUE” should be printed instead of an EDSAC instruction.

Sample Input Sample Output

16 1 1ITO0F

1 0.5 2 & 0 F

2 -0.5 3?2 0F

3 -1.0000000 4 Q 1228 D

4 0.1 5P 0D

5 0.0000152587890625 6 PO F

6 0.0000152587890624 7 P 0D

7 0.0000152587890626 8 vV 2047 D

8 -0.0000152587890625 9P 0F

9 -0.0000152587890624 10 v 2047 D

10 -0.0000152587890626 11 * 2047 D

11 0.9999999999999999 12 2 0 D

12 -0.9999999999999999 13 INVALID VALUE
13 -5.3 14 INVALID VALUE
14 9.1 15 INVALID VALUE
15 -1.0000000000000001 16 T 54 F

16 0.31415926

Greater New York Regional C * Programming the EDSAC

Greater New York event sponsar
acim Programming Contest S

!) 2 0 1 0 Rutgers University
Piscataway, NJ

=

ao

D ¢ Decoding EDSAC Data

The world's first full-scale, stored-program, electronic, digital computer was the EDSAC (Electronic
Delay Storage Automatic Calculator). The EDSAC had an accumulator-based instruction set,
operating on 17-bit words (and 35-bit double words), and used a 5-bit teletypewriter code for input
and output.

The EDSAC was programmed using a very simple assembly language: a single letter opcode
followed by an unsigned decimal address, followed by the the letter ‘F' (for full word) or ‘D' (for double
word). For example, the instruction “A 128 F” would mean “add the full word at location 128 to the
accumulator’, and would be assembled into the 17-bit binary value, 11100000100000000,
consisting of a 5-bit opcode (11100 = “add”), an 11-bit operand (00010000000 = 128), and a single
0 bit denoting a full word operation (a 1 bit would indicate a double word operation).

Although arithmetic on the EDSAC was fixed point two's complement binary, it was not mere integer
arithmetic (as is common with modern machines). The EDSAC hardware assumed a binary point
between the leftmost bit and its immediate successor. Thus the hardware could handle only values in
therange -1.0 <= x < 1.0. For example:

Value Binary Representation
-1.0 10000000000000000

s 01000000000000000

%4 01100000000000000

-5 11000000000000000

As you can see, the largest possible positive value was:

01111111111111111 = 0.9999847412109375

and the smallest possible positive value was:

00000000000000001 = 27 = 0.0000152587890625

(This also happens to be the increment between successive values on the EDSAC).

By a curious coincidence (or an elegant design decision), the opcode for the add operation (11100)
was the same as the teleprinter code for the letter ‘a’. The opcode for subtract was the same as the
teleprinter code for ‘s’ (01100), and so on. This simplified the programming for the assembler (which,
incidentally, was a mere 31 instructions long). The EDSAC teleprinter alphabet was
‘PQWERTYUIOJ#SZK*?F@D!HNM&LXGABCV” (with ‘P’ = 00000, ‘Q'= 00001, and so on, up to V'’
=11111).

Unfortunately, the EDSAC assembler had no special directives for data values. On the other hand,

Greater New York Regional D « Decoding EDSAC Data

Greater New York event sponsar
dCihn -

Programming Contest e —
Piscataway, NJ —_——— —
-

there was no reason that ordinary instructions couldn't be used for this, thus, an EDSAC programmer
desiring to reserve space for the constant 2 (represented as 01100000000000000) would use the
instruction “s 0 F” and for */; (which is approximately represented as 00101010101010101) “T
682 D”, and so on.

Your job is to write a program that will translate EDSAC instructions into the appropriate decimal
fractions.

Input

The first line of input contains a single integer P, (1 < P < 1000), which is the number of data sets that
follow. Each data set is a single line that contains N (the dataset number), followed by a space,
followed by an EDSAC instruction of the form: c//d/ /s, where c is a single character in the EDSAC
alphabet, d is an unsigned decimal number (0 <= d < 2''), and s is either a ‘D’ or ‘F’. Note:[]
represents a single space.

Output

For each data set there is one line of output. It contains the data set number (N) followed by a single
space, followed by the exact decimal fraction represented by the by the EDSAC instruction, including
a minus sign (for negative values). The format for the decimal fraction is: sb.ddd..., where s is an
optional minus sign, b is either a 1 or 0, and d is any decimal digit (0-9). There must be at least 1 and
at most 16 digits after the decimal point. Trailing zeros in the fraction must be suppressed.

Sample Input Sample Output

13 1 0.0

1 POF 2 0.5

2 I 0F 3 -0.5

3 & 0F 4 -1.0

4 2 0F 5 0.0999908447265625
50 1228 D 6 0.0000152587890625
6 P 0D 7 -0.0000152587890625
7V 2047 D 8 0.9999847412109375
8 * 2047 D 9 -0.9999847412109375
9 2 0D 10 0.0078125

10 P 256 F 11 -0.015625

11 V 1536 F 12 0.3333282470703125
12 T 682 D 13 0.31414794921875
13 T 54 F

Greater New York Regional D « Decoding EDSAC Data

m Greater NBW York event sponsors
Programming Contest
’_Ft\J

!) 2 01 1 Adelphi University
Garden City, NY

=

ao

E ¢ Route Redundancy

A city is made up exclusively of one-way streets. Each street in the city has a capacity, the maximum
number of cars it can carry per hour. Any route (path) also has a capacity, which is the minimum of
the capacities of the streets along that route.

The redundancy ratio from point A to point B is the ratio of the maximum number of cars that can get
from A to B in an hour using all routes simultaneously, to the maximum number of cars that can get
from A to B in an hour using just one route. The minimum redundancy ratio is the number of cars that
can get from A to B in an hour using all possible routes simultaneously, divided by the capacity of the
single route with the largest capacity.

Input

The first line of input contains a single integer P, (1 < P < 1000), which is the number of data sets that
follow. Each data set consists of several lines and represents a directed graph with positive integer
weights.

The first line of each data set contains five space separated integers. The first integer, D is the data
set number. The second integer, N (2 <= N <= 1000), is the number of nodes in the graph. The third
integer, E, (E >= 1), is the number of edges in the graph. The fourth integer, A, (0 <= A < N), is the
index of point A. The fifth integer, B, (0 <= B < N, A != B), is the index of point B.

The remaining E lines describe each edge. Each line contains three space separated integers. The
first integer, U (0 <= U < N), is the index of node U. The second integer, V(0 <= V<N, V !I=U), is the
index of node V. The third integer, W (1 <= W < 1000), is the capacity (weight) of the path from U to
V.

Output

For each data set there is one line of output. It contains the data set number (N) followed by a single
space, followed by a floating-point value which is the minimum redundancy ratio to 3 digits after the
decimal point.

Greater New York Regional E « Route Redundancy

m

Greater New York event sponsors

Programming Contest e —

dC
i Uni i = = === !

Q@) 201 1 ey = ===, :{.\J
Sample Input Sample Output
1 1 1.667
1 7 11 0 6
01 3
0 3 3
12 4
2 0 3
2 31
2 4 2
342
356
411
4 61
569

Greater New York Regional

E « Route Redundancy

m Greater NeW York event sponsors

@) 201 1 rogriﬁ:;:?trligﬁtrsitfntESt EEE__'?':E_ ’_I:I\J

Garden City, NY ——— T

ao

FeQR

QR Codes (the smallest, which is 21 pixels by 21 pixels, is shown below) are square arrays of black
or white pixels (modules) which include Position Detection Patterns (the square bull’s-eye patterns),
Timing Patterns (the alternating black and white lines), Alignment Patterns in larger QR Codes,
Format Information (the stippled pixels), Version information in larger QR Codes and Data and Error
Correction Codewords (gray 8 pixel blocks).

h

The 21-by-21 QR Code has 26 data and error correction codewords. At the lowest error correction
level for this code, 19 are data codewords and 7 are error correction codewords. Data may be
encoded as numeric at 3 numbers per 10 bits, as alphanumeric at 2 characters per 11 bits, as 8 bit
bytes or as Kaniji at 13 bits per character. Data is encoded in groups of (mode, character count,
character data bits). The mode can change within the data stream. The mode is specified by a 4 bit
code and the character count by a varying number of bits depending on the mode and QR Code size.
For the 21-by-21 code, the character count bits are:

Mode Name Mode Bits | Count Bits
Numeric 0001 10
Alphanumeric 0010 9

8 bit byte 0100 8

Kaniji 1000 8
Termination 0000 0

Greater New York Regional F-QR

Greater New York event spansors
dCimn -

% Programming Contest e —

Adelphi University = =:== '*\
@ 201 1 Garden ity NY' ===7= Ty
aad

The entire data stream ends in the termination code which may be truncated if there is not enough
room. Any partially filled codeword after the termination code is filled with 0 bits. Any remaining
codewords are setto 11101100 followed by 00010001 alternating.

Numeric strings are encoded 3 digits at a time. If there are remaining digits, 2 digits are encoded in 7
bits or 1 digit in 4 bits. For example:

12345678 — 123 456 78 — (0001111011 0111001000 1001110
Prefix with mode (0001) and count (8 = 0000001000) is(4 + 10 + 10 + 10 + 7) bits:
0001 0000001000 0001111011 0111001000 1001110
Alphanumeric strings encode the characters (<SP> represents the space character):
0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZ<SP>S$%*+— ./ :
as numbers from 0 to 44, then two characters are encoded in 11 bits:
<first char code> * 45 + <second char code>
if the number of characters is odd, the last character is encoded in 6 bits. For example:

AC-42 — (10, 12, 41, 4, 2) — 10*45 + 12 = 462, 41%45 + 4 = 1849, 2 —
00111001110 11100111001 000010

Prefix with mode and count is (4 + 9 + 11 + 11+ 6) bits:
0010 000000101 00111001110 11100111001 000010
The 8 bit binary and Kanji modes will be straightforward for the purposes of this problem. Kaniji codes
will just be opaque 13 bit codes; you need not decode the characters they represent, just the
hexadecimal values. For example:
8 bit 0x45 0x92 0Oxa3 — 01000101 10010010 10100011

Prefix with mode and countis (4 + 8 + 8 + 8 + 8) bits:

0100 00000011 01000101 10010010 10100011

Greater New York Regional F-QR

acm Greater New York event sponsors
Programming Contest

LB 2011 e

= Garden City, NY

aad

Kanji 0x1ABC 0x0345 — 1101010111100 0001101000101

"||||||
(A
||||||||
m”m
5
&

Prefix with mode and countis (4 + 8 + 13 + 13) bits:
1000 00000010 1101010111100 0001101000101

To illustrate forming the 19 codeword content of a QR Code, combine the first 3 sequences above (for
numeric, alphanumeric and bytes). Concatenate the bits, split into 8 bit code words add the
termination codeword, any fill bits and fill bytes (41 + 41 + 36 data bits + 4 bit termination code =
122 — ¢ fill bits are needed to get 16 bytes, and to fill out the 19 bytes, 3 fill bytes are needed):

0001 0000001000 0001111011 0111001000 1001110
0010 000000101 00111001110 11100111001 000010
0100 00000011 01000101 10010010 10100011

0000 000000 11101100 00010001 11101100

split into 8 bit codewords:

00010000 00100000 01111011 01110010 00100111 00010000 00010100 11100111
01110011 10010000 10010000 00001101 00010110 01001010 10001100 000000O0O
11101100 00010001 11101100 — HEX 10207B72271014E77390900D164A8COEC11EC

Write a program to read 19 codewords and print the corresponding data.
Input

The first line of input contains a single integer P, (1 < P < 1000), which is the number of data sets
that follow. Each data set is a single line of input consisting of the data set number, N, followed by a
single space and 38 hexadecimal digits giving the 19 bytes of QR Code data. The valid hexadecimal
digitsareo0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E andF.

Output

For each data set there is one line of output. It contains the data set number (N) followed by a single
space, the number of QR decoded characters in the result, a single space and the character string
corresponding to the QR Code data. In the output string, printable ASCII characters (in the range
0x20 to 0x7e) are printed as the ASCII character EXCEPT that backslash (\) is printed as \\ and
pound sign (#) is printed as \#. Non-printable 8 bit data is output as \xx, where x is a hexadecimal
digit (e.g. \AE). Non-printable 8 bit data is any value that is less than the ASCII value of a space
(0x20) or greater than 0x76. 13 bit Kanji values are printed as #bxxx, wherebis 0 or 1 and x is a
hexadecimal digit (e.g. #13AC).

Greater New York Regional F-QR

a c m Greater New York event spansors

Programming Contest e —
9@) 201 1 Acggrlgginugiitfﬁi\ty iE-E-_-?-—E— ’_ﬁJ

ao

Sample Input

4

1 10207B72271014E77390900D164A8C00ECI1EC
2 802D5EOD1400ECI11ECI11EC11ECI1ECI1ECI1EC
3 20BB1AAG6SFI9FD/DCOED88COT73E15EF533EBOEC
4 2010B110888D9428D937193BI9CEAODT7F45DF68

Sample Output

1 16 12345678AC-42E\92\A3

2 2 #1ABC#0345

3 23 HTTP://WWW.ACMGNYR.ORG/

4 36 3.1415926535897932384626433832795028

Greater New York Regional F-QR

m Greater NBW York event sponsors
Programming Contest
’_Ft\J

!) 2 01 1 Adelphi University
Garden City, NY

G ¢ Rancher’s Gift

ao

Rancher Joel has a tract of land in the shape of a convex quadrilateral that he wants to divide among
his sons Al, Bob, Chas and Dave, who wish to continue ranching on their portions, and his daughter
Emily, who wishes to grow vegetables on her portion.

The center of the tract is most suitable for vegetable farming so Joel decides to divide the land by
drawing lines from each corner (2, B, C, D in counter clockwise order) to the center of an opposing
side (respectively A7, B’, C’ and D’). Each son would receive one of the triangular sections and
Emily would receive the central quadrilateral section. As shown in the figure, Al's tract is to be
bounded by the line from 2 to B, the line from A to the midpoint of BC and the line from B to the
midpoint of CD; Bob’s tract is to be bounded by the line from B to C, the line from B to the midpoint of
CD and the line from C to the midpoint of D2, and so on.

D

Your job is to write a program that will help Rancher Joel determine the area of each child’s tract and
the length of the fence he will have to put around Emily’s parcel to keep her brothers’ cows out of her
crops.

For this problem, A will always be at (0, 0) and B will always be at (x, 0). Coordinates will be in

rods (a rod is 16.5 feet). The returned areas should be in acres to 3 decimal places (an acre is 160
square rods) and the length of the fence should be in feet, rounded up to the next foot.

Greater New York Regional G * Rancher’s Gift

Greater NBW York event spansors

aCin . C test U
BB 2011 e IEE A

el

Input

The first line of input contains a single integer P, (1 < P < 1000), which is the number of data sets
that follow. Each data set is a single line that contains of a decimal integer followed by five (5) space
separated floating-point values. The first (integer) value is the data set number, N. The floating-point
values are B.x, C.x, C.y, D.x and D.y in that order (where Vv . x indicates the x coordinate of v and
V.y indicates the y coordinate of). Recall that the y coordinate of B is always zero (0). The
supplied coordinates will always specify a valid convex quadrilateral.

Output

For each data set there is a single line of output. It contains the data set number, N, followed by a
single space followed by five (5) space separated floating point values to three (3) decimal place
accuracy, followed by a single space and a decimal integer. The floating-point values are the areas
in acres of the properties of Al, Bob, Chas, Dave, and Emily respectively. The final integer is the
length of fence in feet required to fence in Emily’s property (rounded up to the next foot).

Sample Input

3

1 200 250 150 =50 200

2 200 200 100 O 100

3 201.5 157.3 115.71 -44.2 115.71

Sample Output

1 35.000 54.136 75.469 54.167 54.666 6382
2 25.000 25.000 25.000 25.000 25.000 4589
3 29.144 29.144 29.144 29.144 29.144 4937

Greater New York Regional G * Rancher’s Gift

Greater New York event spansors
% acim Programming Contest ;=_t:_p
Gs % 2011 rsop oty IEEE A
H ¢ Maximum in the Cycle of 1

If Pis a permutation of the integers 1, .., n, the maximum in the cycle of 1 is the maximum of the
values P(1), P(P(1)), P(P(P(1))), etc. Forexample, if Pis the permutation:

|11 2 345 6 7 8]
1325417 8 6]
we have
P(l1) = 3
P(P(1l)) = P(3) =5
and
P(P(P(1))) = P(5) =1

so the maximum in the cycle of 1 is 5.

For this problem, you will write a program which takes as input integers n, (n > 0) and
k (1 <= k <= n), and returns the number of permutations of the integers 1, .., n, for which the
maximum in the cycle of 1 is k.

Input

The first line of input contains a single integer P, (1 < P < 1000), which is the number of data sets
that follow. Each data set is a single line that contains the three space separated decimal integer
values. The first value is the data set number, N. The second value is the size of the permutation, n
where (1 <= n <= 20), and the third value is the desired maximum in the cycle of 1, k where
(1 <= k <= n).

Output
For each data set there is one line of output. It contains the data set number (N) followed by a single

space, followed by a double precision floating point whole value which is the number of permutations
of the integers 1, .., n, for which the maximum in the cycle of 1 is k.

Greater New York Regional H ¢« Maximum in the Cycle of 1

Greater New York event sponsors

Programming Contest e —

i Uni i = = === !
Q@) 201 1 ey = ===, :{.\J
Sample Input Sample Output
4 1 6
141 2 168
27 3 3 86400
3 10 5 4 1158524765798400
4 20 7

Greater New York Regional

H ¢« Maximum in the Cycle of 1

Greater New York event spansors
acim Programming Contest -
’_ft\J

'8 2011

Garden City, NY
a<

| e The Golden Ceiling

ao

The main office of the Bank of Zork was built in the Aragain Village (later known as Flatheadia) in the
year 722 of the Great Underground Empire (GUE). In 788 GUE, the chairman, J. Pierpont Flathead,
decided (shortly before his unexplained disappearance in 789), that it was time to completely
redesign the already ornate bank atrium with a ceiling covered in brilliant gold leaf.

This new ceiling was not your ordinary ceiling. Although the atrium is essentially a big box, the ceiling
would be slanted (supposedly, making the atrium look bigger). At the time, the exact dimensions of
the rectangular atrium and the slope and location of the slanted ceiling had not been finalized.
Flathead wanted to know how much gold leaf he would have to order from the Frobozz Magic Gold
Leaf Company to cover the ceiling for different atrium dimensions and ceiling slants. He also wanted
to allow the slanted part to possibly hit the floor of the box and/or the top of the box.

Consider the following rough sketches of some possible atrium configurations:

Note: The dashed outline represents the original box, the horizontally ruled surface is the slanted part
of the ceiling and the cross hatched surface is the part of the top of the box not cut off by the plane.
The walls and floor of the atrium are transparent. The total area to be covered (the ceiling) is the
slanted part plus any part of the top of the original box that is not cut off by the plane.

Your job is to write a program that Flathead could have used to calculate the amount gold leaf
required to cover the ceiling for a particular configuration.

As a sad epilogue, the main branch was brought to ruins when the Curse of Megaboz befell it in
883GUE. Between the barbarian invasions of the 880’s and the countless looters that had tread the
underground ruins in the years that followed, the entire bank with all its valuables, as well as its very
expensive gold leaf ceiling, had been removed or vandalized. More information can be found on-line
at: http://www.thezorklibrary.com/history/bank_of zork.html.

(Continued on next page)

Greater New York Regional | » The Golden Ceiling

Greater NBW York event spansors

acin o Contest — =2
LI 2011 epww IEE A

Input

The first line of input contains a single integer P, (1 < P <1000), which is the number of data sets that
follow. Each data set is a single line that contains the data set number, N, followed by a space,
followed by seven space separated double precision floating point values, L, W, H, A, B, C and D.
The values L, W and H specify the length, width and height of the atrium in Flathead Units (FU's),
respectively, and are always positive values. The values A, B, C and D specify the coefficients of the
plane equation for the slanted part of the ceiling:

Ax + By + Cz = D
where: 0 <= x <= L, 0 <= y <= W, 0 <= z <= H.
One corner of the original box is always at the origin (0, 0, 0) and the other at (L, W, H). The plane
will never be vertical (C will be >= 1.0) and the plane will always pass through the interior of the box
(there will be points (x,y,z) in the box and strictly above the plane (Ax + BY +Cz > D).and others
strictly below the plane (Ax + By + Cz < D).
Output

For each data set there is one line of output. It contains the data set number (N) followed by a single
space, followed by an integer value that is the number of square FU’s required to cover the ceiling in
gold leaf (rounded up to the next square FU).

Sample Input Sample Output
3 1 166
1 10 12 15 -1.3 1 1.1 3.5 2 164
210 12 10 -1.3 1 1.1 11 3 144

313 910 -1.3 1 1.10

Greater New York Regional | » The Golden Ceiling

