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Chapter 1

Introduction

In historical terms, the digital computer is very, very new. The science of computing is
yet newer. Compared to its older sister —mathematics— which is thousands of years
old, it is hardly in the embryonic stage of development. Yet, computing science is already
having a major influence on our problem-solving skills, amounting to a revolution in the
art of effective reasoning.

Because of the challenges of programming (which means instructing a dumb machine
how to solve each instance of a problem) and the unprecedented scale of programming
problems, computing scientists have had to hone their problem-solving skills to a very
fine degree. This has led to advances in logic, and to changes in the way that mathematics
is practised. These lectures form an introduction to problem-solving using the insights
that have been gained in computing science.

1.1 Algorithms

Solutions to programming problems are formulated as so-called algorithms. An al-
gorithm is a well-defined procedure, consisting of a number of instructions, that are
executed in turn in order to solve the given problem.

A concrete example may help to understand better the nature of algorithms and their
relation to problem solving. Consider the following problem, which is typical of some of
the exercises we discuss. You may want to tackle the problem before reading further.

Four people wish to cross a bridge. It is dark, and it is necessary to use a torch when
crossing the bridge, but they only have one torch between them. The bridge is narrow
and only two people can be on it at any one time. The four people take different amounts
of time to cross the bridge; when two cross together they must proceed at the speed of
the slowest. The first person takes 1 minute to cross, the second 2 minutes, the third
5 minutes and the fourth 10 minutes. The torch must be ferried back and forth across
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2 1. Introduction

the bridge, so that it is always carried when the bridge is crossed.

Show that all four can cross the bridge within 17 minutes.

The solution to this problem —which we won’t disclose just yet!— is clearly a se-
quence of instructions about how to get all four people across the bridge. A typical in-
struction will be: “persons x and y cross the bridge” or “person z crosses the bridge”.
The sequence of instructions solves the problem if the total time taken to execute the
instructions is (no more than) 17 minutes.

An algorithm is typically more general than this. Normally, an algorithm will have
certain 2nputs; for each input, the algorithm should compute an output which is related
to the input by a certain so-called input-output relation. In the case of the bridge-
crossing problem, an algorithm might input four numbers, the crossing time for each
person, and output the total time needed to get all four across the bridge. For example,
if the input is the numbers 1, 3, 19, 20, the output should be 30 and if the input
is the numbers 1, 4, 5, 6 the output should be 17. The input values are called the
parameters of the algorithm.

Formulating an algorithm makes problem-solving decidedly harder, because it is nec-
essary to formulate very clearly and precisely the procedure for solving the problem. The
more general the problem, the harder it gets. (For instance, the bridge-crossing problem
can be generalised by allowing the number of people to be variable.) The advantage,
however, is a much greater understanding of the solution. The process of formulating an
algorithm demands a full understanding of why the algorithm is correct.

The key to effective problem-solving is economy of thought and of expression — the
avoidance of unnecessary detail and complexity. The mastery of complexity is especially
important in computing science because of the unprecedented size of computer programs:
a typical computer program will have hundreds, thousands or even millions lines of code.
Coupled with the unforgiving nature of digital computers, whereby a single error can
cause an entire system to abruptly “crash”, it is perhaps not so surprising that the
challenges of algorithm design have had an immense impact on our problem-solving
skills.

This book aims to impart these new skills and insights to a broad audience, using
an example-driven approach. It aims to demonstrate the importance of mathematical
calculation, but the chosen examples are typically not mathematical; instead, like the
bridge-crossing problem above, they are problems that are readily understood by a lay
person, with only elementary mathematical knowledge. The book also aims to challenge;
most of the problems are quite difficult, at least to the untrained or poorly trained
practitioner.

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



1.2. Bibliographic Remarks 3

1.2 Bibliographic Remarks

I first found the bridge problem in [Lev03]. Rote [Rot02] gives a comprehensive bibliog-
raphy. The problem is also known as the “flashlight” problem and the “U2” problem;
it is reputed to be used by at least one major software company in interviews for new
employees.
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Chapter 2

Invariants

“Invariant” means “not changing”. An invariant of some process is thus some attribute or
property of the process that doesn’t change. Other names for “invariant” are “constant”,
“law” and “pattern”.

The recognition of invariants is an important problem-solving skill, possibly the most
important. This chapter introduces the notion of an invariant, and discusses a number
of examples of its use.

We begin as we mean to go on. We first present a number of problems for you to
tackle. Some you may find easy, but others you may find difficult or even impossible to
solve. If you can’t solve one, move on to the next. To gain full benefit, however, it is
important that you try the problems first, before reading further.

We then return to each of the problems individually. The first problem we discuss
in detail, showing how an invariant is used to solve the problem. Along the way, we
introduce some basic skills related to computer programming — the use of assignment
statements, and how to reason about assignments. The second problem, which otherwise
would be quite hard, is now straightforward. We leave it to you to solve, but, because the
techniques are new, we suggest a sequence of steps which lead directly to the solution.
The third problem is quite easy, but involves a new concept, which we discuss in detail.
Then, it is your turn again. From a proper understanding of the solution to these initial
problems, you should be able to solve the next couple of problems. This process is
repeated as the problems get harder; we demonstrate how to solve one problem, and
then leave you to solve some more. You should find them much easier to solve.

1. Chocolate Bars.

A rectangular chocolate bar is divided into squares by horizontal and vertical
grooves, in the usual way. It is to be cut into individual squares. A cut is made by
taking a single piece and cutting along one of the grooves. (Thus each cut splits
one piece into two pieces.)
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6 2. Invariants

Figure 2.1 shows a 4x3 chocolate bar that has been cut into five pieces. The cuts
are indicated by solid lines.

Figure 2.1: Chocolate-Bar Problem.

How many cuts in total are needed to completely cut the chocolate into all its
pieces?

2. Empty Boxes.

Eleven large empty boxes are placed on a table. An unknown number of the boxes
is selected and, into each, eight medium boxes are placed. An unknown number of
the medium boxes is selected and, into each, eight small boxes are placed.

At the end of this process there are 102 empty boxes. How many boxes are there
in total?

3. Tumblers.

Several tumblers are placed in a line on a table. Some tumblers are upside down,
some are the right way up. (See fig. 2.2.) It is required to turn all the tumblers the
right way up. However, the tumblers may not be turned individually; an allowed
move is to turn any two tumblers simultaneously.

Figure 2.2: Tumbler Problem.

From which initial states of the tumblers is it possible to turn all the tumblers the
right way up?
4. Black and White Balls

Consider an urn filled with a number of balls each of which is either black or white.
There are also enough balls outside the urn to play the following game. We want
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to reduce the number of balls in the urn to one by repeating the following process
as often as necessary.

Take any two balls out of the urn. If both have the same colour, throw them away,
but put another black ball into the urn; if they have different colours then return
the white one to the urn and throw the black one away.

Each execution of the above process reduces the number of balls in the urn by one;
when only one ball is left the game is over. What, if anything, can be said about
the colour of the final ball in the urn in relation to the original number of black
balls and white balls?

5. Dominoes

A chess board has had its top-right and bottom-left squares removed so that there
are 62 squares remaining. (See fig. 2.3.) An unlimited supply of dominoes has

Figure 2.3: Mutilated Chess Board

been provided; each domino will cover exactly two squares of the chessboard. Is
it possible to cover all 62 squares of the chessboard with the dominoes without
any domino overlapping another domino or sticking out beyond the edges of the
board?

6. Tetrominoes

A tetromino is a figure made from 4 squares of the same size. There are five
different tetrominoes, called the O-, Z-, L-, T- and I-tetrominoes. (See fig. 2.4.)

The following exercises all concern covering a rectangular board with tetrominoes.
Assume that the board is made up of squares of the same size as the ones used
to make the tetrominoes. Overlapping tetrominoes or tetrominoes that stick out
from the sides of the board are not allowed.

(a) Suppose a rectangular board is covered with tetrominoes. Show that at least
one side of the rectangle has an even number of squares.
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8 2. Invariants

Figure 2.4: O-, Z-, L-, T- and I-tetromino

(b) Suppose a rectangular board can be covered with T-tetrominoes. Show that
the number of squares is a multiple of 8.

(c) Suppose a rectangular board can be covered with L-tetrominoes. Show that
the number of squares is a multiple of 8.

(d) An 8x8 board cannot be covered with one O-tetromino and fifteen L-tetrominoes.
Why not?

2.1 Chocolate Bars

Recall the problem statement:

A rectangular chocolate bar is divided into squares by horizontal and
vertical grooves, in the usual way. It is to be cut into individual squares. A
cut is made by taking a single piece and cutting along one of the grooves.
(Thus each cut splits one piece into two pieces.)

How many cuts in total are needed to completely cut the chocolate into
all its pieces?

2.1.1 The Solution

The solution to the chocolate-bar problem is as follows. Whenever a cut is made, the
number of cuts increases by one, and the number of pieces increases by one. Thus, the
number of cuts and the number of pieces both change. What doesn’t change, however,
is the difference between the number of cuts and the number of pieces. This is an
“invariant”, or a “constant”, of the process of cutting the chocolate bar.

Now, we begin with one piece and zero cuts. So, the difference between the number
of pieces and the number of cuts, at the outset, is one. It being a constant means that
it will always be one, no matter how many cuts have been made. That is, the number
of pieces will always be one more than the number of cuts. Equivalently, the number of
cuts will always be one less than the number of pieces.
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2.1. Chocolate Bars 9

We conclude that to cut the chocolate bar into all its individual pieces, the number
of cuts needed is one less than the number of pieces.

2.1.2 The Mathematical Solution

Once the skill of identifying invariants has been mastered, this is an easy problem to solve.
For this reason, we have used English to describe the solution, rather than formulate the
solution in a mathematical notation. For more complex problems, mathematical notation
helps considerably, because it is more succinct and more precise. Let us use this problem
to illustrate what we mean.

Abstraction The mathematical solution begins by introducing two variables. We let
variable p count the number of pieces, and we let variable ¢ count the number of cuts.
The values of these variables describe the state of the chocolate bar.

This first step is called abstraction. We “abstract” from the problem a collection
of variables (or “parameters”) that completely characterise the essential elements of the
problem. In this step, inessential details are eliminated.

One of the inessential details is that the problem has anything to do with chocolate
bars! This is totally irrelevant and, accordingly, has been eliminated. The problem
could equally well have been about cutting postage stamps from a sheet of stamps.
The problem has become a “mathematical” problem, because it is about properties of
numbers, rather than a “real-world” problem. Real-world problems are very hard, if not
impossible, to solve; in contrast, problems that succumb to mathematical analysis are
relatively easy.

Other inessential details that have been eliminated are the sequence of cuts that have
been made, and the shapes and sizes of the resulting pieces. That is, the variables p
and c¢ do not completely characterise the state of the chocolate bar, or the sequence of
cuts that have been made to reach that state. Knowing that, say, four cuts have been
made, making five pieces, does not allow us to reconstruct the sizes of the individual
pieces. That is irrelevant to solving the problem.

The abstraction step is often the hardest step to make. It is very easy to fall into
the trap of including unnecessary detail, making the problem and its solution over-
complicated. Conversely, deciding what is essential is far from easy —there is no algo-
rithm for doing this!— . The best problem-solvers are probably the ones most skilled in
abstraction.

(Texts on problem-solving often advise drawing a figure. This may help to clarify
the problem statement —for example, we included fig. 2.1 in order to clarify what is
meant by a cut— but it can also be a handicap! There are two reasons. The first is that
extreme cases are often difficult to capture in a figure. This is something we return to
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10 2. Invariants

later. The second is that figures often contain much unnecessary detail, as exemplified
by fig. 2.1. Our advice is to use figures with the utmost caution; mathematical formulae
are most often far more effective.)

Assignments The next step in the problem’s solution is to model the process of cutting
the chocolate bar. We do so by means of the assignment statement

p,c = p+l,c+]

An assignment statement has two sides, a left side and a right side. The two sides are
separated by the assignment symbol “:=", pronounced “becomes”. The left side is a
comma-separated list of variables (in this case, p,c). No variable may occur more than
once in the left side. The right side is a comma-separated list of expressions (in this case,
p+1,c+1). The list must have length equal to the number of variables on the left side.

An assignment effects a change of state. An assignment is executed by evaluating,
in the current state, each expression on the right side. The state is then changed by
replacing the value of each variable on the left side by the value of the corresponding
expression on the right side. In our example, the state —the number of pieces and
the number of cuts— is changed by evaluating p+1 and c+1, and then replacing the
values of p and c by these values, respectively. In words, p “becomes” p-+1, and c
“becomes” c+1. This is how the assignment statement models the process of making a
single cut of the chocolate bar!.

An wnvariant of an assignment is some function of the state whose value remains
constant under execution of the assignment. For example, p—c is an invariant of the
assignment p,c := p+1,c+1.

Suppose E is an expression depending on the values of the state variables. (For
example, p—c is an expression depending on variables p and c.) We can check that E
is an invariant simply by checking for equality between the value of E, and the value of
E after replacing all variables as prescribed by the assignment. For example, the equality

LA word of warning (for those who have already learnt to program in a language like Java or C):
The assignment statements we will be using are often called simultaneous assignments because several
variables are allowed on the left side, their values being updated simultaneously once the right side has
been evaluated. Some programming languages do not allow simultaneous assignments, restricting the
programmer to a single variable on the left side in all assignments. Java is an example. Instead of a
simultaneous assignment, one has to write a sequence of assignments. This is a nuisance, but only that.
Much worse is that the equality symbol, “=", is used instead of the assignment symbol, Java being again
an example. This is a major problem because it causes confusion between assignments and equalities,
which are two quite different things. Most novice programmers frequently make the mistake of confusing
the two, and even experienced programmers sometimes do, leading to difficult-to-find errors. If you do
write Java or C programs, always remember to pronounce an assignment as “left side becomes right side”,
and not “left side equals right side”, even if your teachers do not do so.
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2.1. Chocolate Bars 11

p—c = (p+1)—(ct1) ,

holds whatever the values of p and c. This checks that p—c is an invariant of the
assignment p,c := p+1,c+1. The left side of this equality is the expression E
and the right side is the expression E after replacing all variables as prescribed by the
assignment,.

As another example, suppose we have two variables m and n, and we consider the
assignment

m,n = m+3,n—1I
We check that m+3xn is invariant by checking that
m+3xn = (m+3)+3x(n—1) .

Simple algebra shows that this holds. So, increasing m by 3, simulaneously decreasing
n by 1, does not change the value of m+3xn.
Given an expression, E, and an assignment, ls = rs,

E[ls := 1s]
is used to denote the expression obtained by replacing all occurrences of the variables in
E listed in ls by the corresponding expression in the list of expressions rs. Here are

some examples:

(p—c)lp,c = p+1,c+1] = (p+1)—(c+1)

(m+3xn)m,n = m+3,n—-1] = (Mm+3)+3x(n—1)

(m+n+p)m,n,p = 3xn,m+3 ,n—1] = (3xn)+(m+3)+(n—1)

The invariant rule for assignments is then the following.

E is an invariant of the assignment ls := rs if, for all instances of the variables in E,

E[ls :=1s] = E .
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12 2. Invariants

Induction The final step in the solution of the chocolate problem is to exploit the
invariance of p—c.

Initially, p=1 and c¢=0. So, initially, p—c=1. But, p—c is invariant. So, p—c=1
no matter how many cuts have been made. When the bar has been cut into all its squares,
p=s, where s is the number of squares. So, at that time, the number of cuts, c, satisfies
s—c=1. That is, c=s—1. The number of cuts is one less than the number of squares.

An important principle is being used here, called the principle of mathematical
induction. The principle is very simple. It is that, if the value of an expression is un-
changed by some assignment to its variables, the value will be unchanged no matter how
many times the assignment is applied. That is, if the assignment is applied zero times,
the value of the expression is unchanged (obviously, because applying the assignment
zero times means doing nothing). If the assignment is applied exactly once, the value
of the expression is unchanged, by assumption. Applying the assignment twice means
applying it once and then once again. Both times, the value of the expression remains
unchanged, so the end result is also no change. And so on, for three times, four times,
etc.

Note that the case of zero times is included here. It is very important not to forget
zero. In the case of the chocolate-bar problem, it is vital to solving the problem in the
case that the chocolate bar has exactly one square (in which case zero cuts are required).

Summary This completes our discussion of the chocolate-bar problem. A number of
important problem-solving principles have been introduced — abstraction, invariants
and induction. We will see these principles again and again throughout these lectures.

Exercise 2.1 A knockout tournament is a series of games. T'wo players compete in
each game; the loser is knocked out (i.e. doesn’t play anymore), the winner carries on.
The winner of the tournament is the player that is left after all other players have been
knocked out.

Suppose there are 1234 players in a tournament. How many games are played be-
fore the tournament winner is decided? (Hint: choose suitable variables, and seek an
invariant.)

O

2.2 Empty Boxes

Try tackling the empty-box problem. Recall its statement.

Eleven large empty boxes are placed on a table. An unknown number
of the boxes is selected and into each eight medium boxes are placed. An
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2.3. The Tumbler Problem 13

unknown number of the medium boxes is selected and into each eight small
boxes are placed.

At the end of this process there are 102 empty boxes. How many boxes
are there in total?

The following steps should help in determining the solution.

1.

Introduce the variables e and f for the number of empty and the number of full
boxes, respectively.

Identify the initial values of e and f. Identify the final value of e.

. Model the process of putting eight boxes inside a box as an assignment to e and

f.
Identify an invariant of the assignment.

Combine the previous steps to deduce the final value of f. Hence deduce the final
value of e+f.

Note that this solution does not try to count the number of medium boxes, or the
number of small boxes, or which are full and which are empty. All of these are irrelevant,
and a solution that introduces variables representing these quantities is grossly over-
complicated.

This is a key to effective problem-solving: keep it simple!

2.3 The Tumbler Problem

Let us now look at how to solve the tumbler problem. Recall the statement of the
problem.

Several tumblers are placed in a line on a table. Some tumblers are upside
down, some are the right way up. It is required to turn all the tumblers the
right way up. However, the tumblers may not be turned individually; an
allowed move is to turn any two tumblers simultaneously. From which initial
states of the tumblers is it possible to turn all the tumblers the right way up?

The problem suggests that we introduce just one variable that counts the number of
tumblers that are upside down. Let us call it u.

There are three possible effects of turning two of the tumblers. Two tumblers that
are both the right way up are turned upside down. This is modelled by the assignment
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14 2. Invariants

u = ut2 .

Turning two tumblers that are both upside down has the opposite effect — u decreases
by two. This is modelled by the assignment

u = u—2 .

Finally, turning two tumblers that are the opposite way up (that is, one upside down,
the other the right way up) has no effect on u. In programming terms, this is modelled
by a so-called skip statement. “Skip” means “do nothing” or “having no effect”. In this
example, it is equivalent to the assignment

u = u ,

but it is better to have a name for the statement that does not depend on any variables.
We use the name skip. So, the third possibility is to execute

skip .

The choice of which of these three statements is executed is left unspecified. An invariant
of the turning process must therefore be an invariant of each of the three.

Everything is an invariant of skip. So, we can discount skip. We therefore seek an
invariant of the two assignments uw := u+2 and u := u—2. What does not change
if we add or subtract two from u?

The answer is: the so-called parity of u. The parity of u is a boolean value: it is
either true or false. It is true if u is even (zero, two, four, eight etc.) and it is false if
u is odd (one, three, five, seven, etc.). Let us write even.u for this Boolean quantity.
Then,

(even.u)[u := u+2] = even.(u+2) = even.u .

That is, even.u is an invariant of the assignment u := u+2. Also,
(even.u)[u := u—2] = even.(u—2) = even.u .

That is, even.u is also an invariant of the assignment u = u—2.

We conclude that, no matter how many times we turn two tumblers over, the parity
of the number of upside-down tumblers will not change. If there is an even number at
the outset, there will always be an even number; if there is an odd number at the outset,
there will always be an odd number.

The goal is to repeat the turning process until there are zero upside-down tumblers.
Zero is an even number, so the answer to the question is that there must be an even
number of upside-down tumblers at the outset.
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You should now be in a position to solve the problem of the black and white balls
(problem 4 in the introductory section). Apply the method of introducing appropriate
variables to describe the state of the balls in the urn. Then express the process of
removing and/or replacing balls by a choice among a number of assignment statements.
Identify an invariant, and draw the appropriate conclusion. The chessboard problem is a
little harder, but can be solved in the same way. (Hint: use the colouring of the squares
on the chessboard.) Problem 6(a) should be a bit easier. It’s a preliminary to solving
6(b), which we do —together with 6(a)— in the next section. Have a peek if you want
to.

2.4 Tetrominoes

In this section, we present the solution of problem 6(b). This gives us the opportunity
to introduce a style of mathematical calculation that improves clarity.
Recall the problem.

Suppose a rectangular board can be covered with T-tetrominoes. Show that
the number of squares is a multiple of 8.

A brief analysis of this problem reveals an obvious invariant. Suppose ¢ denotes the
number of covered squares. Then, placing a tetromino on the board is modelled by

c = ct+4 .

Thus, cmod4 is invariant. (cmod4 is the remainder after dividing ¢ by 4. For
example, 7mod4 is 3, and 16mod4 is 0.) Initially ¢ is 0, so cmod4 is Omod4,
which is 0. So, cmod4 is always 0. In words, we say “c is a multiple of 4 is an
invariant property”. More often, the words “is an invariant property” are omitted, and
we say “c is a multiple of 4”.

Now, suppose the tetrominoes cover an mxn board. (That is, the number of squares
along one side is m and the number along the other side is n.) Then, c=mxn and,
so, mxmn is a multiple of 4. For the product mxn of two numbers m and n to be a
multiple of 4, it must be the case that either m or n (or both) is a multiple of 2.

Note that, so far, the argument has been about tetrominoes in general, and not
particularly about T-tetrominoes. What we have just shown is, in fact, the solution to
problem 6(a): if a rectangular board is covered by tetrominoes, at least one of the sides
of the rectangle must have even length.

The discovery of a solution to problem 6(a), in this way, illustrates a general phe-
nomenon in solving problems . The process of solving more difficult problems typically
involves formulating and solving simpler subproblems. In fact, one could say that a
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“difficult” problem is one that involves putting together the solution to several simple
problems. Looked at this way, “difficult” problems become a lot more manageable. Just
keep on solving simple problems until you have reached your goal!

At this point, we want to introduce a style for presenting calculations that is clearer
than the normal mixture of text with interspersed mathematical expresssions. To intro-
duce the style we repeat the argument just given. Here it is in the new style:

an mxmn board is covered with tetrominoes
= { invariant: c is a multiple of 4,
c=mxn }
mxn is a multiple of 4
= { property of multiples }

m is a multiple of 2 V n is a multiple of 2 .

This is a two-step calculation. The first step is a so-called “implication” step, as indicated
by the “=" symbol. The step is read as

If an mxn board is covered with tetrominoes, mxn is a multiple of 4.

(Alternatively, “an mxn board is covered with tetrominoes implies mxn is a multiple
of 4” or “an mxmn board is covered with tetrominoes only if mxn is a multiple of
4.m)

The text between curly brackets, following the “=" symbol is a hint why the state-
ment is true. Here the hint is the combination of the fact, proved earlier, that the number
of covered squares is always a multiple of 4 (whatever the shape of the area covered)
together with the fact that, if an mxn board has been covered, the number of covered
squares is mxmn.

The second step is read as:

If mxn is a multiple of 4, m is a multiple of 2 or n is a multiple of 2.

Again, the “=" symbol signifies an implication. The symbol “V” means “or”. Note
that by “or” we mean so-called “inclusive or” — the possibility that both m and n are
multiples of 2 is included. A so-called “exclusive or” would mean that m is a multiple
of 2 or n is a multiple of 2, but not both, i.e. it would exclude this possibility.

The hint, in this case, is less specific. The property that is being alluded to has to do
with expressing numbers as multiples of prime numbers. You may or may not be famil-
iar with the general theorem, but you should have sufficient knowledge of multiplying
numbers by 4 to accept that the step is valid.

The conclusion of the calculation is also an “if” statement. It is:

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



2.4. Tetrominoes 17

If an mxn board is covered with tetrominoes, m is a multiple of 2 or n is
a multiple of 2.

This style of presenting a mathematical calculation reverses the normal style: math-
ematical expressions are interspersed with text, rather than the other way around. In-
cluding hints within curly brackets between two expressions means that the hints may
be as long as we like; they may even include other subcalculations. Including the symbol
“=" makes clear the relation between the expressions it connects. More importantly,
it allows us to use other relations. Later, we present calculations in which “<” is the
connecting symbol. Such calculations work backwards from a goal to what has been
given, which is often the most effective way to reason.

Let us now tackle problem 6(b) head on. Clearly, the solution must take account
of the shape of a T-tetronomo. (It isn’t true for I-tetronimoes. A 4x1 board can be
covered with 1 I-tetronimo, and 4 is not a multiple of 8.)

What distinguishes a T-tetronimo is that it has one square that is adjacent to the
other three squares. Colouring this one square differently from the other three suggests
colouring the squares of the rectangle in the way a chessboard is coloured.

Suppose we indeed colour the rectangle with black and white squares, as on a chess-
board. The T-tetrominoes should be coloured in the same way. This gives us two types,
one with three black squares and one white square, and one with three white squares and
one black square. We call them dark and light T-tetrominoes. (See fig. 2.5.) Placing
the tetrominoes on the board now involves choosing the appropriate type so that the
colours of the covered squares match the colours of the tetrominoes.

-

Figure 2.5: Dark and light T-tetrominoes

We introduce four variables to describe the state of the board. The variable b counts
the number of covered black squares, whilst w counts the number of covered white
squares. In addition, d counts the number of dark T-tetrominoes that have been used,
and | counts the number of light tetrominoes.

Placing a dark tetromino on the board is modelled by the assignment

d,b,w = d+1,b+3,w+1
Placing a light tetromino on the board is modelled by the assignment
L,b,w = 14+1,b+1,w+3 .

An invariant of both assignments is
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b—3xd—-1 ,
since
(b—3xd—1)[d,b,w = d+1,b+3,w+1]
= { definition of substitution }
(b4+3)—3x(d+1)—1
= { arithmetic |}
b—3xd—1
and

(b—3xd—-1)[l,b,w = 1+1,b+1,w+3]

= { definition of substitution }
(b+1) —3xd—(141)

- { arithmetic }
b—3xd—-1 .

Similarly, another invariant of both assignments is

w—3x1l—d .

Now, the initial value of b—3xd—1 is zero. So, it will always be zero, no matter how
many T-tetrominoes are placed on the board. Similarly, the value of w—3x1l—d will

always be zero.
We can now solve the given problem.
a rectangular board is covered by T-tetrominoes
= { from problem 6(a) we know that at least one
side of the board has an even number of squares,
which means that the number of black squares

equals the number of white squares |}

= { b—3xd—1=0
w—3xl—d=0 }
(b=w) A 3xd+1=3x1+4d)

Algorithmic Problem Solving (©) Roland Backhouse.

May 28, 2008



2.5. Additional Exercises 19

= { arithmetic |}
(b=w) A (1=4d)
= { b—3xd—1=0

w—3xl—-d=0 }
b=w=4xd =4x1

= { arithmetic |}
b+w = 8xd
= { b+w is the number of covered squares }

the number of covered squares is a multiple of 8 .
We conclude that

If a rectangular board is covered by T-tetrominoes, the number of covered
squares is divisible by 8.

You can now tackle 6(c). The problem looks very much like 6(b), which suggests that
it can be solved in a similar way. Indeed, it can. Look at other ways of colouring the
squares black and white. Having found a suitable way, you should be able to repeat the
same argument as above. Be careful to check that all steps remain valid.

(How easily you can adapt the solution to one problem in order to solve another is a
good measure of the effectiveness of your solution method. It shouldn’t be too difficult
to solve 6(c) because the solution to 6(b), above, takes care to clearly identify those steps
where a property or properties of T-tetrominoes are used. Similarly, the solution also
clearly identifies where the fact that the area covered is rectangular is exploited. Badly
presented calculations do not make clear which properties are being used. As a result,
they are difficult to adapt to new circumstances.)

Problem 6(d) is relatively easy, once 6(c) has been solved. Good luck!

2.5 Additional Exercises

Exercise 2.2  Given is a bag of three kinds of objects. The total number of objects is
reduced by repeatedly removing two objects of different kind, and replacing them by an
object of the third kind.

Identify exact conditions in which it is possible to remove all the objects except
one.

O
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2.6 Bibliographic Remarks

The empty-box problem was given to me by Wim Feijen. The problems of the black and
white balls is from [Gri81]. The tetromino problems I found in the 1999 Vierkant Voor
Wiskunde calendar. (See http://www.vierkantvoorwiskunde.nl/puzzels/.) Vierkant
Voor Wiskunde —foursquare for mathematics— is a foundation that promotes math-
ematics in Dutch schools. Their publications contain many examples of mathematical
puzzles, both new and old. I have made grateful use of them throughout this text.
Thanks go to Jeremy Weissman for suggestions on how to improve the presentation of
the tetronimo problems, some of which I have made use of. The domino and tumbler
problems are old chestnuts. I do not know their origin.

Exercise 2.2 was posed to me by Dmitri Chubarov. It was posed (in a slightly different
form) in the Russian national Mathematics Olympiad in 1975 and appears in a book
by Vasiliev entitled “Zadachi Vsesoyuzynykh Matemticheskikh Olympiad” published in
Moscow, 1988. The author of the problem is apparently not stated.
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Chapter 3

Crossing a River

The examples in this chapter all involve getting a number of people or things across
a river under certain constraints. We use them as simple illustrations of “brute-force”
search and problem decomposition.

Brute-force search means systematically trying all possibilities. It’s a technique that
doesn’t require any skill, but does require a lot of careful and accurate work. Using brute
force is not something human beings are good at; lots of careful, accurate work is some-
thing more suited to computers. But, brute force isn’t even practical for implementation
on a computer. The amount of work involved explodes as the problem size gets bigger,
making it impractical for all but toy problems. Nevertheless, it is useful to know what
brute force entails, because it helps to understand the nature of problem-solving.

Problem decomposition is something we humans are much better at. Problem de-
composition involves exploiting the structure of a problem to break it down into smaller,
more manageable problems. Once a problem has been broken down in this way, brute
force can be applied. Indeed, it is often the case that, ultimately, brute force is the only
solution method, so we can’t dispense with it. However, it is much better to spend more
effort in decomposing a problem, postponing the use of a brute-force search for as long
as possible.

All river-crossing problems have an obvious structural property, namely the symmetry
between the two banks of the river. The exploitation of symmetry is a very important
problem-solving technique, but is often overlooked, particularly when using brute force.
You may already have seen the problems, or similar ones, elsewhere. As illustrations of
brute-force search —which is how their solutions are often presented— they are extremely
uninteresting! However, as illustrations of the use of symmetry, combined with problem
decomposition, they have startling, hidden beauty.

An important issue that emerges in this chapter is naming the elements of a problem.
Deciding on what and how names should be introduced can be crucial to success. We
shall see how inappropriate or unnecessary naming can increase the complexity of a
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problem, making it impossible to solve even with the aid of a very powerful computer.

3.1 Problems

1. Goat, Cabbage and Wolf.

A farmer wishes to ferry a goat, a cabbage and a wolf across a river. However,
his boat is only large enough to take one of them at a time, making several trips
across the river necessary. Also, the goat should not be left alone with the cabbage
(otherwise, the goat would eat the cabbage), and the wolf should not be left alone
with the goat (otherwise, the wolf would eat the goat).

How can the farmer achieve the task?

2. The Jealous Couples.

Three couples (husband and wife) wish to cross a river. They have one boat that
can carry at most two people, making several trips across the river necessary. The
husbands are so jealous of each other that none is willing to allow their wife to be
with another man, if they are not themselves present.

How can all three couples get across the river?

3. Adults and Children.

A group of adults and children are on one side of a river. They have one boat that
is only big enough to accommodate one adult or two children.

How can all the adults and all the children cross the river? Make clear any assump-
tions you are obliged to make.
4. Overweight

Ann, Bob, Col and Dee are on one side of a river. They have one rowing boat that
can carry at most 100 kilos. Ann is 46 kilos, Bob is 49 kilos, Col is 52 kilos and
Dee is 100 kilos. Bob can’t row.

How can they all get to the other side?

3.2 Brute Force

3.2.1 Goat, Cabbage and Wolf

The goat-, cabbage- and wolf-problem is often used to illustrate brute-force search. Our
main purpose in showing the brute-force solution is to illustrate the pitfalls of poor
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problem-solving skills. Additionally, we introduce some terminology that is useful when
discussing the efficiency of a particular solution to a problem.

A farmer wishes to ferry a goat, a cabbage and a wolf across a river.
However, his boat is only large enough to take one of them at a time, making
several trips across the river necessary. Also, the goat should not be left alone
with the cabbage (otherwise, the goat would eat the cabbage), and the wolf
should not be left alone with the goat (otherwise, the wolf would eat the
goat).

How can the farmer achieve the task?

The problem involves four individuals, and each is at one of the two river banks.
This means that we can represent a state by four variables, each of which has one of
two values. We call the variables f (for farmer), g (for goat), ¢ (for cabbage) and w
(for wolf), and we call their possible values L (for left) and R (for right). A value of R
means “at the right bank”. A value of L means at the left bank. Note that the boat
is always where the farmer is, so we do not need to introduce a variable to represent its
position.

A brute-force search involves constructing a state-transition graph that models all
possible states, and ways of changing from one state to another — the state transitions.
In the goat-, cabbage-, wolf-problem, a state describes on which bank each of the four
individuals can be found. A state transition is a change of state that is allowed by
the problem specification. For example, two states between which there is a valid state
transition are:

1. All four are at the left bank.

2. The farmer and goat are at the right bank, whilst the cabbage and wolf are at the
left bank.

For the very simplest problems, a diagram can be drawn depicting a state-transition
graph. The states are drawn as circles, and the state transitions are drawn as lines
connecting the circles. The lines have arrows on them if some state transitions are
not reversible; if so, the diagram is called a directed graph. If all state transitions are
reversible, the arrows are not necessary and the diagram is called an undirected graph.
We are going to draw a state-transition graph to demonstrate the brute-force solution to
this problem.

If four variables can each have one of two values, there are 2% (i.e. sixteen) different
combinations of values. However, in this problem some of these combinations are ex-
cluded. The requirement that the goat cannot be left alone with the cabbage is expressed
by the system invariant
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f=g=c V g#c .

That is, either the farmer, the goat and the cabbage are all on the same bank (f=g=c),
or the goat and cabbage are on different banks (g+#c). This excludes cases where g
and c are equal, but different from f. Similarly, the requirement that the goat cannot
be left alone with the wolf is expressed by the system invariant

f=g=w V g#w .

If we list all states, eliminating the ones that are not allowed, the total reduces to ten.
The table below shows the ten different combinations. (Notice that when f and g are
equal all combinations of ¢ and w are allowed; when f and g are different, ¢ and w
are required to be equal.)

=v )= v e vl v e v ) o o o o o
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Now, we enumerate all the possible transitions between these states. The graph in
fig. 3.1 does just this. The nodes of the graph —the boxes— represent states, and the
edges of the graph —the lines connecting the boxes— represent transitions. There are
no arrows on the edges because each transition can be reversed.

At the very left, the box labelled “LLLL" represents the state where all four are on
the left bank. The only allowed transition from this state is to the state where the farmer
and goat are at the right bank, and the cabbage and wolf are at the left bank. This is
represented by the line connecting the “LLLL” box to the “RRLL” box.

From the graph, it is clear that there are two solutions to the problem. Each solution
is given by a path through the graph from “LLLL” box to the “RRRR” box. The upper
path gives the following solution:

1. The farmer takes the goat to the right bank, and returns alone. This is the path
from LLLL to LRLL.
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Figure 3.1: Goat-, Cabbage-, Wolf-Problem

2. The farmer takes the cabbage to the right bank, and returns with the goat. This
is the path from LRLL to LLRL.

3. The farmer takes the wolf to the right bank, and returns alone. This is the path
from LLRL to LLRR.

4. The farmer takes the goat to the right bank. This is the path from LLRR to RRRR.

The alternative solution, given by the lower path, interchanges “cabbage” and “wolf”
in the second and third steps.

3.2.2 State-Space Explosion

There is often a tendency to apply brute force without thinking when faced with a new
problem. However, it should only be used where it is unavoidable. Brute force is only
useful for very simple problems. For other problems, the search space quickly becomes
much too large. In the jargon used by computing scientists, brute force does not “scale
up” to larger problems. The goat-, cabbage- and wolf-problem is not representative; the
above —thoughtless!— solution has a manageable number of states, and a manageable
number of transitions.

We can see how quickly the search space can grow by analysing what is involved in
using brute force to solve the remaining problems in section 3.1.

In the “overweight” problem, there are four named individuals and no restrictions
on their being together on the same side of the bank. So, there are 16 possible states;
unlike in the goat-, cabbage- and wolf-problem, no restriction on the size of the state
space is possible. Also, from the initial state there are four different transitions; from
most other states, there are at least two transitions. So, the total number of transitions
is large, too large even for the most diligent problem-solvers.

The situation in an unskilled solution of the “jealous-couples” problem is even worse.
Here, there are six individuals involved, each of whom can be on one side or other of the
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river bank. If we give each individual a distinct name, the number of states is 2°, i.e.
64! That’s an impossible number for any human being to cope with, and we haven’t even
begun to count the number of transitions. In another variation on the jealous-couples
problem, there are five couples, and the boat can take three people at a time. That
means, if all are named, there are are 2'°, i.e. 1024, different states, and a yet larger
number of transitions. Take note: these are “toy” problems, not real problems.

The “adults-and-children” problem illustrates another failing of brute force, namely
that it can only be applied in specific cases, and not in the general case. The number of
adults and children is not specified in this problem. Yet, it is in fact the easiest of all to
solve.

The use of a computer to perform a brute-force search shifts the meaning of what
is a “small” problem and what is a “large” problem, but not as much as one might
expect. The so-called “state-space explosion problem” gets in the way. The river-crossing
problems illustrate “state-space explosion” very well. If there are n individuals in such
a problem, there are, in principle, 2™ different states to be considered. But, even for
quite small n, 2™ is a very large number. We speak of an “exponential” growth in the
number of states (n is the exponent in 2™). Whenever the state space of a class of
problems grows exponentially, it means that even the largest and fastest supercomputers
can only tackle quite small instances.

Drawing state-transition diagrams is equally ineffective. A diagram can occasionally
be used to illustrate the solution of a simple, well-chosen problem. But constructing
a diagram is rarely helpful in problem-solving. Instead, diagrams quickly become a
problem in themselves — apart from the size of paper needed, how are the nodes to be
placed on the paper so that the diagram becomes readable?

3.2.3 Abstraction

The state-space explosion is often caused by a failure to properly analyse a problem; a
particularly frequent cause is unnecessary or inappropriate naming. The goat-cabbage-
and-wolf problem is a good example.

In the goat-cabbage-and-wolf problem, distinct names are given to the “farmer”, the
“goat”, the “cabbage” and the “wolf”. But, do we really need to distinguish between all
four? In the discussion of the state space, we remarked on a “similarity” between the
wolf and the cabbage. Specifically, the goat cannot be left with either the wolf or the
cabbage. This “similarity” also emerged in the solution: two solutions were obtained,
symmetrical in the interchange of “wolf” and “cabbage”. Why, then, are the “wolf” and
the “cabbage” distinguished by giving them different names?

Let us restate the problem, this time with a naming convention that omits the un-
necessary distinction between the wolf and the cabbage. In the restated problem, we call
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the goat an “alpha” and the cabbage and the wolf “betas”.

A farmer wishes to ferry an alpha and two betas across a river. However,
his boat is only large enough to take one of them at a time, making several
trips across the river necessary. Also, an alpha should not be left alone with
a beta.

How can the farmer achieve the task?

Now the problem becomes much easier to solve. Indeed, there is only one solution:
Take the alpha across, and then one beta across, returning with the alpha. Then take
the second beta across, followed by the alpha. Because there is only one solution, it is
easy to discover, and it is unnecessary to construct a state-transition diagram for the
problem.

The problem-solving principle that we learn from this example is very important.

Avoid unnecessary or inappropriate naming.

When elements of a problem are given individual names, it distinguishes them from other
elements of the problem, and adds to the size of the state space. The process of omitting
unnecessary detail, and reducing a problem to its essentials is called abstraction. Poor
solutions to problems are ones that fail to “abstract” adequately, making the problem
more complicated than it really is. We encounter the importance of appropriate naming
time and again in the coming chapters. Bear it in mind as you read.

3.3 Jealous Couples

Very often, a problem has an inherent structure that facilitates decomposing the problem
into smaller problems. The smaller problems can then be further decomposed until they
become sufficiently manageable to be solvable by other means, perhaps even by brute
force. Their solutions are then put together to form a solution to the original problem.

The jealous-couples problem is an excellent example. It can be solved by brute force,
making it decidedly boring. But, it can be solved much more effectively, making use of
general problem-solving principles.

Recall its statement:

Three couples (husband and wife) wish to cross a river. They have one
boat that can carry at most two people, making several trips across the river
necessary. The husbands are so jealous of each other that none is willing to
allow their wife to be with another man if they are not themselves present.

How can all three couples get across the river?
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3.3.1 What’s The Problem?

Before we tackle this particular problem, let us try to determine what the essence of the
problem is.

Suppose there is one boat that can carry two “things”, and there are no other restric-
tions. Then, clearly, it is possible to get any number of “things” across the river: repeat
the process of letting two cross from left to right, followed by one returning from right
to left, until at most two remain on the left bank.

Now, by replacing “thing” by “couple”, we infer that a boat that can carry two
couples at one crossing can be used to ferry an arbitrary number of couples across the
river. (After all, couples are not jealous of each other! ) Since a couple is two people, this
means that a boat that can carry four people is sufficient to ferry an arbitrary number
of couples across the river.

This simple analysis gives us a different slant on the problem. Rather than tackle
the problem as stated, we can tackle a related problem, namely, what is the minimum
capacity needed to ferry three couples across the river? More generally, what is the
minimum capacity needed to ferry n couples across the river? Obviously, the minimum
capacity is at least two (since it is not possible to ferry more than one person across a
river in a boat that can only carry one person at a time), and we have just shown that
it is at most four.

Alternatively, we can specify the capacity of the boat and ask what is the maximum
number of couples that can be ferried across with that capacity. If the capacity is one
(or less) the maximum number of couples is zero, and if the capacity is four, there is no
maximum. So, the question is how many couples can be ferried with a boat of capacity
two, and how many couples can be ferried with a boat of capacity three.

The new problems look more difficult than the original. In the original problem, we
are given the answer —in the case of three couples, a boat with capacity two is needed—
and we are required to give a constructive proof that this is the case. But, there is often
an advantage in not knowing the answer — because we can sometimes gain insight by
generalising, and then first solving simpler instances of the general problem.

3.3.2 Problem Structure

The structure of this problem suggests several ways in which it might be decomposed.
First, there are three couples. This suggests seeking a solution that gets each couple
across in turn. That is, we decompose the problem into three subproblems: get the first
couple across, get the second couple across, and get the third couple across.

Another decomposition is into husbands and wives. According to the maxim “ladies
before gentlemen”, we could try first getting all the wives across, followed by all the
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husbands. Alternatively, letting “age go before beauty”, we could try first getting all the
husbands across, followed by all the wives.

Getting all the wives across, whilst their husbands remain at the left bank turns out
to be easy. The reason is that, if the husbands all stay in one place, there is no difficulty
in transferring the wives away from them. Getting all the husbands across first, whilst
their wives stay at the left bank, seems much harder. On the other hand, getting the
husbands to join their wives may prove to be harder than getting the wives to join their
husbands. Ladies before gentleman, or age before beauty; there doesn’t seem much to
choose between them.

There is, however, one key structural property of the problem that we have not yet
considered. It is the symmetry between the left and right banks. The process of getting
a group of people from left to right can always be reversed; the result is a process for
getting the same group of people from right to left. Perhaps a symmetric solution is
possible! If that is the case, we only need to do half the work, and that is a major
saving. This is indeed what we do.

(The state-transition diagram for the goat-, cabbage-, wolf-problem exhibits the left-
right symmetry very well. The diagram also illustrates the symmetry between the cab-
bage and wolf. Both symmetries were to be expected from the problem statement; by
ignoring them and using brute-force, we lost the opportunity of a reduction in effort.)

3.3.3 Denoting States and Transitions

We begin by introducing some local notation to make the solution strategy precise. The
introduction of notation involves naming the elements of the problem that we want to
distinguish. As discussed earlier, this is a crucial step in finding a solution.

Here, we use letters H, W and C to mean husband, wife and couple, respectively.
These are preceded by a number; for example, 2H means two husbands, 3C means
three couples and 1C,2H means one couple and two husbands. We exploit the notation
to distinguish between couples and individuals; for example, TH,1W means a husband
and wife who do not form a couple, whilst TC means a husband and wife who do form
a couple.

Note that we do not name the individual people as in, for example, Ann, Bob,
Clare etc. It is only the number of husbands, wives and couples that is relevant to the
problem’s solution. Number is an extremely important mathematical abstraction.

We distinguish between states and actions.

A state describes a situation when each individual (husband or wife) is at one of the
banks. A state is denoted by two sequences separated by bars. An example is 3H || 3W,
which denotes the state in which all three husbands are at the left bank, and all three
wives are at the right bank. A second example of a state is 1C,2H || 2W, which denotes
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the state in which one couple and two husbands are at the left bank and two wives are at
the right bank. The starting state is thus 3C || and the required finishing state is || 3C.

An action is when some individuals are being transported across the river. An
example is 3H [2W| TW; this denotes the action of transporting two wives across the
river, leaving three husbands at the left bank and one wife at the right bank.

Note that the notation for states and actions does not specify the position or direction
of the boat, and, taken out of context, could be ambiguous. Since the position of the
boat must alternate between the left bank and the right bank, this ambiguity is easily
resolved.

The notation allows valid and invalid states/actions to be easily identified. For ex-
ample, 1C,TW || 1C,TH is invalid (because there is a wife who is on the same side of
the river as a man other than her husband, who is on the other side of the river). Also,
3H |3W] is invalid because the boat can only carry at most two people.

In general, a complete, detailed solution to the problem is a sequence, beginning
with the state 3C || and ending with the state || 3C, that alternates between states and
actions.

An action results in a change of state. (In the terminology of state-transition dia-
grams, an action effects a transition between states.) Additional notation helps to express
the result of actions. If p and q denote states, and S denotes a sequence of actions,

{p}
S
{ q }

is the property that, if the sequence of actions S is performed beginning in state p, it
will result in state q. So, for example,

{ 2CIH || TW }
3H 2W] TW
{ 3H|I3W }

is the property that, beginning in the state where two couples and one husband are at
the left bank, letting two wives cross will result in a state in which all three husbands
are at the left bank, whilst all three wives are at the right bank.

Of course, we should always check the validity of such properties. It is easy to make
a mistake and make an invalid claim. Care is needed, but the checks are straightforward.
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3.3.4 Problem Decomposition

Using this notation we can express our strategy for decomposing the problem. The goal
is to construct a sequence of actions S, satisfying

{3CI} So {I3CH .
Our strategy can be summarised as exploiting two properties of the problem.
e The left-right symmetry.

e The fact that it is easy to get the wives from one side to the other whilst their
husbands remain on one bank.

This strategy is realised by decomposing S, into three sequences S;, S, and S3; such
that

{3CI} S {3H[I3W },

{3H[[3W ]} S, {3W [ 3H} ,

{3WI3H} S3 {[[3C} .

The sequence S; changes the state from the start state to the state where all the wives are
at the right bank and all the husbands are at the left bank. The sequence S, changes the
end state of S; to the state where the positions of the wives and husbands are reversed.
Finally, the sequence S3; changes the end state of S, to the state where everyone is
at the right bank. So, doing S; followed by S, followed by Ss;, which we denote by
S1;S2; S3, will achieve the objective of changing the state from the start state (everyone
is at the left bank) to the final state (everyone is at the right bank).

The decomposition is into three components because we want to exploit symmetry,
but, clearly, an odd number of crossings will be necessary. Symmetry is captured by
making the function of S; entirely symmetrical to the function of S;. If we consider the
reverse of Ss, its task is to transfer all the wives from the right bank to the left bank.
So, if we construct S;, it is a simple task to construct S; directly from it.

We now have to tackle the problem of constructing S; and S,.

As mentioned earlier, getting all the wives across the river, leaving their husbands at
the left bank is easy. (It is a problem that can be solved by brute force, if necessary.)
Here is how it is achieved.
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{ 3C| }
1C,2H 2W]
. { 1C2H 2w }
1C,2H TW] 1W
. { 2CH| W }
3H 2W] TW
{ 3H|3W }

That is,
{3C|} 1C2H [2W]| ; 1C2H [TW| 1TW ; 3H 2W|1W {3H ||3W } .
As discussed above, the sequence S3 is the reverse of S;:

{ 3W|3H }
W 2W] 3H
. [ IW|2C,1H )
W TW| 1C,2H
. [ 2W|1C2H }
2W| 1C,2H
{ II3C }

We are now faced with the harder task of constructing S,. We seek a solution that is
symmetrical about the middle.

Note that, for S;, the starting position of the boat is the right bank, and its finishing
position is the left bank. This is a requirement for S, to follow S; and be followed by
S3. The length of S, must also be odd.

Again, we look for a decomposition into three subsequences. If the solution is to
remain symmetric, it must surely take the following form:

{ 3H[|3W }
T

; 1C [1C| 1C

S b
{ 3WII3H }
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Note particularly the middle action — 1C |1C| TC — . This may be a left-to-right
crossing, or a right-to-left crossing; which is not immediately clear. The task is now to
construct the symmetric sequences of actions T; and T,.

If the middle action is from right to left, the action must be preceded by the state
1C || 2C and results in the state 2C || 1C. Vice-versa, if the middle action is from left
to right, the action must be preceded by the state 2C || 1C and results in the state
1C || 2C. There is little alternative but to use brute-force search to try to determine
which can be achieved.

Fortunately, T; is soon discovered. It consists of just two actions:

{ 3H|I3W }
3H [TW| 2W

i { 1C2H || 2W }
1C [2H| 2W

{ 1C2C }
Symmetrically, for T, we have:

{ 2¢]1Cc
2W |2H| 1C
v { 2W1C2H |}
2W [TW| 3H
{ 3W||3H }
Finally, putting everything together, we have the complete solution to the jealous-couples
problem:
{3CI 1}
1C,2H 2W]| ; 1C.2H [TW| TW ; 3H [2W] TW
;o { 3HI[3wW ]
3H |[TW| 2W ; 1C |2H| 2W
;L o1ciz2c
1C 1Cl1C
;L 2¢c
2W [2H| 1C ; 2W [1TW]| 3H
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;o { 3SWI[3H |}
TW [2W| 3H : TW [TW| 1C,2H ; [2W]| 1C,2H
{ 113C }

(In this solution, not all intermediate states are shown. This helps to document the
solution, by recording the main steps, but not every step. Too much detail in program
documentation can be a hindrance.)

3.3.5 A Review

Pause awhile to review the method used to solve the jealous-couples problem, so that
you can fully appreciate how much more effective it is than brute-force search.

The construction seeks at each stage to exploit the symmetry between the left and
right banks. Since the number of crossings will inevitably be odd, each decomposi-
tion is into three subsequences, where the first and last are “mirror images” in some
sense. Naming the unknown sequences, and formally specifying their function using the
{p} S {q]} notation helps to clarify what has to be achieved, and to avoid error.

The final solution involves eleven crossings. That’s too many for anyone to commit
to memory. But, because the solution method is well structured, it is easy to remember,
making a reconstruction of the solution very simple. Moreover, the solution to the
problem cannot be used in other contexts, but the solution method can. For the proof
of the pudding, solve the following related problem:

Exercise 3.1 (Five-couple Problem) There are five jealous couples, and their boat
can carry a maximum of three individuals. Determine how to transport all the couples
across the river.

O

Exercise 3.2 (Four-couple Problem) Unfortunately, the symmetry between the left
and right banks does not guarantee that every river-crossing problem has a symmetric
solution. The case that there are four jealous couples, and their boat can carry a max-
imum of three, has a solution, but it is not symmetric. Determine a solution to this
problem.

The following hint may be helpful. Four is less than five, and, by now, you will have
solved the problem of transporting five couples across the river (exercise 3.1). So, try to
modify the solution for five couples to obtain a solution for four. You should be able to
find two solutions in this way, one being obtained from the other by reversing left and
right.
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(In general, individual solutions need not be symmetric, but the set of solutions
is symmetric. That is, there is a transformation from solutions to solutions based on
reversing left and right. A solution is symmetric if this transformation maps the solution
to itself.)

O

Exercise 3.3 Show that, if the boat can hold a maximum of two people, it is impossible
to transport four or more couples across the river.

Show that, if the boat can hold a maximum of three people, it is impossible to
transport six or more couples across the river.

Hint: Both problems can be handled together. The crucial properties are:

e At most half of the husbands can cross together.

e The boat can only hold one couple.

3.4 Rule of Sequential Composition

The { p } S { q } notation we used for solving the jealous-couples problem is the
notation used for specifying and constructing computer programs. It is called a Hoare
triple. (Sir Tony Hoare is a British computing scientist who pioneered techniques for
formally verifying the correctness of computer programs; he was one of the first to use
the notation.)

A computer program is specified by a relation between the input values and the output
values. The allowed input values are specified by a so-called precondition, p, and the
output values are specified by a postcondition, q. Preconditions and postconditions
are properties of the program variables.

If S is a program, and p and g are properties of the program variables,

{p}S{a}

means that, if the program variables satisfy property p before execution of statement
S, execution of S is guaranteed to terminate and, afterwards, the program variables will
satisfy property q. For example, a program to compute the remainder r and dividend
d after dividing number M by number N would have precondition

N£0 |
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(since dividing by 0 is not allowed) and postcondition
M=Nxd+r N 0<r<N

If the program is S, the specification of the program is thus
{N#£0} S {M=Nxd+r A 0<r<N} .

Programs are often composed by sequencing; the individual components are executed one
after the other. A semicolon is usually used to denote sequencing. Thus, if S;, S, and
S3 are programs, S;; S, ; S3 denotes the program that is executed by first executing Sq,
then executing S,, and then executing S3. This is called the sequential composition
of S], Sz and 83.

A sequential composition is introduced into a program when the problem it solves
is decomposed into subproblems. In the case of a decomposition into two components,
given a precondition p and a postcondition ¢, an intermediate condition, r say, is
invented. The problem of constructing a program S satisfying the specification

{p}S{a}

is then resolved by letting S be S;;S, and constructing S; and S, to satisfy the
specifications

{p}Si{r}

and

{r}S:{a}.

The intermediate condition r thus acts as postcondition for S; and precondition for S,.

If the problem is decomposed into three subproblems, two intermediate conditions are
needed. This is what we did in solving the jealous-couples problem. The initial problem
statement has precondition 3C || and postcondition || 3C. The intermediate conditions
3H || 3W and 3W || 3H were then introduced in order to make the first decomposition.

There are different ways of using the rule of sequential composition. The structure of
the given problem may suggest an appropriate intermediate condition. Alternatively, the
problem may suggest an appropriate initial computation S;; the task is then to identify
the intermediate condition and the final computation S,. Conversely, the problem may
suggest an appropriate final computation S,; then the task becomes one of identifying
the intermediate condition r and the initial computation S;.

A concrete illustration is the bridge problem posed in chapter 1. Recall its statement:
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Four people wish to cross a bridge. It is dark, and it is necessary to use a
torch when crossing the bridge, but they only have one torch between them.
The bridge is narrow and only two people can be on it at any one time. The
four people take different amounts of time to cross the bridge; when two cross
together they must proceed at the speed of the slowest. The first person takes
1 minute to cross, the second 2 minutes, the third 5 minutes and the fourth
10 minutes. The torch must be ferried back and forth across the bridge, so
that it is always carried when the bridge is crossed.

Show that all four can cross the bridge within 17 minutes.

It is easy to see that five trips are needed to get all four people across the bridge.
The five trips comprise three trips where two people cross together interleaved with two
trips where one person returns with the torch. Since there are only two return trips, and
there are four people, at least two people never make a return trip. Clearly, to achieve
the shortest time, the two slowest should not make a return journey. The question is
whether they should cross together or seperately.

The times have been chosen in this example so that the shortest time is achieved
when the two slowest cross together. (It isn’t always the case that the best strategy is
to let the two slowest cross together. See exercise 3.4.) Using the times as identifiers for
the individuals, the solution will therefore include, for some p and q, a crossing of the
form

p 15,10/ g

as one step. Seeking to exploit symmetry, the task becomes one of determining sequences
of crossings S; and S,, and p and g such that

{ 1)2)5>1O || } 81 {p>5a10 H q }

{p5100a}t pI510q{plla5110}
and

{plla510} S; {[[1,25]10} .
We leave you to complete the rest.

Exercise 3.4 (The Torch Problem) Consider the torch problem in the case that the
crossing times of the four individuals form the input parameters. Suppose the first person
takes t; minutes to cross, the second t, minutes, the third t; minutes and the fourth
t4; minutes. Assume that t; <t, <t3<t;. Find a method of getting all four across that
mimimises the total crossing time. You may assume that, in an optimal solution, every
forward trip involves two people and every return trip involves one person.

Apply your solution to the following two cases:
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(a) The times taken are 1 minute, 1 minute, 3 minutes and 3 minutes.

(b) The times taken are 1 minute, 4 minutes, 4 minutes and 5 minutes.

Hint: In the specific case discussed above (where t;, t,, t3 and t4 are 1, 2, 5 and
10, respectively), the shortest time is achieved by letting the two slowest cross together.
However, this isn’t always the best strategy. An alternative strategy is to let the fastest
person accompany each of the others across in turn. You will need to evaluate the time
taken for both strategies and choose between them on the basis of the times. In order
to derive the solution methodically, we suggest the following steps. (Note that steps (a)
and (b) were already discussed above.)

(a) How many times must the torch be carried across the bridge in order to get all four
people across? (Include crossings in both directions in the count.) How many of
these are return trips?

(b) Comparing the number of times a return journey must be made with the number of
people, what can you say about the number of people who do not make a return
trip? Which of the four people would you choose not to make a return trip? (Give
a convincing argument to support your choice.)

(c) Now focus on how to get the people who do not make a return trip across the
bridge. What are the different strategies? Evaluate the time taken for each. Hence,
construct a formula for the minimum time needed to get all four people across in
the general case.

(d) Give a solution to the general problem. Use a conditional statement to decide which
strategy to use.

Note that this exercise is much harder than the specific case discussed above. This is not
just because the input times are parameters but primarily because you must establish
without doubt that your solution cannot be bettered. The original problem was carefully
worded so that this was not required.

O

Exercise 3.5 Suppose a brute-force search is used to solve the torch problem (exercise
3.4 above). This would mean enumerating all the different ways of getting four people
across the bridge. How many ways are there?

O
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3.5 Summary

In this chapter, we have contrasted brute-force search with problem decomposition.
Brute-force search should only be used as a last resort. Modern computer technology
means that some problems that are too large for human beings to solve do become solv-
able, but the state-space explosion makes the method impractical for realistic problems,
even with the most powerful computers. Complexity theory, which you will study in a
course on algorithm design, lends greater force to this argument; no matter how much
bigger and faster computers become, they can never compete with the increase in size of
the state space caused by modest increases in problem size.

Problem decomposition seeks to exploit the inherent structure of the problem domain.
In all river-crossing, or similar, problems, there is a symmetry between the left and right
banks. This suggests tackling the problems by decomposing them into three components,
the first and last being symmetrical in some way. Unfortunately, this strategy has no
guarantee of success, but, if the problems are tackled in this way, they become more
manageable, and often have clear, easily remembered and easily reproduced solutions.
Most importantly, the solution method can be applied repeatedly, in contrast to the
solutions, which are only relevant to one particular problem.

Along the way, the issue of deciding what to name (and what not to name) has
emerged as an important problem-solving skill that can have significant impact on the
complexity of the problem. The process is called abstraction — from the myriad of
details that surround any real-world description of a problem, we abstract the few that
are relevant, introducing appropriate, clearly defined mathematical notation to assist in
the problem’s solution.
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Chapter 4

Games

This chapter is about how to win some simple two-person games. Games provide very
good examples of algorithmic problem solving because playing games is all about win-
ning. The goal is to have some method (i.e. “algorithm”) for deciding what to do so that
the eventual outcome is a win.

The key to winning is the recognition of invariants. So, in essence, this chapter is
a continuation of chapter 2. The chapter is also about trying to identify and exploit
structure in problems. In this sense, it introduces the importance of algebra in problem
solving.

The next section introduces a number of games with matchsticks, in order to give
the flavour of the games that we consider. Following it, we develop a method of sys-
tematically identifying winning and losing positions in a game (assuming a number of
simplifying constraints on the rules of the game). A winning strategy is then what we
call “maintaining an invariant”. “Maintaining an invariant” is an important technique in
algorithm development. Here, it will mean ensuring that the opponent is always placed
in a position from which losing is inevitable.

4.1 Matchstick Games

A matchstick game is played with one or more piles of matches. Two players take it
in turn to make a move. Moves involve removing one or more matches from one of the
piles, according to a given rule. The game ends when it is no longer possible to make
a move. The player whose turn it is to move is the loser, and the other player is the
winner.

A matchstick game is an example of an tmpartial, two-person game with complete
information. “Impartial” means that rules for moving apply equally to both players.
(Chess, for example, is not impartial, because white can only move white pieces, and
black can only move black pieces.) “Complete information” means that both players
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know the complete state of the game. In contrast, in card games like poker, it is usual
that each player does not know the cards held by the other player; the players have
incomplete information about the state of the game.

A winning position is one from which a perfect player is always assured of a win. A
losing position is one from which a player can never win, when playing against a perfect
player. A winning strategy is an algorithm for choosing moves from winning positions,
that guarantees a win.

As an example, suppose there is one pile of matches, and an allowed move is to remove
1 or 2 matches. The losing positions are the positions where the number of matches
is a multiple of 3 (that is, the number of matches is 0, 3, 6, 9 etc.). The remaining
positions are the winning positions. If m is the number of matches in such a position
(so, m is not a multiple of 3), the strategy is to remove mmod3 matches!. This is
either 1 or 2, and so the move is valid. The opponent is then put in a position where
the number of matches is a multiple of 3. This means that there are either 0 matches
left, in which case the opponent loses, or any move they make will result in there again
being a number of matches remaining that is not a multiple of 3.

In an impartial game that is guaranteed to terminate no matter how the players
choose their moves (i.e. the possibility of stalemate is excluded), it is always possible to
characterise the positions as either winning or losing positions. The following exercises
ask you to do this in specific cases.

1. There is one pile of matches. Each player is allowed to remove 1 match. What are
the winning positions?

2. There is one pile of matches. Each player is allowed to remove 0 matches. What
are the winning positions?

3. Can you see a pattern in the last two problems and the example discussed above
(in which a player is allowed to remove 1 or 2 matches)? In other words, can you
see how to win a game in which an allowed move is to remove at least one and at
most N matches, where N is some number fixed in advance?

4. There is one pile of matches. Each player is allowed to remove 1, 3 or 4 matches.
What are the winning positions and what is the winning strategy?

5. There is one pile of matches. Each player is allowed to remove 1, 3 or 4 matches,
except that it is not allowed to repeat the opponent’s last move. (So, if, say, your
opponent removes 1 match, your next move must be to remove 3 or 4 matches.)
What are the winning positions and what is the winning strategy?

!Recall that mmod 3 denotes the remainder after dividing m by 3.
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6. There are two piles of matches. A move is to choose one pile and, from that pile,
remove 1, 2 or 3 matches. What are the winning positions and what is the
winning strategy?

7. There are two piles of matches. A move is to choose one pile; from the left pile 1,
2 or 3 matches may be removed, and from the right pile 1 thru? 7 matches may
be removed. What are the winning positions and what is the winning strategy?

8. There are two piles of matches. A move is to choose one pile; from the left pile, 1,
3 or 4 matches may be removed, and, from the right pile, 1 or 2 matches may
be removed. What are the winning positions and what is the winning strategy?

4.2 Winning Strategies

In this section, we formulate what is required of a winning strategy. We begin with the
simple matchstick game where a move is to remove one or two matches from a single
pile of matches; we show how to search systematically through all the positions of the
game, labelling each as either a winning or a losing position. Although a brute-force
search, and thus not practical for more complicated games, the algorithm does give a
better understanding of what is involved, and can be used as a basis for developing more
efficient solutions in particular cases.

4.2.1 Assumptions

We make a number of assumptions about the game, in order that the search will work.

e We assume that the number of positions is finite.

e We assume that the game is guaranteed to terminate no matter how the players
choose their moves.

The first assumption is necessary because a one-by-one search of the positions can
never be complete if the number of positions is infinite. The second assumption is
necessary because the algorithm relies on being able to characterise all positions as
either losing or winning; we exclude the possibility that there are stalemate positions.
Stalemate positions are ones from which the players can continue the game indefinitely,
so that neither wins or loses.

2We use “thru” when we want to specify an inclusive range of numbers. For example, “1 thru 47
means the numbers 1, 2, 3 and 4. The English expression “1 to 4” is ambiguous about whether the
number 4 is included or not.
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4.2.2 Labelling Positions

The first step is to draw a directed graph depicting all positions, and all moves in the
game. Fig. 4.1 is a graph of the matchstick game described at the beginning of section
4.1.

OROa0a0a0n0R0R0a0

Figure 4.1: Matchstick Game. Players may take one or two matches at each turn.

A directed graph has a set of nodes and a set of edges. Each edge is from one node
to another node. When graphs are drawn, nodes are depicted by circles, and edges are
depicted by arrows pointing from the from node to the o node.

The nodes in fig. 4.1 are labelled by a number, the number of matches remaining in
the pile. From the node labelled O, there are no edges. It is impossible to move from
the position in which no matches remain. From the node labelled 1, there is exactly one
edge, to the node labelled 0. From the position in which one match remains, there is
only one move that can be made, namely to remove the remaining match. From all other
nodes, there are two edges. From the node labelled n, where n is at least 2, there is
an edge to the node labelled n—1 and an edge to the node labelled n—2. That is, from
a position in which the number of remaining matches is at least 2, one is allowed to
remove one or two matches.

Having drawn the graph, we can begin labelling the nodes as either losing positions
or winning positions. A player who finds themself in a losing position will inevitably
lose, if playing against a perfect opponent. A player who finds themself in a winning
position is guaranteed to win, provided the right choice of move is made at each turn.

The labelling rule has two parts, one for losing positions, the other for winning
positions:

e A node is labelled losing if every edge from the node is to a winning position.
e A node is labelled winning if there 1s an edge from the node to a losing position.

At first sight, it may seem that it is impossible to begin to apply these rules; after
all, the first rule defines losing positions in terms of winning positions, whilst the second
rule does the reverse. It seems like a vicious circle! However, we can begin by labelling
as losing positions all the nodes with no outgoing edges. This is because, if there are no
edges from a node, the statement “every edge from the node is to a winning position” is
true. It is indeed the case that all of the (non-existent) edges is to a winning position.
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This is an instance of a general rule of logic. A statement of the form “every x has
property p” is what is called a for-all quantification, or a universal quantification.
Such a statement is said to be vacuously true when there are no instances of the “x”
in the quantification. In a sense, the statement is “vacuous” (i.e. empty) because it is a
statement about nothing.

Returning to fig. 4.1, the node O is labelled “losing”, because there are no edges
from it. It is indeed a losing position, because the rules of the game specify that a player
who cannot make a move loses.

Next, nodes 1 and 2 are labelled “winning”, because, from each, there is an edge to
0, which we know to be a losing position. Note that the edges we have identified dictate
the move that should be made from these positions if the game is to be won.

Now, node 3 is labelled “losing”, because both edges from node 3 are to nodes (1
and 2) that we have already labelled “winning”. From a position in which there are 3
matches remaining, every move is to a position starting from which a win is guaranteed.
A player that finds themself in this position will eventually lose.

The process we have described repeats itself until all nodes have been labelled. Nodes
4 and 5 are labelled “winning”, then node 6 is labelled “losing”, then nodes 7 and 8
are labelled “winning”, and so on.

Fig. 4.2 shows the state of the labelling process at the point that node 7 has been
labelled but not node 8. The circles depicting losing positions are drawn with thick
lines; the circles depicting winning positions are the ones from which there is an edge
drawn with a thick line. These edges depict the winning move from that position.

©, 000“0 00‘06

Figure 4.2: Labelling Positions. Winning edges are indicated by thick edges.

Clearly, a pattern is emerging from this process. The pattern is that the losing
positions are the ones where the number of matches is a multiple of 3. The winning
positions are the remaining positions; the winning strategy is to remove one or two
matches so as to leave the opponent in a position where the number of matches is once
again a multiple of 3.

4.2.3 Formulating Requirements

The terminology we use to describe the winning strategy is to “maintain invariant”
the property that the number of matches is a multiple of 3. In programming terms,
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we express this property using Hoare triples. Let n denote the number of matches in
the pile. Then, the correctness of the winning strategy is expressed by the following
annotated program segment:

{ n is a multiple of 3, and n#0 }

if1<n - n:=n-1 O 2<n — n:=n-2fi
;{ m is not a multiple of 3 }

n := n—(nmod?3)

{ n is a multiple of 3 }

There are five components of this program segment, each on a separate line. The first
line is the precondition. This expresses the assumption that we begin from a position in
which the number of matches is a multiple of 3, and non-zero.

The second line is a so-called conditional statement. Conditional statements are
recognised by “if-fi” brackets. Within these brackets is a non-deterministic choice —
indicated by the “0O” symbol— among a number of so-called guarded commands. A
guarded command has the form b— S, where b is a boolean-valued expression called
the guard, and S is a statement called the body. Starting in a given state, a conditional
statement is executed by choosing a guarded command whose guard evaluates to true,
and then executing its body. If several guards evaluate to true, an arbitrary choice of
command is made. If none of the guards evaluates to true, execution is aborted?®.

In this way, the if-fi statement in the second line models an arbitrary move. Remov-
ing one match is only allowed if 1<m; hence, the statement n := n—1 is “guarded”
by this condition. Similarly, removing two matches —modelled by the assignment
n := n—2— is “guarded” by the condition 2<n. At least one of these guards, and
possibly both, is true because of the assumption that n#0.

The postcondition of the guarded command is the assertion “n is not a multiple
of 3”. The triple, comprising the first three lines, thus asserts that, if the number of
matches is a multiple of 3, and a valid move is made that reduces the number of matches
by one or two, then, on completion of the move, the number of matches will not be a
multiple of 3.

The fourth line of the sequence is the implementation of the winning strategy; specif-
ically, remove nmod3 matches. The fifth line is the final postcondition, which asserts
that, after execution of the winning strategy, the number of matches will again be a
multiple of 3.

3If you are already familiar with a conventional programming language, you will be familiar with
deterministic conditional statements — so-called if-then-else statements. In such statements, the choice
of which of the optional statements should be executed is completely determined by the state of the
program variables. In a non-deterministic choice, as used here, the choice is not completely determined.
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In summary, beginning from a state in which n s a multiple of 3, and making
an arbitrary move, results in a state in which n is not a multiple of 3. Subsequently,
removing nmod3 matches results in a state in which n is again a multiple of 3.

In general, a winning strategy is obtained by characterising the losing positions by
some property, losing say. The end positions (the positions where the game is over)
must satisfy the property losing. The winning positions are then the positions that do
not satisfy losing. For each winning position, one has to identify a way of calculating
a losing position to which to move; the algorithm that is used is the winning strategy.
More formally, the losing and winning positions, and the winning strategy must satisfy
the following specification.

{ losing position, and not an end position }
make an arbitrary (legal) move

{ winning position, i.e. not a losing position }
apply winning strategy

{ losing position }

In summary, a winning strategy is a way of choosing moves that divides the positions
into two types, the losing positions and the winning positions, in such a way that the
following three properties hold:

e End positions are losing positions.

e From a losing position that is not an end position, every move is to a winning
position.

e From a winning position, it is always possible to apply the winning strategy, re-
sulting in a losing position.

If both players are perfect, the winner is decided by the starting position. If the
starting position is a losing position, the second player is guaranteed to win. Vice-
versa, if the starting position is a winning position, the first player is guaranteed to win.
Starting from a losing position, one can only hope that one’s opponent is not perfect,
and will make a mistake.

Formally, a winning strategy maintains invariant the boolean quantity

(the number of moves remaining before the game ends is even) equals (the
position is a losing position).

Since end positions are losing positions, by assumption, and positions where the number
of moves remaining is zero, which is an even number, this quantity will always be true
in a game played by perfect players.
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We recommend that you now try to solve the matchstick-game problem when the
rule is that any number of matches from 1 thru M may be removed at each turn. The
number M is a natural number, fixed in advance. We recommend that you try to solve
this general problem by first considering the case that M is 0. This case has a very easy
solution, although it is a case that is very often neglected. Next, consider the case that M
is 1. This case also has an easy solution, but slightly more complicated. Now, combine
these two cases with the case that M is 2, which is the case we have just considered.
Do you see a pattern in the solutions? If you don’t see a pattern immediately, try a bit
harder. As a last resort, try working out the case that M is 3. (Don’t draw a diagram.
Construct a table instead. A diagram is much too complicated.) Then, return to the
cases that M is 0, 1 and 2 (in particular, the extreme cases 0 and 1) in order to
check the pattern you have identified. Finally, formulate the correctness of the strategy
by a sequence of assertions and statements, as we did above for the case that M is 2.

Exercise 4.1 (31st December Game) Two players alternately name dates. The
winner is the player who names 31st December, and the starting date is 1st January.

Each part of this exercise uses a different rule for the dates that a player is allowed to
name. For each, devise a winning strategy, stating which player should win. State also
if it depends on whether the year is a leap year or not.

Hint: in principle, you have to determine for each of 365 days (or 366 in the case of a
leap year) whether naming the day results in losing against a perfect player. In practice,
a pattern soon becomes evident and the days in each month can be grouped together
into winning and losing days. Begin by identifying the days in December that one should
avoid naming.

a) (Easy) A player can name the 1st of the next month, or increase the day of the month
by an arbitrary amount. (For example, the first player begins by naming 1st February,
or a date in January other than the 1st.)

b) (Harder) A player can increase the day by one, leaving the month unchanged, or name

the 1st of the next month.

O

4.3 Subtraction-Set Games

A class of matchstick games is based on a single pile of matches and a (finite) set of
numbers; a move is to remove m matches, where m is an element of the given set. A
game in this class is called a subtraction-set game, and the set of numbers is called the
subtraction set.
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The games we have just discussed are examples of matchstick games; if the rule is
that 1T thru M matches may be removed at each turn, the subtraction set is {1..M}.
More interesting examples are obtained by choosing a subtraction set with less regular
structure.

For any given subtraction set, the winning and losing positions can always be com-
puted. We exemplify the process in this section by calculating the winning and losing
positions when the allowed moves are:

e remove one match,
e remove three matches,
e remove four matches.

In other words, the subtraction set is {1,3,4}.

Positions in the game are given by the number of matches in the pile. We refer to
the positions using this number. So, “position 0” means the position in which there are
no matches remaining in the pile, “position 1” means the position in which there is just
one match in the pile, and so on.

Beginning with position 0, and working one-by-one through the positions, we identify
whether each position is a winning position using the rules that

e a position is a losing position if every move from it is to a winning position, and
e a position is a winning position if there is a move from it to a losing position.

The results are entered in a table. Table 4.1 shows the entries when the size of the pile
is at most 6. The top row is the position, and the middle row shows whether or not it is
a winning (W) or losing position (L). In the case that the position is a winning position,
the bottom row shows the number of matches that should be removed in order to move
from the position to a losing position. For example, 2 is a losing position because the
only move from 2 is to 1; positions 3 and 4 are winning positions because from both a
move can be made to 0. Note that there may be a choice of winning move. For example,
from position 3 there are two winning moves — remove 3 matches to move to position
0, or remove 1 match to move to position 2. It suffices to enter just one move in the
bottom row of the table.

Continuing this process, we get the next seven entries in the table: see table 4.2.

Comparing tables 4.1 and 4.2, we notice that the pattern of winning and losing
positions repeats itself. Once the pattern begins repeating in this way, it will continue to
do so forever. We may therefore conclude that, for the subtraction set {1,3,4}, whether
or not the position is a winning position can be determined by computing the remainder,
r say, after dividing the number of matches by 7. If r is 0 or 2, the position is a losing
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Position 0 1 2 3 4 5 6
Type L W L W W W W
Move 1 3 4 3 4

Table 4.1: Winning (W) and Losing (L) Positions for subtraction set {1,3,4}

Position 7 8 9 10 11 1 1
Type L W L W W W W
Move 1 3 4 3 4

N
w

Table 4.2: Winning (W) and Losing (L) Positions for subtraction set {1,3,4}

position. Otherwise, it is a winning position. The winning strategy is to remove 1 match
if r is 1, remove 3 matches if r is 3 or 5, and remove 4 matches if r is 4 or 6.

The repetition in the pattern of winning and losing positions that is evident in this
example is a general property of subtraction-set games, with the consequence that, for a
given subtraction set, it is always possible to determine for an arbitrary position whether
or not it is a winning position (and, for the winning positions, a winning move). The
following argument gives the reason why.

Suppose a subtraction set is given. Since the set is assumed to be finite, it must
have a largest element. Let this be M. Then, from each position, there are at most
M moves. For each position k, let W.k be true if k is a winning position, and false
otherwise. When k is at least M, W.k is completely determined by the sequence

W.(k—1), W.(k-2), ..., W.(k—M). Call this sequence s.k. Now, there are only 2M
different sequences of booleans of length M. As a consequence, the sequence s.(M+1),
s.(M+2), s.(M+3), ... must eventually repeat, and it must do so within at most 2M

steps. That is, for some j and k, with M <j<k<M+2M, we must have sj=s.k. It
follows that W.j=W.k and the sequence W repeats from the kth position onwards.

For the example above, this analysis predicts that the W-L pattern will repeat from
the 20th position onwards. In fact, it begins repeating much earlier. Generally, we
can say that the pattern of win-lose positions will repeat at position 2M+M, or before.
To determine whether an arbitrary position is a winning or losing position involves
computing the status of each position k, for successive values of k, until a repetition in
s.k is observed. If the repetition occurs at position R, then, for an arbitrary position
k, WXk equals W.(kmodR).

Exercise 4.2  Suppose there is one pile of matches. In each move, 2, 5 or 6 matches
may be removed. (That is, the subtraction set is {2,5,6}.)
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(a) For each n, 0<n<22, determine whether a pile of n matches is a winning or
losing position.

(b) Identify a pattern in the winning and losing positions. Specify the pattern by giving
precise details of a boolean function of n that determines whether a pile of n
matches is a winning position or not.

Verify the pattern by constructing a table showing how the function’s value changes
when a move is made.

O

Exercise 4.3  This exercise is challenging; its solution involves thinking beyond the
material presented in the rest of the chapter.

Figure 4.3 shows a variant of snakes and ladders. In this game, there is just one
counter. The two players take it in turn to move the counter at most four spaces forward.
The start is square 1 and the finish is square 25; the winner is the first to reach the
finish. As in the usual game of snakes and ladders, if the counter lands on the head of a
snake, it falls down to the tail of the snake; if the counter lands at the foot of a ladder,
it climbs to the top of the ladder.

(a) List the positions in this game. (These are not the same as the squares. Think
carefully about squares linked by a snake or a ladder.)

(b) Identify the winning and losing positions. Use the rule that a losing position is one
from which every move is to a winning position, and a winning position is one from
which there is a move to a losing position.

(c) Some of the positions cannot be identified as winning or losing in this way. Explain
why.

4.4 Sums of Games

In this section, we look at how to exploit the structure of a game in order to compute a
winning strategy more effectively.

The later examples of matchstick games in section 4.1 have more than one pile of
matches. When a move is made, one of the piles must first be chosen; then, matches
may be removed from the chosen pile according to some prescribed rule, which may differ
from pile to pile. The game is thus a combination of two games; this particular way of
combining games is called summing the games.
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Figure 4.3: Snakes and Ladders. Players take it in turn to move the counter at most
four spaces forward.

In general, given two games each with its own rules for making a move, the sum of
the games is the game described as follows. For clarity, we call the two games the left
and the right game. A position in the sum game is the combination of a position in the
left game and a position in the right game. A move in the sum game is a move in one of
the games.

Figure 4.4 is an example of the sum of two games. Each graph represents a game,
where the positions are represented by the nodes, and the moves are represented by the
edges. Imagine a coin placed on a node. A move is then to displace the coin along one
of the edges to another node. The nodes in the left graph and right graphs are named
by capital letters and small letters, respectively, so that we can refer to them later.

In the “sum” of the games, two coins are used, one coin being placed over a node in
each of the two graphs. A move is then to choose one of the coins, and displace it along
an edge to another node. Thus, a position in the “sum” of the games is given by a pair
Xx where “X” names a node in the left graph, and “x” names a node in the right graph;

({2

a move has the effect of changing exactly one of “X” or “x”.
Both the left and right games in fig. 4.4 are unstructured; consequently, the brute-

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



4.4. Sums of Games 53

Figure 4.4: A Sum Game. The left and right games are represented by the two graphs.

A position is a pair Xx where “X” is the name of a node in the left graph, and “x” is
the name of a node in the right graph. A move changes exactly one of X or x.

force search procedure described in section 4.2.2 is unavoidable when determining their
winning and losing positions. However, the left game in fig. 4.4 has 15 different postions,
and the right game has 11; thus, the sum of the two games has 15x 11 different positions.
For this game, and for sums of games in general, a brute-force search is highly undesirable.
In this section, we study how to compute a winning strategy for the sum of two games. We
find that the computational effort is the sum (in the usual sense of addition of numbers)
of the effort required to compute winning and losing positions for the component games,
rather than the product. We find, however, that it is not sufficient to know just the
winning strategy for the individual games. Deriving a suitable generalisation forms the
core of the analysis.
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4.4.1 Symmetry
A Simple Sum Game

We begin with a very simple example of the sum of two games. Suppose there are two
piles of matches. An allowed move is to choose any one of the piles and remove at least
one match from the chosen pile. Otherwise, there is no restriction on the number of
matches that may be removed. As always, the game is lost when a player cannot make
a move.

This game is the “sum” of two instances of the same, very, very simple, game: given
a (single) pile of matches, a move is to remove at least one match from the pile. In this
simple game, the winning positions are, obviously, the positions in which the pile has at
least one match, and the winning strategy is to remove all the matches. The position in
which there are no matches remaining is the only losing position.

It quickly becomes clear that knowing the winning strategy for the individual games
is insufficient to win the sum of the games. If a player removes all the matches from
one pile —that is, applies the winning strategy for the individual game— , the opponent
wins by removing the remaining matches in the other pile.

The symmetry between left and right allows us to easily spot a winning strategy.
Suppose we let m and n denote the number of matches in the two piles. In the end
position, there is an equal number of matches in both piles, namely 0. That is, in the
end position, m=n=0. This suggests that the losing positions are given by m=n.
This is indeed the case. From a position in which m=n, and a move is possible (that
is, either 1<m or 1<n), any move will be to a position where m#n. Subsequently,
choosing the pile with the larger number of matches, and removing the excess matches
from this pile, will restore the property that m=n.

Formally, the correctness of the winning strategy is expressed by the following se-
quence of assertions and program statements.

{ m=n A (Mm#AOVn#£0) }
if 1<m — reduce m
O 1<n — reduce n
fi

;o { o m#Fn )
if m<n — n:=n—(n-m)
O n<m — m:= m—(m-n)

fi
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{ m=n }

The non-deterministic choice between reducing m, in the case that 1 <m, and reducing
n, in the case that 1<n, models an arbitrary choice of move in the sum game. The
fact that either m changes in value, or n changes in value, but not both, guarantees
m#n after completion of the move.

The property m#n is the precondition for the winning strategy to be applied.
Equivalently, m<n or n<m. In the case that m <n, we infer that 1 <n—m<n, so
that n—m matches can be removed from the pile with n matches. Since, n—(n—m)
simplifies to m, it is clear that, after the assignment n := n—(n—m), the property
m=mn will hold. The case n<m is symmetric.

The following sequence of assertions and program statements summarises the argu-
ment just given for the validity of the winning strategy. Note how the two assignments
have been annotated with a precondition and a postcondition. The precondition ex-
presses the legitimacy of the move; the postcondition is the losing property that the
strategy is required to establish.

{ m#n }

{ m<nVn<m }

if m<n -5 {1<n—-m<n}n:=n—(Mm—-m) {m=n}
O n<m—-{1<m—m<m} m:=m—(m—m) {m=n}
fi

{ m=n }

4.4.2 Maintain Symmetry!

The game in section 4.4.1 is another example of the importance of symmetry; the winning
strategy is to ensure that the opponent is always left in a position of symmetry between
the two individual components of the sum-game. We see shortly that this is how to win
all sum-games, no matter what the individual components are.

There are many examples of games where symmetry is the key to winning. Here is a
couple. The solutions can be found at the end of the book.

The Daisy Problem Suppose a daisy has 16 petals arranged symmetrically around
its centre. There are two players. A move involves removing one petal or two adjacent
petals. The winner is the one who removes the last petal. Who should win and what
is the winning strategy? Generalise your solution to the case that there are initially n
petals and a move consists of removing between 1 and M adjacent petals (where M is
fixed in advance of the game).
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Figure 4.5: A 16-petal daisy

The Coin Problem Two players are seated at a rectangular table which initially is
bare. They each have an unlimited supply of circular coins of varying diameter. The
players take it in turns to place a coin on the table, such that it does not overlap any
coin already on the table. The winner is the one who puts the last coin on the table.
Who should win and what is the winning strategy? (Harder) What, if anything, do you
assume about the coins in order to justify your answer?

4.4.3 More Simple Sums

Let us return to our matchstick games. A variation on the sum game in section 4.4.1 is
to restrict the number of matches that can be removed. Suppose the restriction is that
at most K matches can be removed from either pile (where K is fixed, in advance).

The effect of the restriction is to disallow some winning moves. If, as before, m and
n denote the number of matches in the two piles, it is not allowed to remove m—mn
matches when K< m-n. Consequently, the property m =n no longer characterises the
losing positions. For example, if K is fixed at 1, the position in which one pile has two
matches whilst the second pile has no matches is a losing position: in this position a
player is forced to move to a position in which one match remains; the opponent can
then remove the match to win the game.

A more significant effect of the restriction seems to be that the strategy of establishing
symmetry is no longer applicable. Worse is if we break symmetry further by imposing
different restrictions on the two piles: suppose, for example, we impose the limit M on
the number of matches that may be removed from the left pile, and N on the number of
matches that may be removed from the right pile, where M # N . Alternatively, suppose
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the left and right games are completely different, for example, if one is a matchstick game
and the other is the daisy game. If this is the case, how is it possible to maintain sym-
metry? Nevertheless, a form of “symmetry” is a key to the winning strategy: symmetry
is too important to abandon so easily!

We saw, in section 4.2, that the way to win the one-pile game, with the restriction
that at most M matches can be removed, is to continually establish the property that
the remainder after dividing the number of matches by M+1 is 0. Thus, for a pile of
m matches, the number mmod (M+1) determines whether the position is a winning
position or not. This suggests that, in the two-pile game, “symmetry” between the piles
is formulated as the property that

mmod (M+1) = nmod (N+1) .

(M is the maximum number of matches that can be removed from the left pile, and N
is the maximum number that can be removed from the right pile.)

This, indeed, is the correct solution. In the end position, where both piles have 0
matches, the property is satisfied. Also, the property can always be maintained following
an arbitrary move by the opponent, as given by the following annotated program segment.

{ mmod(M+1) = nmod (N+1) A (m#0Vn=#0) }
if 1<m — reduce m by at most M

O 1<n — reduce n by at most N

7 { mmod(M+1) # nmod (N+1) }
if mmod(M+1) <nmod (N+1) — n := n— (nmod (N+1) —mmod (M+1))
O nmod(N+1) < mmod (M+1) — m := m— (mmod (M+1) —nmod (N+1))

{ mmod(M+1) = nmod (N+1) }

(Note: we discuss later the full details of how to check the assertions made in this
program segment. )

4.4.4 The MEX Function

The idea of defining “symmetric” to be “the respective remainders are equal” can be
generalised to an arbitrary sum game.
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Consider a game that is the sum of two games. A position in the sum game is a pair
(1,r) where 1 is a position in the left game, and r is a position in the right game. A
move affects just one component; so, a move is modelled by either a (guarded) assignment
1l := U (for some 1’) to the left component or a (guarded) assignment r := r’ (for some
") to the right component.

The idea is to define two functions L and R, say, on left and right positions, respec-
tively, in such a way that a position (1,r) is a losing position exactly when L.l=R.r.
The question is: what properties should these functions satisfy? In other words, how do
we specify the functions L and R?

The analysis given earlier of a winning strategy allows us to distill the specification.

First, since (1,r) is an end position of the sum game exactly when 1 is an end position
of the left game and r is an end position of the right game, it must be the case that L
and R have equal values on end positions.

Second, every allowed move from a losing position —a position (1,r) satisfying
L.l=R.r— , that is not an end position, should result in a winning position —a po-
sition (1,r) satisfying L.1#R.r— . That is,

{ Ll=Rr A (1isnotan end position V r is not an end position) }

if 1 is not an end position — change 1

O r is not an end position — change r

fi

{ Ll1# Rr }
Third, applying the winning strategy, from a winning position —a position (1,r) satisfy-
ing L.1# R.r— should result in a losing position —a position (1,r) satisfying L.1=R.r—.
That is,

{ Ll1# Rr }

apply winning strategy

{ L1l=Rr }

We can satisfy the first and second requirements if we define L and R to be functions
with range the set of natural numbers, and require that:

e For end positions | and r of the respective games, L.1=0=R.r.

e For every 1’ such that there is a move from 1 to 1’ in the left game, L.1AL.l".
Similarly, for every r’ such that there is a move from r to v’ in the right game,
R.r#R.a’.

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



4.4. Sums of Games 59

Note that the choice of the natural numbers as range of the functions, and the choice
of 0 as the functions’ value at end positions is quite arbitrary. The advantage of this
choice arises from the third requirement. If L.l and R.r are different natural numbers,
either L.L<R.r or R.r<L.l. This allows us to refine the process of applying the winning
strategy, by choosing to move in the right game when L.l <R.r and choosing to move in
the left game when R.r<L.l. (See below.)

{ Ll1#Rr }

if Ll<Rr — change r
O Rr<Ll — changel
fi

{ L1l=Rr }

For this to work, we require that:

e For any number m less than R.r, it is possible to move from r to a position 1’
such that R.r'=m. Similarly, for any number n less than L.1, it must be possible
to move from 1 to a position 1’ such that L.l'=n.

The bulleted requirements are satisfied if we define the functions L and R to be the
so-called “mex” function. The precise definition of this function is as follows.

Let p be a position in a game G. The mex value of p, denoted mexg.p,
is defined to be the smallest natural number, n, such that

e There is no legal move in the game G from p to a position q satisfying
mexg.q=n.

e For every natural number m less than n, there is a legal move in the
game G from p to a position q satisfying mexg.q=m.

“Mex” is short for “minimal excludant”. A brief, informal description of the mex
number of a position p is the minimum number that is excluded from the mex numbers
of positions q to which a move can be made from p.

4.4.5 Using the MEX Function

We use the game depicted in fig. 4.4 to illustrate the calculation of mex numbers. Figure
4.6 shows the mex numbers of each of the nodes in their respective games.

The graphs do not have any systematic structure; consequently, the only way to
compute the mex numbers is by a brute-force search of all positions. This is easily done
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Figure 4.6: Mex Numbers. The mex number of a node is the smallest natural number
not included among the mex numbers of its successors.

by hand. The end positions are each given mex number 0. Subsequently, a mex number
can be given to a node when all its successors have already been given a mex number.
(A successor of a node p is a node ¢ such that there is an edge from p to q.) The
number is, by definition, the smallest number that is not included in the mex numbers
of its successors. Fig. 4.7 shows a typical situation. The node at the top of the figure
is given a mex number when all its successors have been given mex numbers. In the
situation shown, the mex number given to it is 2 because none of its successors have
been given this number, but there are successors with the mex numbers 0 and 1.

Now, suppose we play this game. Let us suppose the starting position is “Ok”. This
is a winning position because the mex number of “O” is different from the mex number
of “k”. The latter is larger (3 against 2). So, the winning strategy is to move in the
right graph to the node “i”, which has the same mex number as “O”. The opponent
is then obliged to move, in either the left or right graph, to a node with mex number
different from 2. The first player then repeats the strategy of ensuring that the mex

numbers are equal, until eventually the opponent can move no further.
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)

Figure 4.7: Computing mex numbers. The unlabelled node is given the mex number 2.

Note that, because of the lack of structure of the individual games, we have to search
through all 15 positions of the left game and all 11 positions of the right game, in order
to calculate the mex numbers of each position. In total, therefore, we have to search
through 26 different positions. But, this is just the sum (in the usual sense of the word)
of 15 and 11, and is much less than their product, 165. This is a substantial saving
in computational effort. Moreover, the saving grows as the size of the component games
increases.

Exercise 4.4 a) Consider the subtraction-set game where there is one pile of matches
from which at most 2, 5 or 6 matches may be removed. Calculate the mex number for
each position until you spot a pattern.
b) Consider a game which is the sum of two games. In the left game, 1 or 2 matches
may be removed at each turn. In the right game, 2, 5 or 6 matches may be removed.
In the sum game, a move is made by choosing to play in the left game, or choosing to
play in the right game.

The table below shows a number of different positions in this game. A position is
given by a pair of numbers: the number of matches in the left pile, and the number of
matches in the right pile.

Left Game | Right Game | “losing” or winning move
10 20 ?
20 20 ?
15 5 ?
6 9 ?
37 43 ?

Table 4.3: Fill in entries marked “?”

For each position, state whether it is a winning or a losing position. For win-
ning positions, give the winning move in the form Xm where “X” is one of “L” (for
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“left game”) or “R” (for right game), and m is the number of matches to be re-
moved.

O

Exercise 4.5 A rectangular board is divided into m horizontal rows and n vertical
columns, where m and n are both strictly positive integers, making a total of mxn
squares. The number of squares is called the area of the board.

A game is played on the board as follows. Each of the two players takes it in turn
to cut the board either horizontally or vertically along one of the dividing lines. A cut
divides the board into two parts; when a cut has been made a part whose area is at
most the area of the other part is discarded. (This means that the part with the smaller
area is discarded if the two parts have different areas, and one of the two parts is chosen
arbitrarily if the two areas are equal.) For example, if the board has 4x5 squares, a
single move reduces it to 2x5, 3x5, 4x3, or 4x4 squares. Also, if the board has 4x4
squares, a single move reduces it to either 2x4 or 3x4 squares. (Boards with 3x4 and
4x3 squares are effectively the same; the orientation of the board is not significant.)
The game ends when the board has been reduced to a 1x1 board. At this point, the
player whose turn it is to play loses.

This game is a sum game because, at each move, a choice is made between cutting
horizontally or vertically. The component games are copies of the same game. This game
is as follows. A position in the game is given by a strictly positive integer m. A move
in the game is to replace m by a number n such that n<m <2n; the game ends when
m has been reduced to 1, at which point the player whose turn it is to play loses. For
example, if the board has 5 columns, the number of columns can be reduced to 3 or 4
because 3<5<6 and 4<5<8. No other moves are possible because, for n less than
3, 2n<5, and for n greater than 4, 5<n.

The game is easy to win if it is possible to make the board square. This question
is about calculating the mex numbers of the component games in order to determine a
winning move even when the board cannot be made square.

(a) For the component game, calculate which positions are winning and which positions
are losing for the first 15 positions. Make a general conjecture about the winning
and losing positions in the component game and prove your conjecture.

Base your proof on the following facts. The end position, position 1, is a losing
position. A winning position is a position from which there is a move to a losing
position. A losing position is a position from which every move is to a winning
position.

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



4.4. Sums of Games 63

(b) For the component game, calculate the mex number of each of the first 15 positions.

Give the results of your calculation in the form of a table with two rows. The
first row is a number m and the second row is the mex number of position m.
Split the table into four parts. Part 1 gives the mex numbers of positions 2! thru
2111 (where i begins at 0) as shown below. (The first three entries have been
completed as illustration.)

Position: 1
Mex Number:

Position: 2 3
Mex Number: 10

Position: 4 567
Mex Number: 7?70
Position: 8 9 10 11 12 13 14 15

Mex Number: ??r? ? 2 7?2 7?7 7

(You should find that the mex number of each of the losing positions (identified
in part (a)) is 0. You should also be able to observe a pattern in the way entries
are filled in for part i+1 knowing the entries for part i. The pattern is based on
whether the position is an even number or an odd number.)

(c) Table 4.3 shows a position in the board game; the first column shows the number
of columns and the second column the number of rows. Using your table of mex
numbers, or otherwise, fill in “losing” if the position is a losing position. If the
position is not a losing position, fill in a winning move either in the form “Cn” or
“Rm”, where n is an integer; “C” or “R” indicates whether the move is to reduce
the number of “C”olumns or the number of “R”ows, and n is the number which
it should become.

O
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No. of Columns | No. of Rows “losing” or winning move
2 15 ?
4 11 ?
4 14 ?
13 6 ?
21 19 ?

Table 4.4: Fill in entries marked “?”

4.5 Summary

This chapter has been about determining winning strategies in simple two-person games.
The underlying theme of the chapter has been problem specification. We have seen how
winning and losing positions are specified. A precise, formal specification enabled us to
formulate a brute-force search procedure to determine which positions are which.

Brute-force search is only advisable for small, unstructured problems. The analysis
of the “sum” of two games exemplifies the way structure is exploited in problem solving.
Again, the focus was on problem specification. By formulating a notion of “symmetry”
between the left and right games, we were able to determine a specification of the “mex”
function on game positions. The use of mex functions substantially reduces the effort
needed to determine winning and losing positions in the “sum” of two games, compared
to a brute-force search.

Game theory is a rich, well-explored area of Mathematics, which we have only touched
upon in this chapter. It is a theory that is becoming increasingly important in Comput-
ing Science. One reason for this is that problems that beset software design, such as the
security of a system, are often modelled as a game, with the user of the software as the
adversary. Another reason is that games often provide excellent examples of “computa-
tional complexity”; it is easy to formulate games having very simple rules but for which
no efficient algorithm implementing the winning strategy is known.

Mex numbers were introduced by Sprague and Grundy to solve the “Nim” problem,
and mex numbers are sometimes called “Sprague-Grundy” numbers, after their origina-
tors. Nim is a well-known matchstick game involving three piles of matches. We have not
developed the theory sufficiently, in this chapter, to show how Nim, and sums of more
than two games, are solved using mex numbers. (What is missing is how to compute the
mex number of the sum of two games.)
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Chapter 5

Knights and Knaves

The island of knights and knaves is a fictional island that is often used to test students’
ability to reason logically. The island has two types of natives, “knights” who always
tell the truth, and “knaves” who always lie. Logic puzzles involve deducing facts about
the island from statements made by its natives without knowing whether or not the
statements are made by a knight or a knave.

The temptation is to solve such problems by case analysis —in a problem involving n
natives, consider the 2™ different cases obtained by assuming that the individual natives
are knights or knaves— . Case analysis is a clumsy way of tackling the problems. In
contrast, these, and similar logic puzzles, are easy exercises in the use of calculational
logic, which we introduce in this chapter.

5.1 Logic Puzzles
Here is a typical collection of knights-and-knaves puzzles.

1. It is rumoured that there is gold buried on the island. You ask one of the natives
whether there is gold on the island. The native replies: “There is gold on this
island is the same as I am a knight.” The problem is

(a) Can it be determined whether the native is a knight or a knave?

(b) Can it be determined whether there is gold on the island?

2. Suppose you come across two of the natives. You ask both of them whether the
other one is a knight. Will you get the same answer in each case?

3. There are three natives A, B and C. Suppose A says “B and C are the same type.”
What can be inferred about the number of knights?
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4. Suppose C says “A and B are as like as two peas in a pod”. What question should
you pose to A to determine whether or not C is telling the truth?

5. Devise a question that allows you to determine whether a native is a knight.
6. What question should you ask A to determine whether B is a knight?

7. What question should you ask A to determine whether A and B are the same type
(i.e. both knights or both knaves)?

8. You would like to determine whether an odd number of A, B and C is a knight.
You may ask one yes/no question to any one of them. What is the question you
should ask?

9. A tourist comes to a fork in the road, where one branch leads to a restaurant and
one doesn’t. A native of the island is standing at the fork. Formulate a single
yes/no question that the tourist can ask such that the answer will be yes if the left
fork leads to the restaurant, and otherwise the answer will be no.

5.2 Calculational Logic

5.2.1 Propositions

The algebra we learn at school is about calculating with expressions whose values are
numbers. We learn, for example, how to manipulate an expression like m?—n? in order
to show that its value is the same as the value of (m+n)x(m-—mn), independently of the
values of m and n. We say that m?—m? and (m+n)x(m-—n) are equal, and write

m—n‘ = (m4n)x(m-n) .

The basis for these calculations is a set of laws. Laws are typically primitive, but general,
equalities between expressions. They are “primitive” in the sense that they cannot be
broken down into simpler laws, and they are “general” in the sense that they hold
independently of the values of any variables in the constituent expressions. We call them
azioms. Two examples of axioms, both involving zero are:

n+0 =n ,
and

n—n-=20,
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both of which are true whatever the value of the variable n. We say they are true “for
all n”. The laws are often given names so that we can remember them more easily. For
example, “associativity of addition” is the name given to the equality:

(m+n)+p = m+(n+p)

which is true for all m, n and p.

(Calculational) logic is about calculating with expressions whose values are so-called
“booleans” — that is, either true or false. Examples of such expressions are “it is
sunny” (which is either true or false depending on to when and where “it” refers) ,
n=0 (which is either true or false depending on the value of n), and n<n+1 (which
is true for all numbers n ). Boolean-valued expressions are called propositions. Atomic
propositions are propositions that cannot be broken down into simpler propositions. The
three examples above are all atomic. A non-atomic proposition would be, for example,
m<n<p, which can be broken down into the so-called conjunction of m<n and
n<p.

Logic is not concerned with the truth or otherwise of atomic propositions; that is the
concern of the problem domain being discussed. Logic is about rules for manipulating
the logical connectives — the operators like “and”, “or”, and “if” that are used to
combine atomic propositions.

Calculational logic places emphasis on equality of propositions, in contrast to other
axiomatisations of logic, which emphasise logical implication (if ... then ...). Equality
is the most basic concept of logic —a fact first recognised by Gottfried Wilhelm Leibniz,
who lived from 1646 to 1716 and who was the first to try to formulate logical reasoning—
and equality of propositions is no exception. We see shortly that equality of propositions
is particularly special, recognition of which considerably enhances the beauty and power
of reasoning with propositions.

5.2.2 Knights and Knaves

Equality of propositions is central to solving puzzles about knights and knaves. Recall
that a knight always tells the truth, and a knave always lies. If A is a native of the island,
the statement “A is a knight” is either true or false, and so is a proposition. Also, the
statements made by the natives are propositions. A statement like “the restaurant is to
the left” is either true or false. Suppose A denotes the proposition “A is a knight”, and
suppose native A makes a statement S. Then, the crucial observation is that the values
of these two propositions are the same. That is,

A=S .
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For example, if A says “the restaurant is to the left”, then
A=L ,

where L denotes the truth value of the statement “the restaurant is to the left”. In
words, A is a knight and the restaurant is to the left, or A is not a knight and the
restaurant is not to the left.

Using this rule, if A says “I am a knight”, we deduce

A=A .

This doesn’t tell us anything! A moment’s thought confirms that this is what one would
expect. Both knights and knaves would claim that they are knights.

If native A is asked a yes/no question Q, the response to the question is the truth
value of A=Q . That is, the response will be “yes” if A is a knight and the answer is
really yes, or A is a knave and the answer is really no. Otherwise the response will be
“no”. For example, asked the question “are you a knight” all natives will answer “yes”,
as A=A. Asked the question “is B a knight?” A will respond “yes” if they are both the
same type (i.e, A=B), otherwise “no”. That is, A’s response is “yes” or “no” depending
on the truth or falsity of A=B.

Because these rules are equalities, the algebraic properties of equality play a central
role in the solution of logic puzzles formulated about the island. A simple, first example
is if A is asked whether B is a knight, and B is asked whether A is a knight. As discussed
above, A’s response is A=B. Reversing the roles of A and B, B’s response is B=A.
But, equality is symmetric; therefore, the two responses will always be the same. Note
that this argument does not involve any case analysis on the four different values of A
and B.

The calculational properties of equality of booleans are discussed in the next section
before we return again to the knights and knaves.

5.2.3 Boolean Equality

Equality —on any domain of values— has a number of characteristic properties. First, it
is reflezive. That is x =x whatever the value (or type) of x. Second, it is symmetric.
That is, x =y is the same as y=x. Third, it is transitive. That is, if x=y and y=z
then x=z. Finally, if x=y and f is any function then f.x=f.y (where the infix dot
denotes function application). This last rule is called substitution of equals for equals
or Leibniz’s rule.

Equality is a binary relation. When studying relations, reflexivity, symmetry and
transitivity are properties that we look out for. Equality is also a function. It is a
function with range the boolean values true and false. When we study functions, the
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sort of properties we look out for are associativity and symmetry. For example, addition
and multiplication are both associative: for all x, y and z,

x+(y+z) = (x+y)+z
and
xx(yxz) = (xxXy)xz .
They are also both symmetric: for all x and vy,
X+y = y+x
and
XXY = YyXxXx .

Symmetry of equality, viewed as a function, is just the same as symmetry of equality,
viewed as a relation. But, what about associativity of equality? Is equality an associative
operator?

The answer is that, in all but one case, the question doesn’t make sense. Associativity
of a binary function only makes sense if the domains of its two arguments and the range
of its result are all the same. The expression (p=q)=r just doesn’'t make sense when
P, q and r are numbers, or characters, or sequences, etc. The one exception is equality
of boolean values. When p, q and r are all booleans it makes sense to compare the
boolean p=q with r for equality. That is, (p=q) = r is a meaningful boolean value.
Similarly, so too is p = (q=7). It also makes sense to compare these two values for
equality. In other words, it makes sense to ask whether equality of boolean values is
associative — and, perhaps surprisingly, it 7s. That is, for all booleans p, q and T,

(5.1) [Associativity] ((p=q)=71) = (p=(q=71)) .

You should check this property by constructing truth tables for (p=q) =r and for
p = (q=r) and comparing the entries. You should observe that the entries for which
(p=q) = r is true are those for which an odd number of p, q and r is true. If two of
the three are true, and the third is false, (p=q) = r is also false.

The associativity of equality is a very powerful property, for one because it enhances
economy of expression. We will see several examples; an elementary example is the
following.

The reflexivity of equality is expressed by the rule

(p=p) = true .
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This holds for all p, whatever its type (number, boolean, string, etc.). But, for boolean
P, we can apply the associativity of equality to get:

p = (p =true) .

This rule is most commonly used to simplify expressions by eliminating “true” from an
expression of the form p = true. We use it several times below.

5.2.4 Hidden Treasures

We can now return to the island of knights and knaves, and discover the hidden treasures.
Let us consider the first problem posed in section 5.1. What can we deduce if a native
says “I am a knight equals there is gold on the island”? Let A stand for “the native is
a knight” and G stand for “there is gold on the island”. Then the native’s statement is
A =G, and we deduce that

A=(A=G)
is true. So,
true
= { A’s statement }
A=(A=G)
= { equality of booleans is associative |}
(A=A)=G

= { (A=A)=true,
substitution of equals for equals }
true=G
= { equality is symmetric }
G =true
= { G=(G=true) }
G
We conclude that there is gold on the island, but it is not possible to determine whether
the native is a knight or a knave.

Suppose, now, that the native is at a fork in the road, and you want to determine
whether the gold can be found by following the left or right fork. You want to formulate
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a question such that the reply will be “yes” if the left fork should be followed, and “no”
if the right fork should be followed.

As usual, we give the unknown a name. Let Q be the question to be posed. Then,
as we saw earlier, the response to the question will be A=Q. Let L denote “the gold
can be found by following the left fork.” The requirement is that L is the same as the
response to the question. That is, we require that L=(A=Q). But,

L=(A=Q)
= { equality is associative }
(L=A)=Q .

So, the question Q to be posed is L=A. That is, ask the question “Is the truth value
of ‘the gold can be found by following the left fork’ equal to the truth value of ‘you are
a knight’ ”.

Note that this analysis is valid independently of what L denotes. It might be that
you want to determine whether there is a restaurant on the island, or whether there are
any knaves on the island, or whatever. In general, if it is required to determine whether
some proposition P is true or false, the question to be posed is P=A. In the case of
more complex propositions P, the question may be simplified.

5.2.5 Equals for Equals

Equality is distinguished from other logical connectives by Leibniz’s rule: if two expres-
sions are equal, one expression can be substituted for the other. Here, we consider one
simple example of the use of Leibniz’s rule.

Suppose there are three natives of the island, A, B and C, and C says “A
and B are both the same type”. Formulate a question that, when posed to
A, determines whether C is telling the truth.

To solve this problem, we let A, B and C denote the propositions A (respectively,
B and C) is a knight. We also let Q be the unknown question.

The response we want is C. So, by the analysis in section 5.2.4, Q=(A=C). But,
C’s statement is A=B. So we know that C= (A =B). Substituting equals for equals,
Q=(A=(A=B)). But, A=(A=B) simplifies to B. So, the question to be posed is
“is B a knight?”. Here is this argument again, but set out as a calculation of Q, with
hints showing the steps taken at each stage.

Q

= { rule for formulating questions }
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= { from C’s statement, C= (A =B),

substitution of equals for equals. }

A=(A=B)
- { associativity of equality }
(A=A)=B
= { (A=A)=true }
true=B
= { (true=B)=B }
B .

5.3 Equivalence and Continued Equalities

Associative functions are usually denoted by infix operators'. The benefit in calculations
is immense. If a binary operator @ is associative (that is, (x®y)®z=xP(ydz) for
all x, y and z), we can write x®ydz without fear of ambiguity. The expression
becomes more compact because of the omission of parentheses. More importantly, the
expression is unbiased; we may choose to simplify x@y or y®z depending on which is
the most convenient. If the operator is also symmetric (that is, x®y=y®x for all x
and y) the gain is even bigger, because then, if the operator is used to combine several
subexpressions, we can choose to simplify udw for any pair of subexpressions u and
w.

Infix notation is also often used for binary relations. We write, for example, 0 <m<n.
Here, the operators are being used conjunctionally: the meaningis 0<m and m<n.
In this way, the formula is more compact (since m is not written twice). More impor-
tantly, we are guided to the inference that 0 <n. The algebraic property that is being
hidden here is the transitivity of the at-most relation. If the relation between m and n
is m<n rather than m <n and we write 0 <m < n, we may infer that 0 <n. Here, the
inference is more complex since there are two relations involved. But, it is an inference
that is so fundamental that the notation is designed to facilitate its recognition.

In the case of equality of boolean values, we have a dilemma. Do we understand

! An infiz operator is a symbol used to denote a function of two arguments that is written between the
two arguments. The symbols “+ " and “ x ” are both infix operators, denoting addition and multiplication,
respectively.
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equality as a relation and read a continued expression of the form
X=y=z
as asserting the equality of all of x, y and z? Or do we read it “associatively” as

(x=y)=z ,

or, equally, as

in just the same way as we would read x+y+z? The two readings are, unfortunately,
not the same (for example true =false =false is false according to the first reading but
true according to the second and third readings). There are advantages in both readings,
and it is a major drawback to have to choose one in favour of the other.

It would be very confusing and, indeed, dangerous to read x =y =z in any other way
than x=vy and y=z; otherwise, the meaning of a sequence of expressions separated by
equality symbols would depend on the type of the expressions. Also, the conjunctional
reading (for other types) is so universally accepted —for good reasons— that it would
be quite unacceptable to try to impose a different convention.

The solution to this dilemma is to use two different symbols to denote equality of
boolean values — the symbol “=" when the transitivity of the equality relation is to be
emphasised and the symbol “=" when its associativity is to be exploited. Accordingly,
we write both p=q and p=q. When p and g are expressions denoting boolean
values, these both mean the same. But a continued expression

w_—nm

comprising more than two boolean expressions connected by the symbol, is to
be evaluated assoctatively —i.e. as (p=q)=r or p=(q=r), whichever is the most
convenient— whereas a continued expression

p=q=r

is to be evaluated conjunctionally —i.e as p=q and q=r— . More generally, a
continued equality of the form

P1=P2=...=Pn
means that all of py, P>, ..., pn are equal, whilst a continued equivalence of the
form

P1=P2=...=Pn
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has the meaning given by fully parenthesising the expression (in any way whatsover,
since the outcome is not affected) and then evaluating the expression as indicated by the
chosen parenthesisation.
Moreover, we recommend that the “=" symbol is pronounced as “equivales”; being
an unfamiliar word, its use will help to avoid misunderstanding.

Shortly, we introduce a number of laws governing boolean equality. They invariably

involve a contninued equivalence. A first example is its reflexivity.

(5.2) [Reflexivity] true=p=p .

5.3.1 Examples of the Associativity of Equivalence

This section contains a couple of beautiful examples illustrating the effectiveness of the
associativity of equivalence.

Even and Odd Numbers The first example is the following property of the predicate
even on numbers. (A number is even exactly when it is a multiple of two.)

m+niseven = miseven = mniseven .

It will help if we refer to whether or not a number is even or odd as the parity of the
number. Then, if we parenthesise the statement as

m4niseven = (miseven = niseven) ,

it states that the number m+n is even exactly when the parities of m and n are the
same. Parenthesising it as

(m+niseven = miseven) = miseven ,

it states that the operation of adding a number n to a number m does not change the
parity of m exactly when n is even.

Another way of reading the statement is to use the fact that, in general, the equiv-
alence p=q=r is true exactly when an odd number of p, q and r is true. So the
property captures four different cases:

((m+n iseven) and (m iseven) and (n iseven))
or ((m+4n isodd) and (m isodd) and (n iseven))
or ((m+4n isodd) and (m iseven) and (n isodd))
or ((m+n iseven) and (m isodd) and (n isodd)) .
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The beauty of this example lies in the avoidance of case analysis. There are four
distinct combinations of the two booleans “m 1is even” and “m is even”. Using the
associativity of equivalence the value of “m+n is even” is expressed in one simple
formula, without any repetition of the component expressions, rather than as a list of
different cases. Avoidance of case analysis is vital to effective reasoning.

Sign of Non-Zero Numbers The sign of a number says whether or not the number

is positive. For non-zero numbers x and vy, the product xxy is positive if the signs of

x and y are equal. If the signs of x and y are different, the product xxy is negative.
Assuming that x and y are non-zero, this rule is expressed as

x XYy is positive = x is positive = vy is positive .

Just as for the predicate even, this one statement neatly captures a number of different
cases, even though no case analysis is involved. Indeed, our justification of the rule is
the statement

xXxy is positive = (x is positive = vy is positive)

The other parenthesisation —which states that the sign of x is unchanged when it is
multiplied by y exactly when y is positive— is obtained “for free” from the associativity
of boolean equality.

5.3.2 On Natural Language

Many mathematicians and logicians are not aware that equality of booleans is associative;
those that do are often unaware or dismissive of how effective its use can be. At the
present time, there is considerable resistance to a shift in focus from implication to
equality. Most courses on logic introduce boolean equality as “if and only if”. It is akin
to introducing equality of numbers by first introducing the at-most (<) and at-least
(>) relations, and then defining an “at-most and at-least” operator.

The most probable explanation lies in the fact that many logicians view the purpose
of logic as formalising “natural” or “intuitive” reasoning, and our “natural” tendency
is not to reason in terms of equalities, but in causal terms. (“If it is raining, I will
take my umbrella.”) The equality symbol was first introduced into mathematics by
Robert Recorde in 1557, which, in the history of mathematics, is quite recent; were
equality “natural” it would have been introduced much earlier. Natural language has
no counterpart to a continued equivalence. To take a concrete example, the continued
equivalence “a blind man can see through two eyes equivales a blind man can see through
one eye equivales a blind man can see through no eyes” may seem very odd, if not
nonsensical, even though it is actually true!
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This fact should not be a deterrent to the use of continued equivalence. At one
time (admittedly, a very long time ago) there was probably similar resistance to the
introduction of continued additions and multiplications. The evidence is still present
in the language we use today. For example, the most common way to express time is
in words: like “quarter to ten” or “ten past eleven”. Calculational requirements (eg.
wanting to determine how long is it before the train is due to arrive) have influenced
natural language so that, nowadays, people sometimes say, for example, 9:45 or 11:10 in
everyday speech. But, we still don’t find it acceptable to say 10:70! Yet, this is what we
actually use when we want to calculate the time difference between 9.45 and 11:10. In
fact, several laws of arithmetic, including associativity of addition, are fundamental to
the calculation. Changes in natural language have occurred, and will continue to occur,
as a result of progress in mathematics, but will always lag a long way behind. The
language of mathematics has developed in order to overcome the limitations of natural
language. The goal is not to mimic “natural” reasoning, but to provide a more effective
alternative.

5.4 Negation

Consider the following knights-and-knaves problem. There are two natives, A and B.
Native A says, “B is a knight equals I am not a knight”. What can you determine about
A and B?

This problem involves a so-called negation: the use of “not”. Negation is a unary
operator (meaning that it is a function with exactly one argument) mapping a boolean
to a boolean, and is denoted by the symbol “—", written as a prefix to its argument. If
P is a boolean expression, “—p” is pronounced “not p”.

Using the general rule that, if A makes a statement S, we know that A=S, we get,
for this problem:

A=B=-A.

(We switch from “=" to “=" here in order to exploit associativity.) The goal is to
simplify this expression.

In order to tackle this problem, it is necessary to begin by formulating calculational
rules for negation. For arbitrary proposition p, the law governing —p is:

(5.3) [Negation] —p = p = false .
Reading this as

—p = (p=false) ,
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it functions as a definition of negation. Reading it the other way:

(—p=p) = false

it provides a way of simplifying propositional expressions. In addition, the symmetry
of equivalence means that we can rearrange the terms in a continued equivalence in any
order we like. So, we also get the property:

p = (—p=false) .
Returning to the knights-and-knaves problem, we are given that:
A=B=—-A .

This simplifies to —B as follows:

A=B=—A

= { rearranging terms }
—~A=A=B

= { law (5.3) with p:=A }
false=B

= { law (5.3) with p:=B and rearranging }
—-B .

So, B is a knave, but A could be a knight or a knave. Note how (5.3) is used in two
different ways.

The law (5.3), in conjunction with the symmetry and associativity of equivalence,
provides a way of simplifying continued equivalences in which one or more terms are
repeated and/or negated. Suppose, for example, we want to simplify

pP=p=q="p=r=—q .

We begin by rearranging all the terms so that repeated occurrences of “p” and “q” are
grouped together. Thus we get

TpP="PpP=p=q=—"(q=T .

Now we can use (5.2) and (5.3) to reduce the number of occurrences of “p” and “q” to
at most one (possibly negated). In this particular example we obtain

true=p=false=r .
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Finally, we use (5.2) and (5.3) again. The result is that the original formula is simplified
to

—pP=T .

Just as before, this process can be compared with the simplification of an arithmetic
expression involving continued addition, where now negative terms may also appear.
The expression

p+(=p)ta+(=p)+rta+(-a)+r+p
is simplified to
q+2r

by counting all the occurrences of p, q and r, an occurrence of —p cancelling out an
occurrence of p. Again, the details are different but the process is essentially identical.
The two laws (5.2) and (5.3) are all that is needed to define the way that negation
interacts with equivalence; using these two laws we can derive several other laws. A
simple example of how these two laws are combined is a proof that —false =true:
—false
= { law —p=p =false with p:=false }
false = false
= { law true=p=p with p:=false }

true .

5.5 Contraposition

A rule that should now be obvious, but which is surprisingly useful, is the rule we call
contraposition?.

(5.4) [Contraposition] p =q=—p = —q

The name refers to the use of the rule in the form (p = q) = (—p = —q).

We used the rule of contraposition implicitly in the river-crossing problems. (See
chapter 3.) Recall that each problem involves getting a group of people from one side of
a river to another, using one boat. If we let n denote the number of crossings, and 1

2QOther authors use the name “contraposition” for a less general rule combining negation with implica-
tion.
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denote the boolean “the boat is on the left side of the river”, a crossing of the river is
modelled by the assignment:

n,l = n+1,-1 .

In words, the number of crossings increases by one, and the boat changes side. The rule
of contraposition tells us that

even.n =1
is invariant under this assignment. This is because

(even.n = )[n,l = n+1,-]

= { rule of substitution }
even.(n+1) = —1

= { even.(n+1) = —(even.n) }
—(even.n) = —1

= { contraposition }
evenn =1 .

We are given that, initially, the boat is on the left side. Since zero is an even number,
we conclude that even.n = 1 is invariantly true. In words, the boat is on the left side
equivales the number of crossings is even.

Another example is the following. Suppose it is required to move a square armchair
sideways by a distance equal to its own width. (See figure 5.1.) However, the chair is
so heavy that it can only be moved by rotating it through 90° around one of its four
corners. Is it possible to move the chair as desired? If so, how? If not, why not?

e
v
7../

Figure 5.1: Moving a heavy armchair.

The answer is that it is impossible. Suppose the armchair is initially positioned along
a north-south axis. Suppose, also, that the floor is painted alternately with black and
white squares, like a chess board, with each of the squares being the same size as the
armchair. (See Figure 5.2.) Suppose the armchair is initially on a black square. The
requirement is to move the armchair from a north-south position on a black square to a
north-south position on a white square.
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Now, let boolean col represent the colour of the square that the armchair is on (say,
true for black and false for white), and dir represent the direction that the armchair is
facing (say, true for north-south and false for east-west). Then, rotating the armchair
about any corner is represented by the assignment:

col,dir := —col,—dir
The rule of contraposition states that an invariant of this assignment is
col = dir .

So, the value of this expression will remain equal to its initial value, no matter how many
times the armchair is rotated. But, moving the armchair sideways one square changes
the colour but does not change the direction. That is, it changes the value of col = dir,
and is impossible to achieve by continually rotating the armchair as prescribed.

In words, an invariant of rotating the armchair through 90° around a corner point is

the chair is on a black square = the chair is facing north-south

which is false when the chair is on a white square and facing north-south.

Figure 5.2: Invariant when moving a heavy armchair.

Exercise 5.5 (Knight’s Move) In the game of chess, a knight’s move is two places
up or down and one place left or right, or, vice versa, two places left or right and one
place up or down. A chessboard is an 8x8 grid of squares.
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Show that it is impossible to move a knight from the bottom-left corner of a chess-
board to the top-right corner in such a way that every square on the board is visited
exactly once.

Hint: How many moves have to be made? Model a move in terms of the effect on the
number of moves and the colour of the square on which the knight is standing; identify
a relation between the two that is invariant under a move.

O

5.6 Handshake Problems

Logical properties of negation are fundamental to solving so-called handshake problems.

The simplest example of a handshake problem is this: Suppose that at a party, some
people shake hands and some don’t. Suppose each person counts the number of times
they shake hands. Show that at least two people have the same count.

Crucial to how we solve this problem are the properties of shaking hands. These are
that it is a binary relation; it is symmetric, and it is anti-reflerive. It being a “binary
relation” on people, means that, for any two people —Jack and Jill, say— Jack shakes
hands with Jill is either true or false. (In general, a relation is any boolean-valued
function. Binary means that it is a function of two arguments.) It being a “symmetric”
relation means that, for any two people —Jack and Jill, say— Jack shakes hands with
Jill equivales Jill shakes hands with Jack. Finally, it being “anti-reflexive” means that
no-one shakes hands with themselves.

We are required to show that (at least) two people shake hands the same number
of times. Let us explore the consequences of the properties of the shake-hands relation
with respect to the number of times that each person shakes hands.

Suppose there are n people. Then, everyone shakes hands with at most n people.
However, the anti-reflexivity property is that noone shakes hands with themselves. We
conclude that everyone shakes hands with between 0 and n—1 people.

There are n numbers in the range 0 to n—1. The negation of “two people shake
hands the same number of times” is “everyone shake hands a distinct number of times”.
In particular, someone shakes hands O times and someone shakes hands n—1 times.
The symmetry of the shake-hands relation makes this impossible.

Suppose we abbreviate “shake hands” to S, and suppose we use x and y to refer
to people. In this way, xSy is read as “person x shakes hands with person y”, or just
x shakes hands with y. Then the symmetry of “shakes hands” gives us the rule, for all
x and vy,

xSy = ySx .
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The contrapositive of this rule is that, for all x and vy,

—(xSy) = —(ySx)

In words, x doesn’t shake hands with y equivales y doesn’t shake hands with x. Now,
suppose person a shakes hands with noone and person b shakes hands with everyone.
Then, in particular, a does not shake hands with b, i.e. =(aSb), and b shakes hands
with a, i.e. bSa. But then, substituting equals for equals, we have both —(aSb) and
aSb, which is false.

The assumption that everyone shakes hands with a distinct number of people has
led to a contradiction, and so we conclude that two people must shake hands the same
number of times.

Note carefully how the symmetry and anti-reflexivity of the shakes-hands relation
are crucial. Were we to consider a similar problem involving a different relation, the
outcome might be different. For example, if we replace “shake hands” by some other
form of greeting like “bows or curtsies”, which is not symmetric, the property need not
hold®. (Suppose there are two people, and one bows to the other, but the greeting is
not returned.) However, if “shake hands” is replaced by “rub noses”, the property does
hold. Like “shake hands”, “rub noses” is a symmetric and anti-reflexive relation.

Exercise 5.6  Here is another handshaking problem. It’s a bit more difficult to solve,
but the essence of the problem remains the same: “shake hands” is a symmetric relation,
as is “don’t shake hands”.

Suppose a number of couples (husband and wife) attend a party. Some people
shake hands, others do not. Husband and wife never shake hands. One person, the
“host”, asks everyone else how many times they have shaken hands, and gets a dif-
ferent answer every time. How many times did the host and the host’s partner shake
hands?

O

5.7 Inequivalence

In the knights-and-knaves problem mentioned at the beginning of section 5.4, A might
have said “B is different from myself”. This statement is formulated as B#A, or
—(B=A) This is, in fact, the same as saying “B is a knight equals I am not a knight”,
as the following calculation shows. Note that we switch from “=" to “=" once again,
in order to exploit associativity.

3At the time of writing, anyone meeting the British Queen is required to bow or curtsey, whereas the
Queen never does. The relation is not symmetric.
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—(B=A)
= { the law —p=p=false with p:=(B=A) }
B =A =false
= { the law —p=p=false with p:=A }
B=—A .
We have thus proved, for all propositions p and q,
(5.7) [Inequivalence] —(p=q)=p=—q

Note how associativity of equivalence has been used silently in this calculation. Note
also how associativity of equivalence in the summary of the calculation gives us two
properties for the price of one. The first is the one proved directly:

—~(p=d)=(P=—q) ,

the second comes free with associativity:

(m(p=d)=p) =g

The proposition —(p=q) is usually written p # q. The operator is called inequivalence
(or ezclusive-or, abbreviated zor). Inequivalence is also associative:

(PZaq) #7

= { definition of “#£”, applied twice }
~(—p=q)=7)

= { (5.7), with p,q:=—~(p=q),r }
—(p=gq)=-r

= { contraposition (5.4), with p,q:=p=q,r }

P=4qd=T

= { contraposition (5.4), with p,q:=p,q=r }
p=—(qd=7)

= { (5.7), with p,q:=p,q=r }
~(p=—(q=1))

= { definition of “#”, applied twice }
pPZ(@#T) .
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As a result, we can write the continued inequivalence p # q#r without fear of ambi-
guity*. Note that, as a byproduct, we have shown that p 2q Z r and p = q = r are
equal.

As a final worked example, we show that inequivalence associates with equivalence:

(p#q) =7

= { expanding the definition of p£q }
—(p=q) =7

= { —~(p=d)=p=—q }
p=—q=r

= { using symmetry of equivalence, the law (5.7)

is applied in the form —(p=q)=—q=p
with p,q:=q,r }

p=-(a=
- { definition of q#r }
(

p=(q#7) .

Exercise 5.8  Simplify the following. (Note that in each case it does not matter in
which order you evaluate the subexpressions. Also, rearranging the variables and/or
constants doesn’t make any difference.)

(a) false # false # false

(b) true # true # true # true
(c) false # true # false # true
(d p=p=—PpP=p=-p
() pZd=q=p

(f) pZa=r=p

(8) P=pZDP#P="P

(h) p=pZ PZp="DpZ£P

4This is to be read associatively, and should not be confused with p # q#71, which some authors
occasionally write. Inequality is not transitive, so such expressions should be avoided.
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O

Exercise 5.9 Prove that —true =false

O

Exercise 5.10 (Double Negation) Prove the rule of double negation
—=p =p
O

Exercise 5.11 (Encryption) The fact that inequivalence is associative, that is

PZ@z1)=((P#£aq £71),

is used to encrypt data. To encrypt a single bit b of data, a key a is chosen and the
encrypted form of b that is transmitted is aZb. The receiver decrypts the received
bit, c, using the same operation®. That is, the receiver uses the same key a to compute
a#c. Show that, if bit b is encrypted and then decrypted in this way, the result is b
independently of the key a.

O

Exercise 5.12 On the island of knights and knaves, you encounter two natives, A
and B. What question should you ask A to determine whether A and B are different
types?

O

5.8 Summary

In this chapter, we have used simple logic puzzles to introduce logical equivalence —
the equality of boolean values— , the most fundamental logical operator. Equivalence
has the remarkable property of being associative, in addition to the standard properties
of equality. Exploitation of the associativity of equivalence eliminates the tedious and
ineffective case analysis that is often seen in solutions to logic puzzles.

5This operation is usually called “exclusive-or” in texts on data encryption; it is not commonly known
that exclusive-or and inequivalence are the same. Inequivalence can be replaced by equivalence in the
encryption and decryption process. But, very few scientists and engineers are aware of the algebraic
properties of equivalence, and this possibility is never exploited!
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The associativity of equivalence can be difficult to get used to, particularly if one
tries to express its properties in natural language. However, this should not be used
as an excuse for ignoring it. The painful, centuries-long process of accepting zero as a
number, and introducing the symbol “0” to denote it, provides ample evidence that the
adherence to “natural” modes of reasoning is a major impediment to effective reasoning.
The purpose of a calculus is not to mimic “natural” or “intuitive” reasoning, but to
provide a more powerful alternative.

The fact that equality of boolean values is associative has been known since at least the
1920’s , having been mentioned by Alfred Tarski in his PhD thesis, where its discovery is
attributed to J. Lukasiewicz. (See the paper “On the primitive term of logistic” [Tar56];
Tarski is a famous logician.) Nevertheless, its usefulness was never recognised until
brought to the fore by E.W. Dijkstra in his work on program semantics and mathematical
method. (See e.g. [DS90].)

The origin of the logic puzzles is Raymond Smullyan’s book “What Is The Name Of
This Book?” [Smu78]. This is an entertaining book which leads on from simple logic
puzzles to a discussion of the logical paradoxes and Godel’s undecidability theorem.
But Smullyan’s proofs invariably involve detailed case analyses. The exploitation of the
associativity of equivalence in the solution of such puzzles is due to Gerard Wiltink
[Wil87]. For a complete account of calculational logic, which includes discussion of
conjunction (“and”), disjunction (“or”), follows-from (“if”) and implication (“only if”),
see [Bac03] or [GS93].
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Chapter 6

Induction

“Induction” is the name given to a problem-solving technique based on using the solution
to small instances of a problem to solve larger instances of the problem.

The idea is that we somehow measure the “size” of instances of a problem. For
example, the problem might involve a pile of matchsticks, where the number of matches
is a parameter; an instance of the problem is then a particular pile of matches, and its
size is the number of matches in the pile. A requirement is that the size is a non-negative,
whole number — thus 0, 1, 2, 3, etc. We use the term natural number for a non-
negative, whole number®. Usually, how the size of an instance of a problem is measured
is quite obvious from the problem description.

Having decided how to measure size, we then solve the problem in two steps. First, we
consider problems of size 0. This is called the basis of the induction. Almost invariably,
such problems are very easy to solve. (They are often dismissed as “trivial”.) Second,
we show how to solve, for an arbitrary natural number n, a problem of size n+1, given
a solution to a problem of size n. This is called the induction step.

By this process, we can solve problems of size 0. We also know how to solve problems
of size 1; we apply the induction step to construct a solution to problems of size 1 from
the known solution to problems of size 0. Then, we know how to solve problems of size
2; we apply the induction step again to construct a solution to problems of size 2 from
the known solution to problems of size 1. And so it goes on. We can now solve problems
of size 3, then problems of size 4, etc.

6.1 Example Problems

All the following problems can be solved by induction. In the first, the size is the number
of lines. In the second and third problems, it is explictly given by the parameter n, and

! Warning: Mathematicians often exclude the number 0 from the natural numbers. There are,
however, very good reasons why 0 should always be included, making a break with tradition imperative.
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in the fourth, it is the number of disks. In each case, the basis should be easy. You then
have to solve the induction step. We discuss each problem in turn in coming sections.

1. Cutting the Plane

A number of straight lines are drawn across a sheet of paper, each line extending
all the way from from one border to another. See fig. 6.1. In this way, the paper
is divided into a number of regions. Show that it is possible to colour each region
black or white so that no two adjacent regions have the same colour (that is, so
that the two regions on opposite sides of any line segment have different colours).

Figure 6.1: Black and White Colouring.

2. Triominoes

A square piece of paper is divided into a grid of size 2™"x2", where n is a natural
number?. The individual squares are called grid squares. One grid square is
covered, and the others are left uncovered. A triomino is an L-shape made of three
grid squares. Figure 6.2 shows, on the left, an 8x8 grid with one square covered.
On the right is a triomino.

Show that it is possible to cover the remaining squares with (non-overlapping)
triominoes. (Fig. 6.3 shows a solution in one case.)

NB: The case n=0 should be included in your solution.

3. Trapeziums

An equilateral triangle, with side of length 2™ for some natural number n, is
made of smaller equilateral triangles. The topmost equilateral triangle is covered.
A bucket-shaped trapezium is made from three equilateral triangles. See fig. 6.4.

2Recall that the natural numbers are the numbers 0, 1, 2, etc.
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Figure 6.2: Triomino Problem.

Figure 6.3: Triomino Problem. Solution to fig. 6.2.

Show that it is possible to cover the remaining triangles with (non-overlapping)
trapeziums. See fig. 6.5 for the solution in the case that n is 2.

NB. Include the case n=0 in your solution.

4. Towers of Hanoi

The Towers of Hanoi problem comes from a puzzle marketed in 1883 by the French
mathematician Edouard Lucas, under the pseudonym M. Claus.

The puzzle is based on a legend according to which there is a temple in Bramah
where there are three giant poles fixed in the ground. On the first of these poles,
at the time of the world’s creation, God placed sixty four golden disks, each of
different size, in decreasing order of size. (See fig. 6.6.) The Brahmin monks were
given the task of moving the disks, one per day, from one pole to another according
to the rule that no disk may ever be above a smaller disk. The monks’ task will
be complete when they have succeeded in moving all the disks from the first of the
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>

Figure 6.4: A Pyramid of Equilateral Triangles.

B

Figure 6.5: Solution to fig. 6.4.

poles to the second and, on the day that they complete their task, the world will
come to an end!

Construct an inductive solution to this problem. The base case is when there are
no disks to be moved.

(We see later that the inductive solution is certainly not the one that the Brahmin
monks use. However, it does provide the basis for constructing a so-called iterative
solution to the problem.)
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Figure 6.6: Towers of Hanoi Problem

6.2 Cutting The Plane

Recall the statement of the problem:

A number of straight lines are drawn across a sheet of paper, each line
extending all the way from from one border to another. See fig. 6.1. In this
way, the paper is divided into a number of regions. Show that it is possible
to colour each region black or white so that no two adjacent regions have the
same colour (that is, so that the two regions on opposite sides of any line
segment have different colours).

For this problem, the number of lines is an obvious measure of the “size” of the
problem. The goal is, thus, to solve the problem “by induction on the number of lines”.
This means that we have to show how to solve the problem when there are zero lines
—this is the “basis” of the induction— and we have to show how to solve the problem
when there are n+1 lines, where n is an arbitrary number, assuming that we can solve
the problem when there are n lines —this is the induction step— .

For brevity, we call a colouring of the regions with the property that no two adjacent
regions have the same colour a satisfactory colouring.
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The case where there are zero lines is easy. The sheet of paper is divided into one
region, and this can be coloured black or white, either colouring meeting the conditions
of a solution (because there is no pair of adjacent regions).

For the induction step, we assume that a number of lines have been drawn on the
sheet of paper, and the different regions have been coloured black or white so that no
two adjacent regions have the same colour. This assumption is called the induction
hypothesis. We now suppose that an additional line is drawn on the paper. This will
divide some of the existing regions into two; such pairs of regions will have the same
colour, and so the existing colouring is not satisfactory. Fig. 6.7 is an example. The
plane has been divided into twelve regions by five lines, and the regions coloured black
and white, as required. An additional line, shown in red for clarity, has been added. This
has had the effect of dividing four of the regions into two, thus increasing the number
of regions by four. On either side of the red line, the regions have the same colour.
Elsewhere, adjacent regions have different colours. The task is to show how to modify
the colouring so that it does indeed become a satisfactory solution.

Figure 6.7: Cutting the Plane. Additional line shown in red.

The key to a solution is to note that inverting the colours of any satisfactory colour-
ing (that is, changing a black region to white, and vice-versa) also gives a satisfactory
colouring. Now, the additional line divides the sheet of paper into two regions. Let us
call these regions the left and right regions. (By this choice of names, we do not imply
that the additional line must be from top to bottom of the page. It is just a convenient,
easily remembered, way of naming the regions.) Note that the assumed colouring is a
satisfactory colouring of the left region and of the right region. In order to guarantee
that, either side of the additional line, all regions have opposite colour, choose, say, the
left region, and invert all the colours in that region. This gives a satisfactory colouring
of the left region (because inverting the colours of a satisfactory colouring gives a satis-
factory colouring). It also gives a satisfactory colouring of the right region (because the
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colouring hasn’t changed, and was satisfactory already). Also, the colouring of adjacent
regions at the boundary of the left and right regions is satisfactory, because they have
changed from being the same to being different.

Fig. 6.8 shows the effect on our example. Blue has been used instead of black in
order to make the inversion of the colours more evident.

Figure 6.8: Cutting the Plane. The colours are inverted to one side of the additional line
(black is shown as blue to make clear which colours have changed).

This completes the induction step. In order to apply the construction to an instance
of the problem with, say, seven lines, we begin by colouring the whole sheet of paper.
Then the lines are added one-by-one. Each time a line is added, the existing colouring
is modified as prescribed in the induction step, until all seven lines have been added.

The algorithm is non-deterministic in several ways. The initial colouring of the sheet
of paper (black or white) is unspecified. The ordering of the lines (which to add first,
which to add next, etc.) is also unspecified. Finally, which region is chosen as the “left”
region, and which the “right” region is unspecified. This means that the final colouring
may be achieved in lots of different ways. But that doesn’t matter. The final colouring
is guaranteed to be “satisfactory”, as required in the problem specification.

Exercise 6.1  Check your understanding by considering variations on the problem.
Why is it required that the lines are straight? How might this assumption be relaxed
without invalidating the solution.
The problem assumes the lines are drawn on a piece of paper. Is the solution still
valid if the lines are drawn on the surface of a ball, or on the surface of a doughnut?
We remarked that the algorithm for colouring the plane is non-deterministic. How
many different colourings does it construct?

O
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6.3 Triominoes

As a second example of an inductive construction, let us consider the grid problem posed
in section 6.1. Recall the statement of the problem.

A square piece of paper is divided into a grid of size 2™"x2™, where n is
a natural number. The individual squares are called grid squares. One grid
square is covered, and the others are left uncovered. A triomino is an L-shape
made of three grid squares. Show that it is possible to cover the remaining
squares with (non-overlapping) triominoes.

The obvious measure of the “size” of instances of the problem, in this case, is the
number n. We solve the problem by induction on n.

The base case is when n equals 0. The grid then has size 2°x2°, i.e. 1x1. That
is, there is exactly one square. This one square is, inevitably, the one that is covered,
leaving no squares uncovered. It takes O triominoes to cover no squares! This, then, is
how the base case is solved.

Now, suppose we consider a grid of size 2™"'x2™*"'. We make the induction hy-
pothesis that it is possible to cover any grid of size 2™"x2™ with triominoes if, first, an
arbitrary grid square has been covered. We have to show how to exploit this hypothesis
in order to cover a grid of size 2™"'x2™"! of which one square has been covered.

A grid of size 2™ 2™ can be subdivided into 4 grids each of size 2"x2", simply
by drawing horizontal and vertical dividing lines through the middle of each side. Let
us call the four grids the bottom-left, bottom-right, top-left, and top-right grids. One
grid square is already covered. This square will be in one of the four sub-grids. We may
assume that it is in the bottom-left grid. (If not, the entire grid can be rotated about
the centre so that it does become the case.)

The bottom-left grid is thus a grid of size 2™"x2"™ of which one square has been
covered. By the induction hypothesis, the remaining squares in the bottom-left grid can
be covered with triominoes. This leaves us with the task of covering the bottom-right,
top-left and top-right grids with triominoes.

None of the squares in these three grids is covered, as yet. We can apply the induction
hypothesis to them if just one square in each of the three is covered. This is done by
placing a triomino at the junction of the three grids, as shown in fig. 6.9.

Now, the inductive hypothesis is applied to cover the remaining squares of the bottom-
right, top-left and top-right grids with triominoes. On completion of this process, the
entire 2™"1x 2™ grid has been covered with triominoes.

Exercise 6.2  Solve the trapezium problem given in section 6.1.

O
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-

Figure 6.9: Triomino Problem. Inductive Step. The grid is divided into four sub-grids.
The covered square, shown in black, identifies one sub-grid. A triomino, shown in blue,
is placed at the junction of the other three grids. The induction hypothesis is then used
to cover all four sub-grids with triominoes.

6.4 Looking For Patterns

In sections 6.2 and 6.3, we have seen how induction is used to solve problems of a
given “size”. Technically, the process we described is called “mathematical induction”;
“induction”, as it is normally understood, is more general.

“Induction”, as used in, for example, the experimental sciences, refers to a process of
reasoning whereby general laws are inferred from a collection of observations. A famous
example of induction is the process that led Charles Darwin to formulate his theory
of evolution by natural selection, based on his observations of plant and animal life in
remote parts of the world. In simple terms, induction is about looking for patterns.

Laws formulated by a process of induction go beyond the knowledge on which they
are based, thus introducing inherently new knowledge. In the experimental sciences,
however, such laws are only probably true; they are tested by the predictions they
make, and may have to be discarded if the predictions turn out to be false. In contrast,
deduction is the process of inferring laws from existing laws, whereby the deductions
made are guaranteed to be true provided that the laws on which they are based are true.
In a sense, laws deduced from existing laws add nothing to our stock of knowledge since
they are, at best, simply reformulations of existing knowledge.

Mathematical induction is a combination of induction and deduction. It’s a pro-
cess of looking for patterns in a set of observations, formulating the patterns as conjec-
tures, and then testing whether the conjectures can be deduced from existing knowledge.
Guess-and-verify is a brief way of summarising mathematical induction. (Guessing is the
formulation of a conjecture; verification is the process of deducing whether the guess is
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correct.)

Several of the matchstick games studied in chapter 4 provide good examples of math-
ematical induction. Recall, for example, the game discussed in section 4.2.2: there is
one pile of matches from which it is allowed to remove one or two matches. Exploring
this game, we discovered that a pile with 0, 3 or 6 matches is a losing position, and
piles with 1, 2, 4, 5, 7 and 8 matches are winning positions. There seems to be
a pattern in these numbers: losing positions are the positions in which the number of
matches are a multiple of 3, and winning positions are the remaining positions. This is a
conjecture about all positions made from observations on just nine positions. However,
we can verify that the conjecture is true by using mathematical induction to construct
a winning strategy.

In order to use induction, we measure the “size” of a pile of matches not by the
number of matches but by the number of matches divided by 3, rounded down to the
nearest natural number. So, the “size” of a pile of 0, 1T or 2 matches is 0, the “size”
of a pile of 3, 4 or 5 matches is 1, and so on. The induction hypothesis is that a pile
of 3n matches is a losing position, and a pile of 3n+1 or 3n-+2 matches is a winning
position.

The basis for the induction is when n equals 0. A pile of 0 matches is, indeed, a
losing position because, by definition, the game is lost when it is no longer possible to
move. A pile of 1 or 2 matches is a winning position because the player can remove
the matches, leaving the opponent in a losing position.

Now, for the induction step, we assume that a pile of 3n matches is a losing position,
and a pile of 3n+1 or 3n+2 matches is a winning position. We have to show that
a pile of 3(n+1) matches is a losing position, and a pile of 3(n+1)+1 or 3(n+1)+2
matches is a winning position.

Suppose there are 3(n+1) matches. The player, whose turn it is, must remove 1 or
2 matches, leaving either 3(n+1)—1 or 3(n+1)—2 behind. That is, the opponent is
left with either 3n+2 or 3n+1 matches. But, by the induction hypothesis, this leaves
the opponent in a winning position. Hence, the position in which there are 3(n+1) is a
losing position.

Now, suppose there are 3(n+1)+1 or 3(n+1)+2 matches. By taking 1 match in
the first case, and 2 matches in the second case, the player leaves the opponent in a
position where there are 3(n+1) matches. This we now know to be a losing position.
Hence, the positions in which there are 3(n+1)+1 or 3(n+1)+2 are both winning
positions.

This completes the inductive construction of the winning moves, and thus verifies the

conjecture that a position is a losing position exactly when the number of matches is a
multiple of 3.
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6.5 The Need For Proof

When using induction, it is vital that any conjecture is properly verified. It is too easy to
extrapolate from a few cases to a more general claim that is not true. Many conjectures
turn out to be false; only by subjecting them to the rigours of proof can we be sure of
their validity. This section is about a non-trivial example of a false conjecture.

Suppose n points are marked on the circumference of a circular cake and then the
cake is cut along the chords joining them. The points are chosen in such a way that all
intersection points of pairs of chords are distinct. The question is, in how many portions
does this cut the cake?

Figure 6.10 shows the case when n is 1, 2, 3 or 4.

N

Figure 6.10: Cutting the cake

The number of portions is successively 1, 2, 4 and 8. This suggests that the
number of portions, for arbitrary n, is 2™'. Indeed, this conjecture is supported by
the case that n=5. (We leave the reader to draw the figure.) In this case, the number
of portions is 16, which is 2°~'. However, for n=6, the number of portions is 31!
(See fig. 6.11.) Note that n=6 is the first case in which the points are not allowed to
be placed at equal distances around the perimeter.

Had we begun by considering the case that n=0, suspicions about the conjecture
would already have been raised — it doesn’t make sense to say that there are 2°' por-
tions, even though cutting the cake as stated does make sense! The easy, but inadequate
way out, is to dismiss this case, and impose the requirement that n is different from 0.
The derivation of the correct formula for the number of portions is too complicated to
discuss here, but it does include the case that n equals 0!

6.6 From Verification to Construction

In mathematical texts, induction is often used to verify known formulae. Verification is
important but has a major drawback — it seems that a substantial amount of clairvoyance
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Figure 6.11: Cutting the cake. The case n=6. The number of portions is 31, not 25!

is needed to come up with the formula that is to be verified. And, if one’s conjecture is
wrong, verification gives little help in determining the correct formula.

Induction is not important in computing science as a verification principle but be-
cause it is a fundamental principle in the construction of computer programs. This
section introduces the use of induction in the construction of mathematical formulae.

The problem we consider is how to determine a closed formula for the sum of the
kth powers of the first n natural numbers.

A well-known formula gives the sum of the natural numbers from 1 thru n:

1424+ ... +n= %n(n+1) )

Two other exercises, often given in mathematical texts, are to verify that
12422+ ... +n? = %n(n—H)(Zn—H)

and
P42+ . 41 = %nz(n—H)z .

As well as being good examples of the strength of the principle of mathematical induction,
the examples also illustrate the weakness of verification: the technique works if the answer
is known, but what happens if the answer is not already known! Suppose, for example,
that you are now asked to determine a closed formula for the sum of the 4th powers of
the first 1 numbers

1422+ ... +nt = 2 .

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



6.6. From Verification to Construction 101

How would you proceed? Verification, using the principle of mathematical induction,
does not seem to be applicable unless we already know the right side of the equation.
Can you guess what the right side would be in this case? Can you guess what the right
side would be in the case that the term being summed is, say, k¥’ ? Almost certainly,
not!

Constructing solutions to non-trivial problems involves a creative process. This means
that a certain amount of guesswork is necessary, and trial-and-error cannot be completely
eliminated. Reducing the guesswork to a minimum, replacing it by mathematical calcu-
lation is the key to success.

Induction can be used to construct closed formulae for such summations. The general
idea is to seek a pattern, formulate the pattern in precise mathematical terms and then
verify the pattern. The key to success is simplicity. Don’t be over-ambitious. Leave the
work to mathematical calculation.

A simple pattern in the formulae displayed above is that, for m equal to 1, 2 and
3, the sum of the mth powers of the first n numbers is a polynomial in n of degree
m+1. (The sum of the first n numbers is a quadratic function of n, the sum of the
first n squares is a cubic function of n, and the sum of the first n cubes is a quartic
function of n.) This pattern is also confirmed in the (oft-forgotten) case that m is O:

1°042°4 ... 4n® = n .

A strategy for determining a closed formula for, say, the sum of the fourth powers is thus
to guess that it is a fifth degree polynomial in n and then use induction to calculate
the coeffictents. The calculation in this case is quite long, so let us illustrate the process
by showing how to construct a closed formula for 14+2+ ... +n. (Some readers will
already know a simpler way of deriving the formula in this particular case. If this is the
case, please bear with us. The method described here is more general.)

We conjecture that the required formula is a second degree polynomial in n, say
a+bn+cn? and then calculate the coefficients a, b and c. Here is how the calculation
goes.

For brevity, let us use S.n to denote

142+ ... 4+n .

We also use P.n to denote the proposition
Sn = a+bn+cn? .

Then,

P.0
= { definition of P}
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S.0 = a+bx0+cx0?
= { S.0 =0 (the sum of an empty set of numbers
is zero) and arithmetic }
0O=a .
So the basis of the induction has allowed us to deduce that a, the coefficient of n°, is

0. Now, we calculate b and c. To do so, we make the induction hypothesis that 0 <n
and P.n is true. Then

P.(n+1)
= { definition of P, a=0 }
S.(n+1) = b(n+1)+c(n+1)?
= { heading for use of the induction hypothesis,
S.\n+1) = Sm+4+n+1 }
Sn+n+1 = bMn+l)+c(n+l)?
= { assumption: Pn. Also, a =0.
That is, Sn = bn+cn? }
bn+cn?+n+1 = bn+l)+c(n+1)?
= { arithmetic |}
ecn?+ (b+1)n+1 = en? + (b+2c)n+b +c
& { comparing coefficients of powers of n  }
c=c A b+l =b+2c N T=Db+c
= { arithmetic |}
;J=cAJ=b .
From the conjecture that the sum of the first n numbers is a quadratic in n, we have

thus calculated that

14+24+...4+n = zn+§n .

Extrapolating from this calculation, one can see that it embodies an algorithm to express
1m42m4 ... +n™ as a polynomial function for any given natural number m. The steps
in the algorithm are: postulate that the summation is a polynomial in n with degree
m+1. Use the principle of mathematical induction together with the facts that S.0 is 0
and S.(n+1) is Sn+(n+1)™ (where S.n denotes 1™+2™+ ... +n™) to determine

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



6.7. Fake-Coin Detection 103

a system of simultaneous equations in the coefficients. Finally, solve the system of
equations.

Remark: In the case of the sum 1+2+ ... 4+n there is an easier way to derive the
correct formula. Simply write down the required sum

1 + 2 + + n,
and immediately below it

n + n—1 -+ e + 1.
Then add the two rows together:

n+1 + n+1 + + n+1 .

From the fact that there are n occurrences of n+1 we conclude that the sum is
In(n+1). However, this method cannot be used for determining 1T™+2™+ ... 4n™
for m greater than 1. End of remark.

Exercise 6.3  Use the technique just demonstrated to construct closed formulae for
19424 ... 4+n° and 1742°+ ... +n% .

O

Exercise 6.4  Consider a matchstick game with one pile of matches from which m
thru n matches can be removed. By considering a few simple examples (for example, m
is 1 and n is arbitrary, or m is 2 and n is 3), formulate a general rule for determining
which are the winning positions and which are the losing positions, and what the winning
strategy is.

Avoid guessing the complete solution. Try to identify a simple pattern in the way
winning and losing positions are grouped. Introduce variables to represent the grouping,
and calculate the values of the variables.

O

6.7 Fake-Coin Detection

The motto of section 6.6 can be summarised as “Don’t guess! Calculate.” We put this
into practice in this section.

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



104 6. Induction

Suppose we are given a number of coins, each of the same size and shape. We are
told that among them there is at most one “fake” coin, and all the rest are “genuine”.
All “genuine” coins have the same weight, whereas a “fake” coin has a different weight
to a “genuine” coin. The problem is how to use the pair of scales optimally in order to
find the fake coin, if there is one.

Note the element of vagueness in this problem statement; we don’t say what we mean
by using the scales “optimally”. This is deliberate. Often, an essential element of problem
solving is to clearly identify the problem itself. Our formulation of the problem and its
eventual solution illustrates several other aspects of “real” problem solving. Several
stages are needed, including some “backtracking” and revision.

6.7.1 Problem Formulation

When we use a pair of scales to compare two weights —an operation that we call a
comparison— there are 3 possible outcomes: the scales may tip to the left, they may
balance, or they may tip to the right. This means that with n comparisons, there are
at most 3™ different outcomes®. This gives an upper bound on what can be achieved
using a pair of scales.

Now, suppose we are given m coins, of which at most one is fake and the rest are
genuine. Then there are 14 2m different possibilities that can be observed with a pair
of scales: “1” possibility is that all coins are genuine; otherwise, there are “2” ways
that each of the “m” coins may be fake (by being lighter or heavier than a genuine
coin). This means that, with n comparisons, the number of coins among which at most
one fake coin can be detected is at most m, where 1+2m = 3™. More precisely, if the
number, m, of coins is greater than (3™—1)/2, it is impossible to guarantee that a fake
coin can be found with n comparisons.

We have almost reached the point at which we can state our problem precisely. We
conjecture that, given (3"—1)/2 coins of which at most one is fake, it is possible to
establish that all are genuine or identify the fake coin (and whether it is lighter or
heavier than a genuine coin) using at most n comparisons.

For n equal to 0, the conjecture is clearly true; in this case, there are no coins, all of
which are genuine. For n equal to 1, however, we run into a problem. The assumption
is that there is one coin (since (3'—1)/2=1). But how can we tell whether this one coin
is fake or genuine, if there are no other coins to compare it with? Our conjecture has
broken down, and needs revision.

We propose to modify the conjecture by assuming that we have at our disposal at
least one additional coin that is known to be genuine. Thus, we are given (3"—1)/2
coins about which we know nothing except that at most one is fake, and we are also given

3Note the implicit use of induction here.
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at least one coin that is known to be genuine. The problem is to construct an algorithm
that will identify the fake coin, if it exists, or determine that all coins are genuine, using
at most n comparisons.

6.7.2 Problem Solution

Our formulation of the problem begs the use of induction on the number of comparisons,
n, in its solution.

The Basis With zero comparisons, we can report immediately that all coins in a col-
lection of (3°—1)/2 are genuine. The base case, n equal to 0, is thus solved.

Induction Step Now, we tackle the induction step. Suppose n is at least zero. For
brevity, let us use c.n to denote (3"—1)/2. By induction, we may assume that a fake
coin, if it exists, can be found among c.n coins using at most n comparisons. We have
to show how to find a fake coin, if it exists, among c.(n+1) coins, using at most n-+1
comparisons.

Consider the first comparison. It involves putting some number of coins on the left
scale, some on the right scale, and leaving some on the table. To be able to draw any
conclusion from the comparison, the number of coins on the two scales must be equal.
One possible consequence of the comparison is that the scales balance, from which one
infers that none of the coins on the scales is fake. The algorithm would then proceed to
try to find a fake coin among the coins left on the table.

Combined with the induction hypothesis, this dictates that c.n coins must be left
on the table. This is because c.n is the maximum number of coins among which a fake
coin can be found with n comparisons.

It also dictates how many coins should be put on the scales — this is the difference
between c.(n+1) and c.n. Now,

c.(n+1) = 3"=1)/2 = 3x((3"~1)/2)+1 = 3xcm+1
So
c.n+1)—cm = 2xen+1 = 3™ .

This is an odd number; it can be made even by using one of the coins we know to be
genuine. (Recall the assumption that we have at least one coin that is known to be
genuine, in addition to the c.(n+1) coins whose kind we must determine.) We conclude
that in the first comparison, c.n+ 1 coins should be put on each of the two scales.
The next step is to determine what to do after the first comparison is made. There are
three possible outcomes, of which we have already discussed one. If the scales balance,
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the fake coin should be sought among the c.n coins left on the table. The problem is
what to do if the scales tip either to the left or to the right.

At this point, we realise that the induction hypothesis doesn’t help. It is too weak! If
the scales tip to one side, we can conclude that all the coins left on the table are genuine,
and can be eliminated from consideration. But we are still left with 3™ coins none of
which we know to be genuine. And crucially, 3™ is greater than c.n. We are unable to
apply the induction hypothesis to this number of coins.

The comparison does tell us something about the coins on the scales. If the scales tip
to one side, we know that all the coins on that side are possibly heavier than a genuine
coin, and all the coins on the other side are possibly lighter than a genuine coin. By
“possibly lighter” we mean genuine, or fake and lighter. By “possibly heavier” we mean
genuine, or fake and heavier. After the comparison, we can mark all the coins on the
scales one way or the other.

The Marked Coin Problem In this way, in the case that the scales do not balance,
the problem we started with has been reduced to a different problem. The new problem
is this. Suppose a number of coins are supplied, each of which is marked either “possibly
light” or “possibly heavy”. Exactly one of the coins is fake, and all the rest are genuine.
Construct an algorithm that will determine, with at most n comparisons, the fake coin
among 3™ marked coins.

Again, the base case is easy. If n equals 0, there is one coin, which must be the fake
coin. That is, 0 (i.e. n) comparisons are needed to determine this fact.

For the induction step, we proceed as for the earlier problem. Suppose we are supplied
with 3™*" marked coins. In the first comparison, some coins are put on the left scale,
some on the right, and some are left on the table. In order to apply the induction
hypothesis in the case that the scales balance, the coins must be divided equally: 3™
coins must be left on the table, and thus 3™ put on the left scale and 3™ on the right
scale.

The coins are marked in two different ways. So, we need to determine how to place
the coins according to their markings. We calculate the numbers as follows.

Suppose 11 possibly light coins are placed on the left scale and 12 possibly light
coins on the right scale. Similarly, suppose hl possibly heavy coins are placed on the
left scale and h2 possibly heavy coins on the right scale.

To draw any conclusion from the comparison, we require that the number of coins
on the left scale equals the number on the right. That is, l1+hl and 12+h2 should be
equal. Furthermore, as already determined, they should equal 3™.

Now, if the comparison causes the scales to tip to the left, we conclude that all coins
on the left scale are possibly heavy, and all the coins on the right scale are possibly
light. Combining this with the markings, we conclude that the 11 possibly light coins
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on the left scale and the h2 possibly heavy coins on the right scale are in fact genuine
(since possibly heavy and possibly light equals genuine); this leaves h1+12 coins to be
investigated further. Conversely, if the scale tips to the right, the h1 possibly heavy
coins on the left scale and the 12 possibly heavy coins on the right scale are genuine,
leaving 114+h2 coins to be investigated further.

Again, in order to apply the induction hypothesis, we require that the number of
coins not eliminated be equal to 3™, whatever the outcome of the comparison. This
imposes the requirement that h14+12=11+h2=3". Together with 114+hl=12+h2, we
infer that 11=12 and h1=h2. We must arrange the coins so that each scale contains
equal numbers of coins of the same kind.

This requirement can be met. Simply place the coins on the scales two at a time,
one on the left and one on the right, until each scale has its full complement of 3™
coins, always choosing two coins with the same marking. The choice can always be made
because there are always at least three coins from which to choose; by choosing any three
coins, at least two of them will have the same marking.

The Complete Solution This completes the solution to the marked-coin problem,
and thus to the unmarked-coin problem. The fake coin is identified from a collection
of 3™ marked coins by placing 3™ coins on each scale, in such a way that there is an
equal number of possibly light coins on each of the scale. According to the outcome of
the comparison, one of the following is executed.

e If the scales balance, all the coins on the scales are genuine. Proceed with the coins
left on the table.

e If the scales tip to the left, the coins on the table are genuine. So too are the
possibly light coins on the left scale and the possibly heavy coins on the right
scale. Proceed with the possibly heavy coins on the left scale and the possibly light
coins on the right scale.

e If the scales tip to the right, the coins on the table are genuine. So too are the
possibly light coins on the right scale and the possibly heavy coins on the left scale.
Proceed with the possibly heavy coins on the right scale and the possibly light coins
on the left scale.

The solution to the unmarked-coin problem when the number of coins is (3™'—1)/2
is as follows.

Divide the coins into three groups of sizes (3"—1)/2, (3"—1)/2+1 and (3"—1)/2.
Place the first group on the left scale together with the supplied genuine coin. Place the
second group on the right scale, and leave the third group on the table. Determine the
outcome of the comparison, and proceed as follows:
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e If the scales balance, all the coins on the balance are genuine. Apply the solution
to the unmarked-coin problem (inductively) to the coins on the table.

e If the scales tip to the left, the coins on the table are genuine. Mark all the coins on
the left scale, with the exception of the supplied genuine coin as “possibly heavy”.
Mark the coins on the right scale as “possibly light”. Apply the solution to the
marked-coin problem to the 3™ marked coins.

e If the scales tip to the right, the coins on the table are genuine. Mark all the coins
on the left scale, with the exception of the supplied genuine coin as “possibly light”.
Mark the coins on the right scale as “possibly heavy”. Apply the solution to the
marked-coin problem to the 3™ marked coins.

We ask the reader to review the development of this algorithm. Note that at no stage
is a guess made at an inductive hypothesis, even though the development necessitates
several such hypotheses. Quite the opposite: each hypothesis is systematically calculated
from the available information. This is the epitome of the art of effective reasoning.

Exercise 6.5  Suppose you are given a number of objects. All the objects have the
same weight, with the exception of one, called the unique object, which has a different
weight. In all other respects, the objects are identical. You are required to determine
which is the unique object. For this purpose, you are provided with a pair of scales.

Show, by induction on m, that at most 2xm comparisons are needed to identify
the unique object when the total number of objects is 3™. (Hint: for the induction step,
3™ objects can be split into 3 groups of 3™ objects.)

Can you identify whether the unique object is lighter or heavier than all the other
objects?

O

Exercise 6.6  Given are n objects, where 1<n, each of different weight. A pair of
scales is provided so that it is possible to determine, for any two of the objects, which is
the lighter and which is the heavier.

a) How many comparisons are needed to find the lightest object?

b) Show, by induction on n, that it is possible to determine which is the lightest and
which is the heaviest object using 2n —3 comparisons. Assume that 2<n.

c) Suppose there are 4 objects with weights A, B, C and D, and suppose A<B
and C<D. Show how to find the lightest and heaviest of all four with two additional
comparisons. Use this to show how to find the lightest and heaviest of 4 objects using
4 comparisons (and not 5, as in your solution to part (b)).
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d) Suppose there are 2m objects, where 1<m. Show, by induction on m, that it
is possible to find the lightest and heaviest objects using 3m —2 comparisons. (Hint:
make use of (c).)

O

6.8 Summary

Induction is one of the most important problem-solving principles. The principle of
mathematical induction is that instances of a problem of arbitrary “size” can be solved
for all “sizes” if

(a) instances of “size” 0 can be solved,

(b) given a method of solving instances of “size” m, for arbitrary n, it is possible to
adapt the method to solve instances of “size” n+1.

Using induction means looking for patterns. The process may involve some creative
guesswork, which is then subjected to the rigours of mathematical deduction. The key
to success is to reduce the guesswork to a minimum, by striving for simplicity, and using
mathematical calculation to fill in complicated details.

6.9 Bibliographic Notes

The solution to the fake-coin problem is a combination of two papers by Edsger W.
Dijkstra [Dij90, Dij97].
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Chapter 7

The Towers of Hanoi

This chapter is about the Towers of Hanoi problem. The problem is discussed in many
mathematical texts, and is often used in computing science and artificial intelligence as
an illustration of “recursion” as a problem-solving strategy.

The Towers of Hanoi problem is a puzzle that is quite difficult to solve without a
systematic problem-solving strategy. Induction gives a systematic way of constructing
a first solution. However, this solution is undesirable. A better solution is obtained by
observing an invariant of the inductive solution. In this way, this chapter brings together
a number of the techniques discussed earlier: principally induction and invariants, but
also the properties of logical equivalence.

For this problem, we begin with the solution of the problem. One reason for doing
so is to make clear where we are headed; the Towers of Hanoi problem is one that is not
solved in one go; several steps are needed before a satisfactory solution is found. Another
reason is to illustrate how difficult it can be to understand why a correct solution has
been found if no information about the solution method is provided.

7.1 Specification and Solution

7.1.1 The End of the World!

The Towers of Hanoi problem comes from a puzzle marketed in 1883 by the French
mathematician Edouard Lucas, under the pseudonym M. Claus.

The puzzle is based on a legend according to which there is a temple in Bramah
where there are three giant poles fixed in the ground. On the first of these poles, at the
time of the world’s creation, God placed sixty-four golden disks, each of different size,
in decreasing order of size. (See fig. 7.1.) The Brahmin monks were given the task of
moving the disks, one per day, from one pole to another according to the rule that no
disk may ever be above a smaller disk. The monks’ task will be complete when they
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have succeeded in moving all the disks from the first of the poles to the second and, on
the day that they complete their task, the world will come to an end!

Figure 7.1: Towers of Hanoi Problem

7.1.2 Iterative Solution

There is a very easy solution to the Towers of Hanoi problem that is easy to remember
and easy to execute. To formulate the solution, we assume that the poles are arranged at
the three corners of a triangle. Movements of the disks can then be succinctly described
as either clockwise or anticlockwise movements. We assume that the problem is to move
all the disks from one pole to the next in a clockwise direction. We also assume that days
are numbered from 0 onwards. On day O, the disks are placed in their initial position
and the monks begin moving the disks on day 1. With these assumptions, the solution
is the following.

On every alternate day, beginning on the first day, the smallest disk is moved. The
rule for moving the smallest disk is that it should cycle around the poles. The
direction of rotation depends on the total number of disks. If the total number of
disks is odd, the smallest disk should cycle in a clockwise direction. Otherwise, it
should cycle in an anticlockwise direction.
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On every other day, a disk other than the smallest disk is moved — subject to the
rule that no disk may ever be above a smaller disk. It is easy to see that because
of this rule there is exactly one move possible so long as not all the disks are on
one pole.

The algorithm terminates when no further moves are possible, that is, on an even-
numbered day when all the disks are on one-and-the-same pole.

Try executing this algorithm yourself on, say, a 4-disk puzzle. Take care to cycle the
smallest disk on the odd-numbered moves and to obey the rule not to place a disk on
top of a disk smaller than itself on the even-numbered moves. If you do, you will find
that the algorithm works. Depending on how much patience you have, you can execute
the algorithm on larger and larger problems — 5-disk, 6-disk, and so on.

7.1.3 WHY?

Presenting the problem and its solution, like this, provides no help whatsoever in under-
standing how the solution is constructed. If anything, it only serves to impress —look
at how clever I am!— but in a reprehensible way. Matters would be made even worse
if we now proceeded to give a formal mathematical verification of the correctness of the
algorithm. This is not how we intend to proceed! Instead, we first present an inductive
solution of the problem. Then, by observing a number of invariants, we show how to
derive the algorithm above from the inductive solution.

7.2 Inductive Solution

Constructing a solution by induction on the number of disks is an obvious strategy.

Let us begin with an attempt at a simple-minded inductive solution. Suppose that
the task is to move M disks from one specific pole to another specific pole. Let us
call these poles A and B, and the third pole C. (Later, we see that naming the poles is
inadvisable.)

As often happens, the basis is easy. When the number of disks is 0 no steps are
needed to complete the task. For the inductive step, we assume that we can move n
disks from A to B, and the problem is to show how to move n+1 disks from A to B.

Here, we soon get stuck! There is only a couple of ways that the induction hypothesis
can be used, but these lead nowhere:

1. Move the top n disks from A to B. After doing this, we have exhausted all possi-
bilities of using the induction hypothesis because n disks are now on pole B, and
we have no hypothesis about moving disks from this pole.
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2. Move the smallest disk from A to C. Then move the remaining n disks from A to
B. Once again, we have exhausted all possibilities of using the induction hypothesis,
because n disks are now on pole B, and we have no hypothesis about moving disks
from this pole.

The mistake we have made is to be too specific about the induction hypothesis. The
way out is to generalise by introducing one or more parameters to model the start and
finish positions of the disks.

At this point, we make a crucial decision. Rather than name the poles (A, B and
C, say), we observe that the problem exhibits a rotational symmetry. The rotational
symmetry is obvious when the poles are placed at the corners of an equilateral triangle,
as we did in fig. 7.1. (This rotational symmetry is obscured by placing the poles in a
line, as is often done.) The problem does not change when we rotate the poles and disks
about the centre of the triangle.

The importance of this observation is that only one additional parameter needs to
be introduced, namely, the direction of movement. That is, in order to specify how a
particular disk is to be moved, we need only say whether it is to be moved clockwise or
anticlockwise from its current position. Also, the generalisation of the Towers of Hanoi
problem becomes how to move n disks from one pole to the next in the direction d,
where d is either clockwise or anticlockwise. The alternative of naming the poles leads
to the introduction of two additional parameters, the start and finish positions of the
disks. This is much more complicated since it involves unnecessary additional detail.

Now, we can return to the inductive solution again. We need to take care in formulat-
ing the induction hypothesis. It is not sufficient to simply take the problem specification
as induction hypothesis. This is because the problem specification assumes that there
are exactly M disks that are to be moved. When using induction, it is necessary to move
n disks in the presence of M—n other disks. If some of these M—n disks are smaller
than the n disks being moved, the requirement that a larger disk may not be placed on
top of a smaller disk may be violated. We need a stronger induction hypothesis.

The induction hypothesis we use is that it is possible to move the n smallest disks,
from one pole to its neighbour in the direction d, beginning from any valid starting
position (that is, a starting position in which the disks are distributed arbitrarily over
the poles, but no disk is on top of a disk smaller than itself).

In the case that n is 0, the sequence of moves is the empty sequence. In the case of
n+1 disks we assume that we have a method of moving the n smallest disks from one
pole to either of its two neighbours. We must show how to move n+1 disks from one
pole to its neighbour in direction d, where d is either clockwise or anticlockwise. For
convenience, we assume that the disks are numbered from 1 upwards, with the smallest
disk being given number 1.
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Given the goal of exploiting the induction hypothesis, there is little choice of what to
do. We can begin by moving the n smallest disks in the direction d, or in the direction
—d. Any other initial choice of move would preclude the use of the induction hypothesis.
Some further thought (preferably assisted by a physical model of the problem) reveals
that the solution is to move the n smallest disks in the direction —d. Then disk n+1
can be moved in the direction d. (This action may place disk n+1 on top of another
disk. However, the move is valid because the n disks smaller than disk n+1 are not on
the pole to which disk n+1 is moved.) Finally, we use the induction hypothesis again
to move the n smallest disks in the direction —d. This places them above disk n+1,
and all n+1 smallest disks have now been moved from their original position to the
neighbouring pole in direction d.

The following code summarises this inductive solution to the problem. The code
defines H,.d to be a sequence of pairs (k,d’) where n is the number of disks, k is
a disk number and d and d’ are directions. Disks are numbered from 1 onwards,
disk 1 being the smallest. Directions are boolean values, true representing a clockwise
movement and false an anti-clockwise movement. The pair (k,d’) means move the
disk numbered k from its current position in the direction d’. The semicolon operator
concatenates sequences together, [| denotes an empty sequence and [x] is a sequence
with exactly one element x. Taking the pairs in order from left to right, the complete
sequence H,,.d prescribes how to move the n smallest disks one-by-one from one pole
to its neighbour in the direction d, following the rule of never placing a larger disk on
top of a smaller disk.

Ho.d = []
Hyp.d = Hp.—d; [(n+1,d)] ; Hy.—d

Note that the procedure name H recurs on the right side of the equation for H, ;.d.
Because of this we have what is called a recursive solution to the problem. Recursion
is a very powerful problem-solving technique, but unrestricted use of recursion can be
unreliable. The form of recursion used here is limited; describing the solution as an
“inductive” solution makes clear the limitation on the use of recursion.

This inductive procedure gives us a way to generate the solution to the Towers of
Hanoi problem for any given value of n — we simply use the rules as left-to-right
rewrite rules until all occurrences of H have been eliminated. For example, here is how
we determine H,.cw. (We use cw and aw, meaning clockwise and anticlockwise, rather
than true and false in order to improve readability.)

Hz.CW

— { 2nd equation, n,d:=1,cw }
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Hi.aw; [(2,cw)] ; Hy.aw
= { 2nd equation, n,d:=0,aw }

Ho.cw ; [(T,aw)] ; Ho.cw ; [(2,cw)] 5 Ho.cw ;5 [(1,aw)] ; Ho.cw

= { 1st equation }
[15 Taw)l 5 (15 [2Zew) 5 15 KTaw)] 5 ]
= { concatenation of sequences }

[(T,aw) , (2,cw) , (T,aw)]

As an exercise you should determine Hs.aw in the same way. If you do, you will
quickly discover that this inductive solution to the problem takes a lot of effort to put
into practice. The complete expansion of the equations in the case of n=3 takes 16
steps, in the case of n=4 takes 32 steps, and so on. This is not the easy solution that the
Bramin monks are using! The solution given in section 7.1.1 is an :terative solution to
the problem. That is, it is a solution that involves iteratively (i.e. repeatedly) executing
a simple procedure dependent only on the current state. The implementation of the
inductive solution, on the other hand, involves maintaining a stack of the sequence of
moves yet to be executed. The memory of Bramin monks is unlikely to be large enough
to do that!

Exercise 7.1 The number of days the monks need to complete their task is the length
of the sequence Hgq.cw. Let T,.d denote the length of the sequence H,.d. Derive
an inductive definition of T from the inductive definition of H. (You should find that
T,.d is independent of d.) Use this definition to evaluate T,, Ty and T,. Hence, or
otherwise, formulate a conjecture expressing T,, as an arithmetic function of n. Prove
your conjecture by induction on n.

O

Exercise 7.2  Use induction to derive a formula for the number of different states in
the Towers of Hanoi problem.

Use induction to show how to construct a state-transition diagram that shows all
possible states of n disks on the poles, and the allowed moves between states.

Use the construction to show that the above solution optimises the number of times
that disks are moved.

O
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7.3 The Iterative Solution

Recall the iterative solution to the problem, presented in section 7.1.2. It has two main
elements: the first is that the smallest disk cycles around the poles (that is, its direction
of movement is invariantly clockwise or invariantly anticlockwise), the second is that
the disk to be moved alternates between the smallest disk and some other disk. In this
section, we show how these properties are derived from the inductive solution.

Cyclic Movement of the Disks

In this section, we show that the smallest disk always cycles around the poles. In fact, we
do more than this. We show that all the disks cycle around the poles, and we calculate
the direction of movement of each.

The key is that, for all pairs (k,d’) in the sequence H,,;.d the boolean value
even.k = d’ is invariant (that is always true or always false). This is a simple con-
sequence of the rule of contraposition discussed in section 5.5. When the formula for
H,..7.d is applied, the parameter “n+1” is replaced by “n” and “d” is replaced by
“—d”. Since even.(n+1)=—(even.n), the value of even.(n+1) = d remains constant
under this assignment.

Whether even.k = d’ is true or false (for all pairs (k,d’) in the sequence H,,;.d)
will depend on the initial values of n and d. Let us suppose these are N and D . Then,
for all moves (k,d), we have

even.k = d = even.N =D .

This formula allows us to determine the direction of movement d of disk k. Specifically,
if it is required to move an even number of disks in a clockwise direction, all even-
numbered disks should cycle in a clockwise direction, and all odd-numbered disks should
cycle in an anticlockwise direction. Vice-versa, if it is required to move an odd number of
disks in a clockwise direction, all even-numbered disks should cycle in an anticlockwise
direction, and all odd-numbered disks should cycle in a clockwise direction. In particular,
the smallest disk (which is odd-numbered) should cycle in a direction opposite to D if
N is even, and the same direction as D if N is odd.

Exercise 7.3 An explorer once discovered the Bramin temple and was able to secretly
observe the monks performing their task. At the time of his discovery, the monks had
got some way to completing their task, so that the disks were arranged on all three poles.
The poles were arranged in a line and not at the corners of the triangle so he wasn’t
sure which direction was clockwise and which anticlockwise. However, on the day of his
arrival he was able to observe the monks move the smallest disk from the middle pole
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to the rightmost pole. On the next day, he saw the monks move a disk from the middle
pole to the leftmost pole. Did the disk being moved have an even number or an odd
number?

O

Alternate Disks

We now turn to the second major element of the solution, namely that the disk that is
moved alternates between the smallest disk and some other disk.

By examining the puzzle itself, it is not difficult to see that this must be the case.
After all, two consecutive moves of the smallest disk are wasteful as they can always be
combined into one. And, two consecutive moves of a disk other than the smallest have no
effect on the state of the puzzle. We now want to give a formal proof that the sequence
H,.d satisfies this property.

Let us call a sequence of numbers alternating if it has two properties. The first
property is that consecutive elements alternate between one and a value greater than
one; the second property is that if the sequence is non-empty then it begins and ends
with the value one. We write alt.ks if the sequence ks has these two properties.

The sequence of disks moved on successive days, which we denote by disk,.d, is
obtained by taking the first component of each of the pairs in H,,.d and ignoring the
second. Let the sequence that is obtained in this way be denoted by disk,.d. Then,
from the definition of H we get:

diSko.d = H
disk,,1.d = disk,.—d ; [n+1] ; disk,.—d .

Our goal is to prove alt.(disk,.d). The proof is by induction on n. The base case,
n=0, is clearly true because an empty sequence has no consecutive elements. For the
induction step, the property of alternating sequences on which the proof depends is that,
for a sequence ks and number k,

alt.(ks; [k] ;ks) < altks A ((ks=][]) = (k=1)) .
The proof is then:
alt.(disk,1.d)
= { definition |}
alt. (disk,,.—~d ; [n+1] ; disk,,.—d)

& { above property of alternating sequences }
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alt.(disk,.—~d) A ((diskn,.—d =[]) = (n+1=1))
= { induction hypothesis applied to the first conjunct,
straightforward property of disk,, for the second. }

true .

Exercise 7.4  The explorer left the area and did not return until several years later.
On his return, he discovered the monks in a state of great despair. It transpired that
one of the monks had made a mistake shortly after the explorer’s first visit but it had
taken the intervening time before they had discovered the mistake. The state of the disks
was still valid but the monks had discovered that they were no longer making progress
towards their goal; they had got into a never-ending loop!

Fortunately, the explorer was able to tell the monks how to proceed in order to return
all the disks to one-and-the-same pole whilst still obeying the rules laid down to them
on the day of the world’s creation. They would then be able to begin their task afresh.

What was the algorithm the explorer gave to the monks? Say why the algorithm
is correct. (Hint: The disk being moved will still alternate between the smallest and
some other disk. You only have to decide in which direction the smallest disk should
be moved. Because of the monks’ mistake this will not be constant. Make use of the
fact that, beginning in a state in which n disks are all on the same pole, maintaining
invariant the relationship

evenn = d = evenk = d’

for the direction d’ moved by disk k will move n disks in the direction d.)

O

Exercise 7.5 (Coloured Disks)  Suppose each disk is coloured, red white or blue.
The colouring of disks is random; different disks may be coloured differently.

Devise an algorithm that will sort the disks so that all the red disks are on one pole,
all the white disks are on another pole, and all the blue disks are on the third pole. You
may assume that, initially, all disks are on one pole.

O

7.4 Summary

In this chapter we have seen how to use induction to construct a solution to the Towers of
Hanoi problem. Several inductive constructions have been discussed. The chapter began
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with an inductive construction of a graph representing all possible moves of the disks
in the general n-disk problem. The graph was used to justify an inductive solution to
the problem itself. This solution was then tranformed to an iterative solution, inductive
proofs of properties of the sequence of movements of the disks being used to establish
the correctness of the iterative solutions.

The chapter has also illustrated two important design considerations: the inclusion
of the 0-disk problem as the basis for the construction (rather than the 1-disk problem)
and the avoidance of unnecessary detail by not naming the poles and referring to the
direction of movement of the disks (clockwise or anticlockwise) instead.

7.5 Bibliographic Remarks

Information on the history of the Towers of Hanoi problem is taken from [Ste97]. A proof
of the correctness of the iterative solution was published in [BL80]. The formulation and
proof presented here is based on [BFO01].
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Chapter 8

The Torch Problem

In this chapter, we present a solution to a more general version of the torch problem in
exercise 3.4. The generalisation is to consider an arbitrary number of people; the task is
to get all the people across a bridge in the optimal time.

Specifically, the problem we discuss is the following.

N people wish to cross a bridge. It is dark, and it is necessary to use a
torch when crossing the bridge, but they only have one torch between them.
The bridge is narrow and at most 2 people can be on it at any one time.
The people are numbered from 1 thru N. Person i takes time t.i to cross
the bridge; when two cross together they must proceed at the speed of the
slowest.

Construct an algorithm that will get all N people across in the shortest time.

For simplicity, we assume that t.i<t.j whenever i<j. (This means that we assume
the people are ordered according to crossing time and that their crossing times are
distinct. Assuming that the crossing times are distinct makes the arguments simpler, but
is not essential. If the given times are such that t.i=t.j for some i and j, where i<j, we
can always consider pairs (t.i, i), where i ranges over people, ordered lexicographically.
Renaming the crossing “times” to be such pairs, we obtain a total ordering on times with
the desired property.)

8.1 Lower and Upper Bounds

The derivation that follows is quite long and surprisingly difficult, particularly in com-
parison to the final algorithm, which is quite simple. It’s important to appreciate where
precisely the difficulties lie. This has to do with the difference between establishing an
“upper bound” and a “lower bound” on the crossing times.

Algorithmic Problem Solving (©) Roland Backhouse. 121 May 28, 2008



122 8. The Torch Problem

In the original problem given in chapter 1, there are four people with crossing times
of 1 minute, 2 minutes, 5 minutes and 10 minutes. Crucially, the question asked
was to show that all four can cross the bridge within 17 minutes. In other words, the
question asks for a so-called upper bound on the time taken. In general, an upper bound
is established by exhibiting a sequence of crossings that takes the required time.

A much harder problem is to show that 17 minutes is a lower bound on the time
taken. Showing that it is a lower bound means showing that the time can never be
bettered.

We can use the same instance of the torch problem to further illustrate the difference
between lower and upper bounds. Most of us, when confronted with the torch problem
above, will first explore the solution in which the fastest person accompanies the others
across the bridge. Such a solution takes a total time of 2+1+5+1+410, i.e. 19 minutes.
By exhibiting the crossing sequence, we have established that 19 minutes is an upper
bound on the crossing time; we have not established that it is a lower bound. (Indeed, it
is not.) Similarly, by exhibiting the crossing sequence that gets all four people across in
17 minutes does not prove that this time cannot be bettered. Doing so is much harder
than just constructing the sequence.

In this chapter, the goal is to construct an algorithm for scheduling N people to cross
the bridge. The algorithm we derive is quite simple but, on its own, it only establishes
an upper bound on the optimal crossing time. The greatest effort goes into showing
that the algorithm simultaneously establishes a lower bound on the crossing time. The
combination of equal lower and upper bounds is called an ezact bound; this is what is
meant by an optimal solution.

In section 8.6, we present two algorithms for constructing an optimal sequence. The
more efficient algorithm assumes a knowledge of algorithm development that goes beyond
the material in this book.

8.2 QOutline Strategy

Once again, the main issue we have to overcome is the avoidance of unnecessary detail.
The problem asks for a sequence of crossings but there is an enormous amount of freedom
in the order in which crossings are scheduled. It may be, for example, that the optimal
solution is to let one person accompany all the others one-by-one across the bridge, each
time returning with the torch for the next person. If our solution method requires that
we detail in what order the people cross, then it is extremely ineffective. The number of
different orderings is (N—1)!, which is a very large number even for quite small values
of N.

The way to avoid unnecessary detail is to focus on what we call the “forward trips”.
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Recall that, when crossing the bridge, the torch must always be carried. This means
that crossings alternate between “forward”and “return” trips, where a forward trip is a
crossing in the desired direction, and a return trip is a crossing in the opposite direction.
Informally, the forward trips do the work whilst the return trips service the forward trips.
The idea is that, if we can compute the optimal collection of forward trips, the return
trips needed to sequence them correctly can be easily deduced.

In order to turn this idea into an effective solution, we need to proceed more formally.
First, by the “collection” of forward trips, we mean a “bag” of sets of people. The
mathematical notion of a “bag” (or “multiset” as it is sometimes called) is similar to a
set but, whereas a set is defined solely by whether or not a value is an element of the
set, a bag is defined by the number of times each value occurs in the set. For example, a
bag of coloured marbles would be specified by saying how many red marbles are in the
bag, how many blue marbles, and so on. We will write, for example, {1xa,2xb,0xc} to
denote a bag of as, bs and cs in which a occurs once, b occurs twice and ¢ occurs
no times. For brevity, we also write {1xa,2xb} to denote the same bag.

It is important to stress that a bag is different from a sequence. Even though when
we write down an expression denoting a bag we are forced to list the elements in a certain
order (alphabetical order in {1xa,2xb,0xc}, for example), the order has no significance.
The expressions {1xa,2xb,0xc} and {2«b,1xa,0xc} both denote the same bag.

A trip is given by the set of people involved in the trip. So, for example, {1,3} is a
trip in which persons 1 and 3 cross. If we are obliged to distinguish between forward
and return trips, we prefix the trip with either “+” (for forward) or “—” (for return).
So +{1,3} denotes a forward trip made by persons 1 and 3 and —{2} denotes a return
trip made by person 2.

As we said above, our focus will be on computing the bag of forward trips in an
optimal sequence of trips. We begin by establishing a number of properties of sequences
of trips that allow us to do this.

We call a sequence of trips that gets everyone across in accordance with the rules a
valid sequence. We will say that one valid sequence subsumes another valid sequence
if the time taken by the first is at most the time taken for the second. Note that the
subsumes relation is reflexive (every valid sequence subsumes itself) and transitive (if
valid sequence a subsumes valid sequence b and valid sequence b subsumes valid
sequence ¢ then valid sequence a subsumes valid sequence c). The problem is to find
a valid sequence that subsumes all valid sequences.

Formally, a valid sequence is a set of numbered trips with the following two proper-
ties:

e The trips are sets; each set has one or two elements, and the number given to a
trip is its position in the sequence (where numbering begins from 1).
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e Odd-numbered trips in the sequence are called forward trips; even-numbered trips
are called return trips. The length of the sequence is odd.

e The trips made by each individual person alternate between forward and return
trips, beginning and ending with forward trips. (A trip T is made by person 1 if
ieT.)

Immediate consequences of this definition which play a crucial role in finding an
optimal sequence are:

e The number of forward trips is one more than the number of return trips.

e The number of forward trips made by each individual person is one more than the
number of return trips made by that person.

A regular forward trip means a forward trip made by two people, and a regular
return trip means a return trip made by exactly one person. A regular sequence is a
valid sequence that consists entirely of regular forward and return trips.

The first step (lemma 8.1) is to show that every valid sequence is subsumed by one
in which all trips are regular. The significance of this is threefold.

e The number of forward trips is N—1 and the number of return trips is N—2.
(Recall that N is the number of people.)

e The time taken by a regular sequence can be evaluated knowing only which forward
trips are made; not even the order in which they are made needs to be known.
(Knowing the bag of forward trips, it is easy to determine how many times each
person makes a return trip. This is because each person makes one fewer return
trips than forward trips. In this way, the time taken for the return trips can be
calculated.)

e Most importantly, knowing just the bag of forward trips in a regular sequence is
sufficient to reconstruct a valid regular sequence. Since all such sequences take the
same total time, we can thus replace the problem of finding an optimal sequence of
forward and return trips by the problem of finding an optimal bag of forward trips

Finding an optimal bag of forward trips is then achieved by focusing on which people
do not make a return trip. We prove the obvious property that, in an optimal solution,
the two slowest people do not return. We can then use induction to determine the
complete solution.

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



8.3. Regular Sequences 125

8.3 Regular Sequences

Recall that a “regular” sequence is a sequence in which each forward trip involves two
people and each return trip involves one person. We can always restrict attention to
regular sequences because of the following lemma.

Lemma 8.1 Every valid sequence containing irregular trips is subsumed by a strictly
faster valid sequence without irregular trips.

Proof Suppose a given valid sequence contains irregular trips. We consider two cases:
the first irregular trip is forward and the first irregular trip is backward.

If the first irregular trip is backward, choose an arbitrary person, p say, making the
trip. Identify the forward trip made by p prior to the backward trip, and remove p
from both trips. More formally, suppose the sequence has the form

u+p,aiv—priw

where q and r are people, u, v and w are subsequences and p occurs nowhere in v.
(Note that the forward trip made by p involves two people because it is assumed that
the first irregular trip is backward.) Replace the sequence by

u+{q}v—{r}tw

This results in a valid sequence, the time for which is no greater than the original
sequence. (To check that the sequence remains valid, we have to check that the trips
made by each individual continue to alternate between forward and return. This is true
for individuals other than p because the points at which they cross remain unchanged,
and it is true for p because the trips made by p have changed by the removal of
consecutive forward and return trips. The time taken is no greater since, for any x and
Yy, tpTx+ tpTy > x+y.) The number of irregular crossings is not reduced, since a
new irregular forward trip has been introduced, but the total number of person-trips s
reduced.

Now suppose the first irregular trip is forward. There are two cases to consider: the
irregular trip is the very first in the sequence, and it is not the very first.

If the first trip in the sequence is not regular, it means that one person crosses and
then immediately returns. (We assume that N is at least 2.) These two crossings can
be removed. Clearly, since times are positive, the total time taken is reduced. Also, the
number of person-trips is reduced.

If the first irregular crossing is a forward trip but not the very first, let us suppose it
is person p who crosses, and suppose ¢ is the person who returns immediately before
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this forward trip. (There is only one such person because of the assumption that p’s
forward trip is the first irregular trip.) That is, suppose the sequence has the form

u —{q} +{p} v

Consider the latest crossing that precedes q’s return trip and involves p or . There
are two cases: it is a forward trip or it is a return trip.

If it is a forward trip, it must involve q and not p. Swap p with q in this trip and
remove (s return trip and p’s irregular crossing. That is, transform

u Ha,r} w —{q} Hp}v
(where w does not involve p or q) to
u-+Hpriwv .

The result is a valid sequence. Moreover, the total crossing time is reduced (since, for
any x, t.qTx +t.q+ t.p > t.pTx), and the number of person-trips is also reduced.

If it is a return trip, it is made by one person only. (This is because we assume
that p’s forward trip is the first irregular trip in the sequence.) That person must be
p. Swap p with g in this return trip, and remove q’s return trip and p’s irregular
crossing. That is, transform

u —{pj w —{a} +pj v
(where w does not involve p or q) to
u—{qgfwv .

The result is a valid sequence. Moreover, the total crossing time is reduced (since,
t.p+t.g+t.p > t.q), and the number of person-trips is also reduced.

We have now described how to transform a valid sequence that has at least one irreg-
ular crossing; the transformation has the effect of strictly decreasing the total time taken.
Repeating this process whilst there are still irregular crossings is therefore guaranteed to
terminate with a valid sequence that is regular, subsumes the given valid sequence and
has a smaller person-trip count.

O

8.4 Sequencing Forward Trips

Lemma 8.1 has three significant corollaries. First, it means that the number of forward
trips in an optimal sequence is N—1 and the number of return trips is N—2. This is
because every subsequence comprising a forward trip followed by a return trip increases
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the number of people that have crossed by one, and the last trip increases the number
by two. Thus, after the first 2x(N—2) trips, N—2 people have crossed and 2 have not;
so, after 2x(N—2)+1 trips everyone has crossed.

Second, it means that the total time taken to complete any regular sequence can be
evaluated if only the bag of forward trips in the sequence is known; not even the order in
which the trips are made is needed. This is because the bag of forward trips enables us
to determine how many times each individual makes a forward trip. Hence, the number
of times each individual returns can be computed, from which the total time for the
return trips can be computed.

For example, suppose the forward trips in a regular sequence are as follows:

3x{1,2} , 1«{1,6} , 1%{3,5} , 1x{3,4} , 1x{7,8}

(The trips are seperated by commas; recall that 3%{1,2} means that persons 1 and 2
make 3 forward trips together, 1+{1,6} means that persons 1 and 6 make one forward
trip together, etc. Note that no indication is given of the order in which the forward
trips occur in the sequence.) Then, counting the number of occurrences of each person
in the bag, person 1 makes 4 forward trips, and hence 3 return trips; similarly, person
2 makes 3 forward trips and hence 2 return trips, whilst person 3 makes 2 forward
trips and hence 1 return trip. The remaining people (4, 5, 6, 7 and 8) all make 1
forward trip and, hence, no return trips. The total time taken is thus:

Ix(t1Tt.2) + 1 x (t.17t.6) + 1 x (£.3Tt.5) + 1 x (t.3Tt.4) + 1 x (t.77t.8)
+ 3xt14+2xt2+1xt.3

(The top line gives the time taken by the forward trips, and the bottom line gives the
time taken by the return trips.) Note that the total number of forward trips is 7 (one
less than the number of people), and the total number of return trips is 6.

The third important corollary of lemma 8.1 is that, given just the bag of forward
trips corresponding to a regular sequence, it is possible to construct a regular sequence
to get everyone across with the same collection of forward trips.

This is a non-obvious property of the forward trips and to prove that it is indeed the
case we need to make some crucial observations.

Suppose F is a bag of forward trips corresponding to some regular sequence. That
is, F is a collection of sets, each with exactly two elements and each having a certain
multiplicity. The elements of the sets in F are people, which we identify with numbers
in the range 1 thru N, and each number in the range must occur at least once. The
number of times a person occurs is the number of forward trips made by that person.

We will call a person a settler if they make only one forward trip; we call a person
a nomad if they make more than one forward trip. Division of people into these two
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types causes the trips in F to be divided into three types depending on the number of
settlers in the trip. If both people in a trip are settlers we say the trip is hard; if one
of the people is a settler and the other a nomad, we say the trip is firm; finally, if both
people are nomads we say the trip is soft.

Now, suppose we use #nomad, #hard, #firm and #soft to denote the number
of nomads, the number of hard trips, the number of firm trips and the number of soft
trips, respectively, in the collection F. Then, the number of trips in F is

#hard + #firm + #soft .

The number of return trips equals the total number of forward trips made by individual
nomads less the number of nomads, since each nomad makes one more forward trip than
return trip. Since each soft trip contributes 2 to the number of forward trips made by
nomads, and each firm trip contributes 1, the number of return trips is thus

2 x #soft + #firm — #nomad .

But the number of forward trips is one more than the number of return trips. That is,

#hard + #firm + #soft = 2 x #soft + #firm — #nomad + 1
Equivalently,
#hard + #nomad = #soft+1
We summarise these properties in the following definition.

Definition 8.2 (Regular Bag) Suppose N is at least 2. A bag of subsets of
{i|1<i<N} is called a reqular N bag if it has the following properties:

e Each element of F has size two. (Informally, each trip in F involves two people.)

° (Vi: 1T<i<N : (IT:TeF:ieT))

(Informally, every person is an element of at least one trip in F.)

e If #hard.F, #soft.F and #nomad.F denote, respectively, the number of trips in
F that involve two settlers, the number of trips in F that involve no settlers, and
the number of nomads in F, then

(8.3) #hard.F + #nomad.F = #soft.F+ 1

([
Formally, what we have proved is the following.

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



8.4. Sequencing Forward Trips 129

Lemma 8.4  Given a valid regular sequence of trips to get N people across, where N
is at least 2, the bag of forward trips F that is obtained from the sequence by forgetting
the numbering of the trips is a regular N bag. Moreover, the time taken by the sequence
of trips can be evaluated from F. Let #¢l denote the multiplicity of T in F. Then, the
time taken is

(8.5) (XT : TeF: (fi:ieT:ti) x#¢l) + (Ziztixred)
where

(8.6) 7rri = (ZT:TeFALET : #4T) —1

(7rg.i is the number of times that person i returns.)

O
Immediate consequences of (8.3) are:

(8.7) #nomad.F=0 = #hardF=1 A #firm.F =0 = #soft.F .

If #nomad.F is zero, there are no nomads and hence, by definition, no soft or firm
trips. So, by (8.3), #hard.F is 1.

(8.8) #nomad.F=1 = #hard.F =0 = #soft.F .

If there is only one nomad, there are no trips involving two nomads. That is #soft.F
is zero. It follows from (8.3) that #hard.F also equals zero. The converse is immediate
from (8.3).

(8.9) N>2 A #hardF>1 = #soft.F>1

If N (the number of people) is greater than 2, not all can cross at once and, so,
#nomad.F is at least 1. It follows from (8.3) that #soft.F is at least 1.
Now we can show how to construct a regular sequence from F.

Lemma 8.10 G iven N (at least 2) and a regular N bag, a valid regular sequence of
trips can be constructed from F to get N people across. The time taken by the sequence
is given by (8.5).

Proof The proof is by induction on the size of the bag F.

We need to consider three cases. The easiest case is when F consists of exactly one
trip (with multiplicity one). The sequence is then just this one trip.

The second case is also easy. It is the case that #nomad.F = 1. In this case, every
trip in F is firm. That is, each trip has the form {n,s} where n is the nomad and s is a
settler. The sequence is simply obtained by listing all the elements of F in an arbitrary
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order and inserting a return trip by the nomad n in between each pair of forward trips
of which the first is the trip {n,s} for some s.

The third case is that #hard.F is non-zero and F has more than one trip. In this
case, by (8.9), #soft.F is at least 1. It follows, by definition of soft that #nomad.F
is at least 2. Choose any soft trip in F. Suppose it is {n,m} where n and m are both
nomads. Construct the sequence which begins with the trip {n,m} and is followed by
the return of m, then an arbitrary hard trip and then the return of m. Reduce the
multiplicity of the chosen hard trip and the chosen soft trip in F by 1. (That is, remove
one occurrence of each from F.) We get a new bag F’ in which the number of trips
made by each of n and m has been reduced by 1 and the number of people has been
reduced by 2. By induction, there is a regular sequence corresponding to F’ which gets
the remaining people across.

O

Optimisation Problem Lemmas 8.4 and 8.10 have a significant impact on how to
solve the general case of the bridge problem. Instead of seeking a sequence of crossings
of optimal duration, we seek a regular bag as defined in definition 8.2 that optimises the
time given by (8.5). It is this problem that we now solve.

In solving this problem, it is useful to introduce some terminology when discussing
the time taken as given by (8.5). There are two summands in this formula, The value of
the first summand we call F’s total forward time and the value of the second summand
F’s total return time. Given a bag F and a trip T in F, we call (ffi:1€T :ti) X #¢T
the forward time of T in F. (Sometimes “in F” is omitted if this is clear from the
context.) For each person i, we call the value of t.i x r¢.i the return time of person i
(or person i’s return time).

8.5 Choosing Settlers and Nomads

This section is about how to choose settlers and nomads. We establish that the settlers
are the slowest people and the nomads are the fastest. More specifically, we establish
that in an optimal solution there are at most 2 nomads. Person 1 is always a nomad if
N is greater than 2; additionally, person 2 may also be a nomad.

Lemma 8.11  Every regular bag is subsumed by a regular bag for which all settlers
are slower than all nomads.

Proof Suppose the regular N bag F is given. Call a pair of people (p, q) an tnversion
if, within F, p is a settler, q is a nomad and p is faster than q.
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Choose any inversion (p,q). Suppose q and p are interchanged everywhere in
F. We get a regular N bag. Moreover, the return time is clearly reduced by at least
t.gq—t.p.

The forward times for the trips not involving p or q are, of course, unchanged. The
forward time for the trips originally involving q are not increased (because t.p <t.q).
The forward time for the one trip originally involving p is increased by an amount that
is at most t.q—t.p. This is verified by considering two cases. The first case is when the
trip involving p is {p,q}. In this case, swapping p and q has no effect on the trip, and
the increase in time taken is 0. In the second case, the trip involving p is {p,r} where
r# (. In this case, it suffices to observe that

tpTtr + (t.q—t.p)

= { distributivity of sum over max, arithmetic }
t.qT(tr + (t.g—t.p))

> { t.p <t.q, monotonicity of max }
t.qTtr .

Finally, the times for all other forward trips are unchanged.

The net effect is that the total time taken does not increase. That is, the transformed
bag subsumes the original bag. Also, the number of inversions is decreased by at least
one. Thus, by repeating the process of identifying and eliminating inversions, a bag F
is obtained that subsumes the given bag.

O

Corollary 8.12  Every regular N bag is subsumed by a regular N bag F with the
following properties:

e In any firm trip in F, the nomad is person 1.

e Every soft trip in F is {1,2}. (Note: the multiplicity of this trip in the bag can be
an arbitrary number, including 0.)

e The multiplicity of {1,2} in F is j, for some j where 1<j<N-=2, and the hard
trips are {k: 0<k<j—1:{N—2xk ,N—2xk—1}}. (Note that this is the empty
set when j equals 1.)

Proof Suppose F is a regular N bag that optimises the total travel time. From 8.11,
we may assume that the nomads are slower than the settlers.

Suppose there is a firm trip in F in which the nomad is person i where i is not 1.
Replace 1 in one occurrence of the trip by person 1. This has no effect on the forward
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time, since i is slower than the other person in the trip. However, the total return
time is reduced (by t.i—t.1). We claim that this results in a regular N bag, which
contradicts F being optimal. (Please refer to lemma 8.4 for the properties required of a
regular bag.)

Of course, the size of each set in F is unchanged. The number of trips made by
i decreases by one, but remains positive because i is a nomad in F. The number of
trips made by all other persons either remains unchanged or, in the case of person 1,
increases. So it remains to check property (8.3). If person i is still a nomad after the
replacement, property (8.3) is maintained because the type (hard, firm or soft) of each
trip remains unchanged. However, person i may become a settler. That is, the number
of nomads may be decreased by the replacement. If so, person i is an element of two
trips in F. The second trip is either a firm trip in F and becomes a hard trip, or it
is a soft trip in F and becomes firm. In both cases, it is easy to check that (8.3) is
maintained.

Now suppose there is a soft trip in F different from {1,2}. A similar argument to the
one above shows that replacing the trip by {1,2} results in a regular bag with a strictly
smaller total travel time, contradicting F being optimal.

We may now conclude from (8.3) that either there are no soft trips or the multiplicity
of {1,2} in F is j, for some j where j is at least 2, and there are j—1 hard trips. When
there are no soft trips, all the trips are firm or hard. But, as we have shown, person 1
is the only nomad in firm trips and there are no nomads in hard trips; it follows that
person 1 is the only nomad in F and, from (8.3), that there are no hard trips. Thus
persons 1 and 2 are the elements of one (firm) trip in F.

It remains to show that, when j is at least 2, the hard trips form the set

{k: 0<k<j—T:{N—2xk ,N—2xk—1}} .

(The multiplicity of each hard trip is 1, so we can ignore the distinction between bags
and sets.)

Assume that the number of soft trips is j where j is at least two. Then the settlers
are persons 3 thru N, and 2x(j—1) of them are elements of hard trips, the remaining
N —2x(j—2) being elements of firm trips. Any regular bad clearly remains regular under
any permutation of the settlers. So we have to show that choosing the settlers so that
the hard trips are filled in order of slowness gives the optimal arrangement. This is done
by induction on the number of settlers in the hard trips.

O
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8.6 The Algorithm

We can now solve the problem.

Lemma 8.13 Suppose F is an optimal solution satisfying the properties listed in
corollary 8.12. Then, if j is the multiplicity of {1,2} in F, the total time taken by F is

(8.14) HFj + FFj + jxt2 + (N—j—T)xt.1 + (j—1)xt.2 |
where

HFj = (Xi: 0<i<j—1 : t.(N-2i)) ,and

FFj = (Si:3<i<N=2x(j—1): t.i)

(The first three terms give the forward times, and the last two terms give the return
times.)

Proof There are two cases to consider. If there are no soft trips, the value of j is 1.
In this case, the total time taken is

(Zi:2<i<N:td) + (N=2) xt.1
But

HF.1T + FF1 + 1xt2 + (N=1-1)xt.1 + (1-1) x t.2
= { definition of HF and FF, arithmetic }
0+ (Zi:3<i<N:ti) + t.2 + (N=2)xt.1
= { arithmetic |}
(Zi:2<i<N:ti) + (N-2)xt.1

If there are soft trips, the value of j is equal to the number of soft trips and is at
least 2. In this case, HF.j is the forward time for the hard trips in F and FF.j is the
forward time for the firm trips in F. Also, j xt.2 is the forward time for the j soft
trips. Finally, person 1’s return time is (N—j—1) x t.1 and person 2’s return time is
(j—1) x t.2. (Person 2 is an element of j forward trips, and person 1 is an element of
j+ (N—=2x(j—1)—3+1) forward trips. Note that the sum of j—1 and N—j—1 is N-2,
which is what we expect the number of return trips to be.)

O

For all j, where j is at least 2, define OT.j to be the optimal time taken by a regular
N bag where the multiplicity of {1,2} in the bag is j. That is, OT.j is given by (8.14).
Now, we observe that
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HF.(j+1)—HFj = t.(N=-2j+2) ,
and
FF.G+1)—FFj = —(t.(N=2j+2) + t.(N=2j+1)) .
As a consequence,
OT.(j+1)—0Tj = —t.(N=2j+1) +2xt.2—t.1
Note that
OT.(j+1)—O0T.j < OT.(k+1)—0T.k
= { above }
—t.(N=2j+1) + 2xt2 —t1 < —t.(N-2k+1)+2xt.2—t.1
= { arithmetic |}
t.(N=2k+1) < t.(N=2j+1)
= { t is increasing }
j <k .
That is, OT.(j+1) — OT.j increases as j increases. A consequence is that the minimum
value of OT.j can be determined by a search for the point at which the difference function
changes from being negative to being positive.

The simplest way to do this and simultaneously construct a regular sequence to get
all N people across is to use a linear search, beginning with j assigned to 1. At each
iteration the test 2 xt.2 < t.14t.(N—2j+1) is performed. If it evaluates to true, the
soft trip {1,2} is scheduled; this is followed by the return of person 1, then the hard
trip {N—2j+2 , N—2j+1} and then the return of person 2. If the test evaluates to false,
the remaining N—2j+2 people are scheduled to cross in N—2j+1 firm trips. In each
trip one person crosses accompanied by person 1; in between two such trips person 1
returns.

When the number N is large, the number of tests can be reduced by using binary
search to determine the optimal value of j. This is encoded as follows.

i1,j == T,N+2 ;
{ Invariant:
1<i<i<NE2

A (Vk:1<k<i:OT.(k+1) < OT.K)
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A (Vk:j<k<N=2:O0T.(k+1) > OT.k) }
doi<j — m:=(i+j)+2;
if 2xt2 <tI+t(N-2m+41) - i:=m
O 2xt2>tl+t(N-2m+1) = j:=m
fi
od
{ T<j<N=2
A (Vk:1<k<j:OT.(k+1) < OT.K)
A (Vk:j<k<N+2:O0T.(k+1) > OT.k) }

On termination, j is the multiplicity of {1,2} in an optimal regular bag and OT.j is
the required optimal time. Thus, j—1 is the number of hard trips. Corollary 8.12 spec-
ifies the composition of the hard trips and lemma 8.10 specifies how they are scheduled.
The remaining N—2j42 people are then scheduled to cross in N—2j+1 firm trips as
described above.

8.7 Conclusion

In this chapter, we have presented an algorithm to solve the torch problem for an arbi-
trary number of people and arbitrary individual crossing times. The greatest challenge in
an optimisation problem of this nature is to establish without doubt that the algorithm
constructs a solution that can not be bettered. A major step in solving the problem
was to eliminate the need to consider sequences of crossings and to focus on the bag
of forward trips. Via a number of lemmas, we established a number of properties of an
optimum bag of forward trips which then enabled us to construct the required algorithm.

Many of the properties we proved are not surprising. An optimal sequence is “regular”
— that is, each forward trip is made by two people and each return trip is made by
one; the “settlers” (the people who never make a return trip) are the slowest, and the
“nomads” (the people who do make return trips) are the fastest. Less obvious is that
there are at most two nomads and the number of “hard” trips (trips made by two settlers)
is one less than the number of trips that the two fastest people make together. The proof
of the fact that there are at most two nomads is made particularly easy by the focus
on the bag of forward trips; if we had had to reason about the sequence of trips, this
property could have been very difficult to establish.

Even though these properties may seem unsurprising and the final algorithm (in
retrospect) perhaps even “obvious”, it is important to appreciate that proof is required
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— the interest in the torch problem is that the most “obvious” solution (letting the
fastest person accompany everyone else across the bridge) is not always the best solution.
Always beware of claims that something is “obvious”.

8.8 Bibliographic Remarks

In American-English, the torch problem is called the “flashlight problem”; it is also some-
times called the “bridge problem”. The solution presented here is based on a solution to
the yet-more-general torch problem in which the capacity of the bridge is a parameter
[Bac07]. In terms of this more general problem, this chapter is about the capacity 2
problem; the solution is essentially the same as a solution given by Rote [Rot02].

Rote describes the solution in terms of “multigraphs” rather than bags. This differ-
ence is superficial. Each edge of a “multigraph” connects two people and, hence, is just
a set of two people. The main difference is lemma 8.10; Rote does not prove that any
regular bag can be converted into a sequence of crossings. He does claim that this is
indeed the case, but only proves that it is possible for the regular bags corresponding to
optimal crossings.

Rote describes the linear-search method of determining the optimal solution, and
doesn’t suggest using binary search. (Strictly, at one point, his account is incorrect. He
says “the optimal value ... can be determined easily by locating the value 2t,—t; in
the sorted list of t;’s” but, of course, 2t, —t; might not occur in the list — the standard
1, 2, 5 and 10 minute problem is an example!)

Rote gives a comprehensive bibliography including pointing out one publication where
the algorithm is incorrect. When the capacity of the bridge is also a parameter, the
problem is much harder to solve. Many “obvious” properties of an optimal solution turn
out to be false. For example, it is no longer the case that an optimal solution uses a
minimum number of crossings. (If N =5, the capacity of the bridge is 3 and the travel
timesare 1, 1, 4, 4 and 4, the shortest time is 8, which is achieved using 5 crossings.
The shortest time using 3 crossings is 9.) The notion of “regularity” of crossings has to
be generalised in a way that allows for some forward trips not to be “full” (in the sense
that the full capacity of the bridge is not utilised). Rote’s formulation of the solution
in terms of “multigraphs” does not appear to generalise, in contrast to the use of bags
which does.
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Chapter 9

Knight’s Circuit

The problem tackled in this chapter is a particularly hard one. Yet, by suitably de-
composing the problem, combined with effective reasoning skills, the problem becomes
solvable.

The problem is to find a Knight’s citrcuit of a chessboard. That is, find a sequence of
moves that will take a Knight in a circuit around all the squares of a chessboard, visiting
each square exactly once, and ending at the square at which the circuit began.

The problem is an instance of a search problem; in principle, it can be solved by a
systematic, exhaustive examination of all the paths a Knight can follow around a chess-
board — a so-called brute-force search. However, there are 64 squares on a chessboard;
that means 64 moves have to be chosen, one for each square. From each of the corner
squares, there is a choice of just 2 moves, but from each of the 16 central squares, there
is a choice of 8 moves (see fig. 9.1); from the remaining squares either 4 or 6 moves are
possible. This gives a massive amount of choice in the paths that can be followed. Lots
of choice is usually not a problem but, when combined with the very restrictive require-
ments that the path forms a circuit that visits every square exactly once, it does become
a problem. The Knight'’s circuit problem is hard because of this critical combination of
an ezplosion with an tmplosion of choice.

But, all is not lost. The squares on a chessboard are arranged in a very simple pattern,
and the Knight’s moves, although many, are specified by one simple rule (two squares
horizontally or vertically, and one square in the opposite direction). There is a great
deal of structure, which we must endeavour to exploit.

9.1 Straight-Move Circuits

Finding a Knight’s circuit is too difficult to tackle head on. Some experience of tackling
simpler circuit problems is demanded.
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Figure 9.1: Knight’s Moves.

Let’s turn the problem on its head. Suppose you want to make a circuit of a chess-
board and you are allowed to choose a set of moves that you are allowed to make. What
sort of moves would you choose?

The obvious first answer is to allow moves from any square to any other square. In
that case, it’s always possible to construct a circuit of any board, whatever its size —
starting from any square, choose a move to a square that has not yet been visited until
all the squares are exhausted; then return to the starting square. But that is just too
easy. Let’s consider choosing from a restricted set of moves.

The simplest move is one square horizontally or vertically. (These are the moves that
a King can make, but excluding diagonal moves.) We call these moves straight moves.
Is it possible to make a circuit of a chessboard just with straight moves?

The answer is yes, although it isn’t immediately obvious. You may be able to find a
straight-move circuit by trial and error, but let us try to find one more systematically.
As is often the case, it is easier to solve a more general problem; rather than restrict the
problem to an 8x8 board, let us consider an arbitrary rectangular board. Assuming
each move is by one square only, to the left or right, or up or down, is it possible to
complete a straight-move circuit of the entire board? That is, is it possible to visit every
square exactly once, beginning and ending at the same square, making “straight” moves
at each step?

In order to gain some familiarity with the problem, please tackle the following exercise.
Its solution is relatively straightforward.

Exercise 9.1

(a) What is the relation between the number of moves needed to complete a circuit of
the board and the number of squares? Use your answer to show that it is impossible
to complete a circuit of the board if both sides have odd length. (Hint: crucial is
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that each move is from one square to a different coloured square. Otherwise, the
answer does not depend on the sort of moves that are allowed.)

(b) For what values of m is it possible to complete a straight-move circuit of a board
of size 2mx17? (A 2mx1board has one column of squares; the number of squares
is 2m.)

(c) Show that it is possible to complete a straight-move circuit of a 2xn board for all
(positive) values of n. (A 2xn board has two rows, each row having n squares.)

(I

The conclusion of exercise 9.1 is that a straight-move circuit is only possible if the
board has size 2Zmxn, for positive numbers m and n. That is, one side has length 2m
and the other has length n. (Both m and n must be non-zero because the problem
assumes the existence of at least one starting square.) Also, a straight-move circuit can
always be completed when the board has size 2xn, for positive n. This suggests that
we now try to construct a straight-move circuit of a 2mxn board, for m at least one
and n greater than one, by induction on m, the 2xn case providing the basis for the
inductive construction.

To complete the inductive construction, we need to consider a board of size 2m x n,
where m is greater than 1. Such a construction is hopeful because, when m is greater
than 1, a 2Zm xn board can be split into two boards of sizes 2p xn and 2q x n, say,
where both p and q are smaller than m and p+q equals m. We may take as the
inductive hypothesis that a straight-move circuit of both boards can be constructed. We
just need to combine the two constructions.

The key to the combination is the corner squares. There are two straight moves from
each of the corner squares, and any straight-move circuit must use both. In particular,
it must use the horizontal moves. Now, imagine that a 2m x n board is divided into a
2p xn board and a 2q xn board, with the former above the latter. (The convention
we use is that the first number gives the number of rows and the second the nunber
of columns of the board.) The bottom-left corner of the 2p x n board is immediately
above the top-left corner of the 2q x n board. Construct straight-move circuits of these
two boards. Figure 9.2 shows the result diagrammatically. The two horizontal, red
lines at the middle-left of the diagram depict the horizontal moves that we know must
form part of the two circuits. The blue dotted lines depict the rest of the circuits. (Of
course, the shape of the dotted lines gives no indication of the shape of the circuit that
is constructed.)

Now, to combine the circuits to form one circuit of the entire board, replace the
horizontal moves from the bottom-left and top-left corners by vertical moves, as shown
by the vertical green lines in fig. 9.3. This completes the construction.
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Figure 9.2: Combining straight-move circuits. First, split the board into two smaller
boards and construct straight-move circuits of each.
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Figure 9.3: Second, combine the two circuits as shown.

Figure 9.4 shows the circuit that is constructed in this way for a 6 x 8 board. Ef-
fectively, the basis of the inductive algorithm constructs straight-move circuits of three
2 x 8 boards. The induction step then combines them by replacing horizontal moves by
the green vertical moves shown in fig. 9.4.

Exercise 9.2  As mentioned above, when a board has an odd number of squares, no
circuit is possible.

Consider a 3x3 board. It is easy to construct a straight-move circuit of all its squares
but the middle square. (See fig. 9.5.) It is also possible to construct a straight-move
circuit of all its squares but one of the corner squares. However, a straight-move circuit
of all but one of the other four squares —the squares adjacent to a corner square, for
example, the middle-left square— cannot be constructed.

Explore when it is possible, and when it is not possible, to construct a straight-move
circuit of all the squares but one in a board of odd size.

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



9.2. Supersquares 141

Figure 9.4: A straight-move circuit for a 6 x 8 board.

Figure 9.5: Straight-move circuits (shown in red) of a 3 x 3 board, omitting one of the
squares.

O

9.2 Supersquares

Let us now return to the Knight’s-circuit problem. The key to a solution is to exploit
what we know about straight moves. The way this is done is to imagine that the 8 x 8
chessboard is divided into a 4 x4 board by grouping together 2 x 2 squares into “su-
persquares”, as shown in fig. 9.6.

If this is done, the Knight’s moves can be classified into two types: Straight moves
are moves that are “straight” with respect to the supersquares; that is, a Knight’s move
is straight if it takes it from one supersquare to another supersquare either vertically
above or below, or horizontally to the left or to the right. Diagonal moves are moves
that are not straight with respect to the supersquares; a move is diagonal if it takes the

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



142 9. Knight’s Circuit

Figure 9.6: Chessboard divided into a 4 x4 board of supersquares.

Knight from one supersquare to another along one of the diagonals through the starting
supersquare. In fig. 9.7, the boundaries of the supersquares are indicated by thickened
lines; the starting position of the Knight is shown in black, the straight moves are to the
blue positions, and the diagonal moves are to the red positions.

Figure 9.7: Straight (Blue) and Diagonal (Red) Knight’s Moves From Some Starting
Position (Black). Boundaries of the supersquares are indicated by thickened lines.

Focusing on the straight moves, we now make a crucial observation. Figure 9.8 shows
the straight moves from one supersquare —the bottom-left supersquare— vertically up-
wards and horizontally rightwards. The colours indicate the moves that can be made.
For example, from the bottom-left red square a straight move can be made to the top-left
red square or to the bottom-right red square.

Observe the pattern of the colours. Vertical moves flip the colours around a vertical
axis, whilst horizontal moves flip them around a horizontal axis. (The vertical moves
interchange the red-above-yellow and blue-above-green columns; the horizontal moves
interchange the red-next-to-blue row with the yellow-next-to-green row.)
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Figure 9.8: Straight moves from the bottom-left supersquare.

Let us denote by v the operation of flipping the columns of a 2 x 2 square (v is short
for “vertical”). Similarly, let us denote by h (short for “horizontal”) the operation of
flipping the rows of the square. Now, let an infix semicolon denote doing one operation
after another. So, for example, v;h denotes the operation of first flipping the columns
and then flipping the rows of the square. Flipping the columns and then flipping the
rows is the same as flipping the rows and then the columns. That is,

vih = h;v .

Both are equivalent to rotating the 2 x 2 square through 180° about its centre. So, let
us use c (short for “centre”) as its name. That is, by definition of c,

(9.3) vih = ¢ = h;v .

We have now identified three operations on a 2 x 2 square. There is a fourth operation,
which is the do-nothing operation. Elsewhere, we have used skip to name such an
operation. Here, for greater brevity we use n (short for “no change”). Flipping twice
vertically, or twice horizontally, or rotating twice through 180° about the centre, all
amount to doing nothing. That is;

(94) v;v = h;h =c;c = n .
Also, doing nothing before or after any operation is the same as doing the operation.
(9.5) n;x = x;m = x .

The three equations (9.3), (9.4) and (9.5), together with the fact that doing one operation
after another is associative (that is, doing one operation x followed by two operations
y and z in turn is the same as doing first x followed by y and then concluding with
z — in symbols, x;(y;z) = (x;y);z) allow the simplification of any sequence of the
operations to one operation. For example,
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= { n;x = x, with x:=n }

In words, flipping vertically, then rotating through 180° about the centre, and then
flipping horizontally is the same as doing nothing. (Note how associativity is used im-
plicitly between the first and second steps. The use of an infix operator for “followed
by” facilitates this all-important calculational technique.)

Exercise 9.6  Construct a two-dimensional table that shows the effect of executing
two operations x and y in turn. The table should have four rows and four columns,
each labelled by one of n, v, h and c. (Use the physical process of flipping squares to
construct the entries.)

Use the table to verify that, for x and y in the set {n,v,h,c},

(9.7 x5y = y;x .

Check also that, for x and y in the set {n,v,;h,c},

(9-8) x;(y;2) = (x3u);2 .

(In principle, you need to consider 43, i.e. 64, different combinations. Think of ways to
reduce the amount of work.)

O

Exercise 9.9 Two other operations that can be done on a 2 x 2 square are to rotate it
about the centre through 90°, in one case clockwise and in the other anticlockwise. Let
T denote the clockwise rotation and let a denote the anticlockwise rotation. Construct
a table that shows the effect of performing any two of the operations n, r, a or c in
sequence.

Identify a complete set of operations on a 2 x 2 square and extend your solution to ex-
ercise 9.6 so that it is possible to determine the effect of composing any pair of operations.
(Avoid constructing the complete table because it is quite large!)

O
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9.3 Partitioning the Board

The identification of the four operations on supersquares is a significant step towards
solving the Knight’s-circuit problem. Suppose one of the supersquares is labelled “n”.
Then the remaining fifteen supersquares can be uniquely labelled as n, v, h or c
squares, depending on their position relative to the starting square. Figure 9.9 shows
how this is done. Suppose we agree that the bottom-left square is an “n” square. Then
immediately above it is a “v” square, to the right of it is an “h” square, and diagonally
adjacent to it is a “c” square. Supersquares further away are labelled using the rules
for composing the operations.

”

As a consequence, all 64 squares of the chessboard are split into four disjoint sets. In
fig. 9.9, the different sets are easily identified by the colour of the square. Two squares
have the same colour equivales they can be reached from each other by straight Knight'’s
moves. (That is, two squares of the same colour can be reached from each other by
straight Knight’s moves, and two squares of different colour cannot be reached from
each other by straight Knight’s moves.)

Figure 9.9: Labelling Supersquares

Recall the discussion of straight-move circuits in section 9.1. There we established
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the simple fact that it is possible to construct a straight-move circuit of a board of which
one side has even length and the other side has length at least two. In particular, we
can construct a straight-move circuit of a 4 x4 board.

Now, a “straight” Knight’s move is “straight” with respect to the supersquares of a
chessboard. That means we can construct straight-move circuits of each of the four sets
of squares on the chessboard. In fig. 9.9, this means constructing a circuit of all the red
squares, a circuit of all the green squares, a circuit of all the blue squares, and a circuit
of all the yellow squares.

We now have four disjoint circuits that together visit all the squares of the chess-
board. The final step is to combine the circuits into one. The way to do this is to exploit
the “diagonal” Knight’s moves. (Refer back to fig. 9.7 for the meaning of “diagonal” in
this context.)

A simple way of combining the four circuits is to combine them in pairs, and then
combine the two pairs. For example, we can combine the red and blue circuits into
a “red-blue” circuit of half the board; similarly, we can combine the green and yellow
circuits into a “green-yellow” circuit. Finally, by combining the red-blue and green-yellow
circuits, a complete circuit of the board is obtained.

Figure 9.10: Schema for forming “red-blue” and “green-yellow” circuits. The straight-
move circuits are depicted as coloured circles, a single move in each being depicted by
a dotted line. These straight moves are replaced by the diagonal moves, shown as solid
lines.

Figure 9.10 shows schematically how red-blue and green-yellow circuits are formed;
in each case, two straight moves (depicted by dotted lines) in the respective circuits are
replaced by diagonal moves (depicted by straight lines). Figure 9.11 shows one way of
choosing the straight and diagonal moves in order to combine red and blue circuits, and
green and yellow circuits — in each case, two “parallel” straight moves are replaced by
two “parallel” diagonal moves. Exploiting symmetry, it is easy to find similar “parallel
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moves” with which to combine red and yellow circuits, or green and blue circuits. On the
other hand, there are no diagonal moves from red to green, or from yellow to blue squares;
consequently, it is impossible to construct a “red-green” or a “yellow-blue” circuit.

Figure 9.11: Forming “red-blue” and “green-yellow” circuits. The straight moves shown
as dotted lines are replaced by the diagonal moves shown as solid lines.

Red and blue straight-move circuits have been combined in fig. 9.12 to form a “red-
blue” circuit. The method of combination is indicated by the dotted and solid lines: the
straight moves (dotted lines) are replaced by diagonal moves (solid lines). To complete a
circuit of the whole board, with this red-blue circuit as basis, a green-yellow circuit has
to be constructed, and this circuit combined with the red-blue circuit. This is left as an
exercise.

A slight difficulty of this method is that it constrains the straight-move circuits that
can be made. For example, considering the suggested method for combining red and blue
circuits in fig. 9.11, no constraint is placed on the blue circuit (because there is only
one way a straight-move circuit of the blue squares can enter and leave the bottom-left
corner of the board). However, the straight-move circuit of the red squares is constrained
by the requirement that it make use of the move shown as a dotted line. The difficulty is
resolved by first choosing the combining moves and then constructing the straight-move
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Figure 9.12: A “red-blue” circuit. “Parallel” red and blue moves, shown as dotted lines,
are replaced by diagonal moves, shown as thicker solid lines, thus combining the two
circuits.

circuits appropriately.

In order to construct a Knight’s circuit of smaller size boards, the different pairs of
combining moves need to be positioned as close as possible together. This is possible in
the case of an 8 x 6 board, but not for smaller boards.

Exercise 9.10  Construct a Knight'’s circuit of an 8 x 8 board using the scheme dis-
cussed above. Do the same for an 8 x 6 board. Indicate clearly how the individual
circuits have been combined to form the entire circuit.

O

Exercise 9.11  Figure 9.13 illustrates another way that the circuits can be combined.
The four straight-move circuits are depicted as circles, one segment of which has been
flattened and replaced by a dotted line. The dotted lines represent straight moves be-
tween consecutive points. If these are replaced by diagonal moves (represented in the
diagram by solid black lines), the result is a circuit of the complete board.

To carry out this plan, the four diagonal moves in fig. 9.13 have to be identified.
The key to doing this with a minimum of effort is to seek parallel red and green moves,
and parallel blue and yellow moves, whilst exploiting symmetry. (In contrast, the above
solution involved seeking parallel red and blue moves.) Choosing to start from, say, the
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Figure 9.13: Schema for Combining Straight-Move Circuits. Four straight moves (in-
dicated by dotted lines) are replaced by four diagonal moves (indicated by solid black
lines).

pair of green moves in the bottom-left corner, severly restricts the choice of diagonal
moves; in combination with symmetry, this makes the appropriate moves easy to find.

Construct a knight’s circuit of an 8x8 and a 6x8 board using the above
scheme. FEzplain how to extend your construction to any board of size 4m x2n
for any m and n such that m>2 and n>3.

(The construction of the circuit is easier for an 8 x 8 board than for a 6 x 8 board
because, in the latter case, more care has to be taken in the construction of the straight-
move circuits. If you encounter difficulties, try turning the board through 90° whilst
maintaining the orientation of the combining moves.)

O

Exercise 9.12 Division of a board of size (4m+2) x (4n+2) into supersquares yields
a (2m+1)x(2n+1) “super” board. Because this superboard has an odd number of
(super) squares, no straight-move circuit is possible, and the strategy used in exercise
9.10 is not applicable. However, it is possible to construct Knight'’s circuits for boards of
size (4m+2) x (4n+2), whenever, both m and n are at least 1, by exploiting exercise
9.2.

The strategy is to construct four straight-move circuits of the board omitting one of
the supersquares. (Recall exercise 9.2 for how this is done.) Then, for each circuit, one
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move is replaced by two moves —a straight move and a diagonal move— both with end
points in the omitted supersquare. This scheme is illustrated in fig. 9.14.

Figure 9.14: Strategy for Constructing a Knight’s Circuit of (4m+2) x (4n+2) boards.
One supersquare is chosen, and four straight-move circuits are constructed around the
remaining squares. These are then connected as shown.

Complete the details of this strategy for a 6 x 6 board. Make full advantage of the
symmetry of a 6 x 6 board. In order to construct the twelve combining moves depicted
in fig. 9.14 | it suffices to construct just three; the remaining nine can be found by
rotating the moves through a right angle.

Explain how to use your solution for the 6 x6 board to construct Knight’s cir-
cuits of any board of size (4m+2) x (4n+2), whenever, both m and n are at least
1.

O

9.4 Discussion

In the absence of a systematic strategy, the Knight’s circuit problem is a truly difficult
problem to solve, which means it is a very good example of disciplined problem-solving
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skills. The method we have used to solve the problem is essentially problem decompo-
sition — reducing the Knight’s circuit problem to constructing straight-move circuits,
and combining these together.

The key criterion for a good method is whether or not it can be extended to other
related problems. This is indeed the case for the method we have used to solve the
Knight’s circuit problem. The method has been applied to construct a circuit of an
8 x 8 chessboard, but the method can clearly be applied to much larger chessboards.

The key ingredients are

e the classification of moves as “straight” or “diagonal”,
e straight-move circuits of supersquares, and
e using diagonal moves to combine straight-move circuits .

Once the method has been fully understood, it is easy to remember these ingredients,
and reproduce a Knight’s circuit on demand. Contrast this with remembering the circuit
itself, which is obviously highly impractical, if not impossible.

A drawback of the method is that it can only be applied to boards that can be divided
into supersquares. As we have seen, it is not possible to construct a Knight’s circuit of a
board with an odd number of squares. That leaves open the cases where the board has
size (2m)x (2n+1), for some m and n. (That is, one side has even length and the
other has odd length.) For those interested, a complete characterisation of the sizes of
board for which a Knight’s circuit exists is given in section 9.5.

The Knight’s-circuit problem exemplifies a number of mathematical concepts which
you will probably encounter elsewhere. The n, v, h and c operations together form
an example of a “group”; the relation on squares of being connected by straight moves
is an example of an “equivalence relation”, and the fact that this relation partitions the
squares into four disjoint sets is an example of a general theorem about “equivalence
relations”.

The Knight’s-circuit problem is an instance of a general class of problems called
“Hamiltonian-Circuit Problems”. In general, the input to a Hamiltonian-circuit problem
is a so-called “graph” (a network of “nodes” with “edges” connecting the nodes) and the
requirement is to find a path through the graph that visits each node exactly once, before
returning to the starting node. Hamiltonian-circuit problems are, in turn, instances of a
class of problems called “NP-complete” problems. NP-complete problems are problems
characterised by ease of verification but difficulty of construction. That is, given a
putative solution, it is easy to check whether or not it is correct (for example, given
any sequencing of the squares on a chessboard, it is easy to check whether or not it is a
Knight’s circuit); however, for the class of NP-complete problems, no efficient methods
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are known at this time for constructing solutions. “Complexity theory” is the name given
to the area of computing science devoted to trying to quantify how difficult algorithmic
problems really are.

9.5 Boards of Other Sizes

To be written.

9.6 Bibliographic Remarks

Solutions and historical information on the Knight'’s circuit problem can easily be found
on the internet. According to one of these [MacQuarrie, St. Andrews Univ.] the first
Knight’s tour is believed to have been found by al-Adli ar-Rumni in the ninth century,
long before chess was invented.

The use of supersquares in solving the Knight’s circuit problem is due to Edsger W.
Dijkstra [Dij92]. His solution is for a standard-sized chessboard and uses the method of
combining straight-move circuits described in exercise 9.11. The pairwise combination
of straight-move circuits is due to Diethard Michaelis [private communication|. Both
solutions involve searching for “parallel moves”. Michaelis’s solution is slightly preferable
because just two pairs of “parallel moves” have to be found at each stage. Dijkstra’s
solution involves searching for four pairs (twice as many) at the same time, making it a
little bit harder to do. The solution to exercise 9.12 was constructed by the author, with
useful feedback from Michaelis.
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Solutions to Exercises

2.1 1233 games must be played. Let k be the number of players that have been knocked
out, and let g be the number of games that have been played. Initially, k and g are
both equal to 0. Every time a game is played, one more player is knocked out. So, k
and g are always equal. To decide the tournament, 1234—1 players must be knocked
out. Hence, this number of games must be played.

In general, if there are p players, the tournament consists of p—1 games.
O

2.2 Let m, n and p denote the number of objects of each kind.
The replacement process is modelled by the assignment

mmn,p = m+l,n—1 p—1

Consider the differences m-—m, n—p, p—m. It is easily checked that the parity of
each is unchanged by the assignment. (In each case, the difference either is unchanged
or increases or decreases by 2.) Also, the number of odd differences of any three numbers
is always even (i.e. either zero or two). Since the goal is to reach a state in which there
are two odd differences, we conclude that the goal is impossible to reach if the starting
state has zero odd differences. The goal is also impossible to reach if the objects are all
of the same kind and there is more than one of them.

The algorithm to remove objects maintains the invariant that all objects are of the
same kind equivales there is only one object remaining. If there is more than one object
remaining, there must be two objects of different kind. Choosing to increase the number
of objects of the kind that occurs least frequently will maintain this invariant, and reduce
the number of objects.

o
3.1
{ 5CI 3
2C,3H [3W| ; 2C3H [TW| 2W ; 5H 3W| 2W
;L SHI[5W
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5H 2W| 3W ; 2C [3H| 3W

; { 2C[3C }
2C |1C| 2C

; { 3Cfz2C }
3W [3H| 2C ; 3W 2W]| 5H

;1 SWII5H }
2W 3W/| 5H ; 2W |[TW| 2C,3H ; [3W] 2C,3H
{ II5C }

O

3.2 We modify the solution to the five-couple problem, effectively by leaving one couple
behind on the left bank. We get:

{4cl ;
1C,3H 3W| ; 1C,3H [TW| 2W ; 4H [2W| 2W
;o { 4H[ 4w )
4H [2W| 2W 5 2C |2H| 2W
;{ 2C2¢ }
2C [1Cl 1C
;{ 3¢iic }
3W 3H|1C ; 3W [TW]|4H
;o { AWI4H )
2W 2W| 4H ; 2W [TW| 1C,3H ; [3W/| 1C,3H
{ r4C }
By reversing left and right, we get the second solution:
{4ci ;
1C,3H |3W]| ; 1C,3H [TW| 2W ; 4H [2W]| 2W
; { 4H 4w ]
4H TW| 3W ; 1C |3H| 3W
; { 1C]3C }
1C [1C| 2C
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;{ 2C]2C }
2W [2H] 2C ; 2W 2W] 4H

;o { AW [4H |}
2W [2W] 4H ; 2W [TW| 1C,3H ; 3W] 1C,3H
{ 4C }

O

3.3 Let M denote the capacity of the boat, and let N denote the number of couples.
We assume that N is at least 2 and M is at most the minimum of 3 and N/2. (These
properties are common to the cases of a boat of capacity 2 and 4 couples, and a boat
of capacity 3 and 6 couples.)

Let IH denote the number of husbands on the left bank. The number of husbands
on the right bank, denoted rH, is then N—IH. Similarly, let IW denote the number
of wives on the left bank. The number of wives on the right bank, denoted rW, is then
N—-1W.

We note that an invariant is

(13)  (IH=IW) V (IH=0) V (IH=N) .

That is, either there are no single individuals on either bank, or all husbands are on one
of the two banks. It is a requirement of any solution that this property is an invariant. (If
not, either 0<IH<IW or 0<rH<rW. In words, the wives outnumber the husbands
on the left bank or on the right bank. In both cases, the solution is invalid.)

Now, we claim that, under the given assumptions on M and N, either

(a) The boat is on the left bank and
(14) M<H ,

or

(b) the boat is on the right bank and
(15) M<IH .

Property (a) is clearly true initially. (Recall the assumptions about M and N.)

Now, suppose (a) is true and, then, a crossing is made from left to right. Note that
IH # 0 both before and after the crossing. (Before the crossing, 1H=0 is excluded by the
assumption that M <1lH. After the crossing, ITH=0 is impossible because at most M
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husbands can cross together.) So, the invariant (13) can be strengthened: the crossing
is made starting in a state in which

(16)  (IH=IW) V (IH=N) |

and must result in a state satisfying this property. Otherwise, the crossing is invalid.
Note also that a left-to-right crossing causes 1H and/or IW to decrease.

We consider two cases before the crossing: IH=N, and (IH=IW)A(IH#N).

Since at most N/2 husbands can cross together, if lH=N before the crossing, at
least N/2 are left at the left bank. That is, (b) is true after the crossing.

If IH=IW)A(IH#N) before the crossing, the property IH=1W must be main-
tained by the crossing. (This is because (16) must be maintained and the crossing cannot
increase 1H.) That is, an equal number of wives and husbands must make the crossing.
Since only one couple can cross at one time, the value of IH is decreased by at most 1.
But (14) is assumed to be true before the crossing; consequently, (15) is true after the
crossing, and the boat is at the right bank. Thus, (b) is true after the crossing.

In both cases, we have established that, after the crossing, (b) is true.

Now suppose (b) is true and a crossing is made from right to left. A right-to-left
crossing causes lH and/or W to increase. Since IH#0 before the crossing, and 1H
does not decrease, IH+#0 after the crossing. (Strictly, we need to assume that M is
non-zero in order to assert that 1H#0. Obviously, the case that the boat has capacity
0 can be excluded from consideration!)

Again, we consider two cases: this time, no husbands cross, and some husbands cross.

If husbands cross, the act of crossing increases 1H; so, after the crossing M <1H and
(of course) the boat is at the left bank. Thus, (a) is true after the crossing.

If only wives cross, it must be the case that IlH=N (because (16) must be maintained
and, if only wives cross, it is impossible to maintain that IH=1W). That is, lH is
unchanged, and M < 1lH both before and after the crossing. After the crossing, the boat
is, of course, on the left side of the bank. Thus, (a) is true after the crossing.

In both cases, we have established that (a) is true after the crossing.

In summary, property (a) is true initially. Also, if (a) is true and a left-to-right
crossing is made, (b) becomes true; vice-versa, if (b) is true and a right-to-left crossing
is made, (a) becomes true. So, at all times, either (a) or (b) is true. That is, it can never
be the case that all husbands are at the right bank.

O

3.4 As stated in the hint, we assume that every forward trip involves two people and
every return trip involves one person. (We omit the justification of this assumption here.
See chapter 8 for a general argument why this assumption may be made.)

A consequence is that an optimal solution consists of exactly 5 crossings, of which 2
are return trips. Since each return trip is made by just one person, 2 people never make
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a return trip. Clearly, an optimal solution is found when persons 3 and 4 —the two
slowest— do not return. (Consider any sequence of crossings that gets all four across
the bridge. If one or both of the two slowest makes a return journey, then one or both of
the two fastest does not make a return journey. By interchanging a slower person with
a faster person in the sequence, a new sequence is found which is at least as fast as the
original sequence — since the time for at least one return trip is reduced and the time
for at most one forward trip is increased by the same amount.)

There are two strategies for getting the two slowest across: let them cross together
or let them cross seperately. The strategy “let the two slowest cross together” is imple-
mented by letting persons 1 and 2 (the two fastest) cross, with person 1 returning.
Then persons 3 and 4 cross, and person 2 returns. Finally, persons 1 and 2 cross
again. The total time taken using this strategy is

Tt + t + 3Tty + o + 4Tt .

(The infix operator “T” denotes maximum. Because we assume that t; <t,<t3<t4,
t1Tt, simplifies to t, and t37t,; simplifies to t;. However, not simplifying the formula
just yet makes it is easy to identify the people in each crossing.) If the two slowest cross
seperately, then the best strategy is to let person 1 cross with them and then return for
the other. Implementing this strategy takes a total time of

Tt + 1+ 4Tty + t + 4Tt .

(This corresponds to person 1 and person 2 crossing, then person 1 returning, then
person 1 and person 4 crossing, then person 1 returning, and finally persons 1 and 3
crossing. The order in which persons 2, 3 and 4 cross is, of course, immaterial. The
order chosen here facilitates the comparison of the times.)

Comparing the total times, the first strategy should be used when t,+t, <t;+t; and
the second strategy when t;+t; <t,+t,. (There is a small element of nondeterminism
in this solution: when t,+t, =1t + t3 an arbitrary choice may be made between the two
strategies.)

Applying this solution to the two specific cases, we get:

(a) The times taken are 1 minute, 1 minute, 3 minutes and 3 minutes: Since 14+1 <143,
the two slowest should cross together. The shortest time is 141434141, ie. 7
minutes.

(b) The times taken are 1 minute, 4 minutes, 4 minutes and 5 minutes. Since
145 <444, the two slowest should cross seperately. The shortest timeis 4+1+5+1+44,
i.e. 15 minutes. (The shortest time if the two slowest cross together is 4+1+5+4+4,
i.e. 18 minutes.)
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O

3.5 6x2x3x3x1,1ie. 108.
O

4.1 a) Naming any day in December, other than 31st December results in losing. This
is forced by the opponent naming 30th November (that is, the last day of November).
Similarly, naming any day other than 30th November results in losing, because the
opponent can then name 30th November. This is forced by the opponent naming 31st
October. In general, the winning strategy is to name the last day of the month. The
opponent is then forced to name the 1st of the next month. Whether the year is a leap
year or not makes no difference.

b) In December, the losing positions are the odd-numbered days and the winning posi-
tions are the even-numbered days. (Take care: The “losing positions” are the days that
the winning player names. This is in line with the terminology of losing and winning
positions.) That is, if the last-named day is an odd-numbered day, the player whose turn
it is must name an even-numbered day and, so, will eventually lose.

In particular, the player who names 1st December wins. Any day in November is
thus a winning position. In October, like December, the odd-numbered days are losing
positions, and any day in September is a winning position. Similarly, in August, the
odd-numbered days are losing positions, and any day in July is a winning position.

The pattern changes in June, which has an even number of days. The player who
names 1st July loses; consequently, any even-numbered day in June is a losing day.
This means that every even-numbered day in May is a winning day; ; also, every even-
numbered day in April is a winning day. This means that 31st March is a losing day.
Since March has an odd number of days, the pattern we saw for December and November
recurs. Every odd-numbered day in March is a losing day, and every day in February is
a winning day. Finally, the odd-numbered days in January are losing days.

We conclude that the second player is guaranteed to win. The strategy is to name
the 1st day of the following month when the last-named day is in November, September,
July or February. Otherwise, the strategy is to name the next day of the year.

Again, it does not matter if it is a leap-year.

O

4.2 The first eleven positions are shown in table 1.
The pattern repeats in the second eleven positions. See table 2.
O

4.3 The squares that are not positions are the ones at the foot of a ladder or at the
head of a snake. Positions that cannot be identified as winning or losing positions are
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Position 0 1 2 3 4 5 6 7 8 9 10
Type L L W W L W W W L W W
Move 2 2 5 6 6 5 6

Table 1: Winning (W) and Losing (L) Positions for subtraction set {2,5,6}

Position 11 12 13 14 15 16 17 18 19 20 21
Type L L W W L W W W L W W
Move 2 2 5 6 6 5 6

Table 2: Winning (W) and Losing (L) positions for subtraction set {2,5,6}

attributable to cycles in the positions; a cycle is a sequence of moves that begins and
ends at the same position. Labelling of winning and losing positions assumes that every
game is guaranteed to terminate no matter how either player moves. If cycles occur this
assumption is not valid.

When a game has cycles, the positions are characterised as losing positions, winning
positions or stalemate positions. A losing position is one from which every move is to
a winning position; a winning position is one from which there is a move to a losing
position; and a stalemate position is one from which there is a move to a stalemate
position and there are no moves to losing positions.

From a stalemate position the best strategy is to move to a stalemate position since,
if there is an alternative of moving to a winning position, this is clearly the wrong thing
to do. The opponent will then use the same strategy and the game will continue forever.

Table 3 shows all positions and the winning move from winning positions. Position
4 is the only stalemate position. From this position, a move to square 6 has the effect
of returning the counter to position 4. Any other move from 4 would be to a winning
position.

Position 1 2 4 5 7 1314 16 18 21 22 23 24 25
Type WWS WWL WWL WWWWL
Move to square 33 6 9 9 18 18 25 25 25 25

Table 3: Snakes and Ladders. Winning (W), Losing (L) and Stalemate (S) positions

O

4.4 a) See table 4 for the mex numbers up to and including position 10. The mex
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numbers repeat from here on; that is, the mex number for position m is equal to the
mex number for position mmod11.

Position 0 1 2 3 4 5 6 7 8 9 10
Type L L W W L W W W L W W
Mex Number 0 0 1 1 0 2 1 3 0 2 1

Table 4: Mex numbers for subtraction set {2,5,6}.

Left Game | Right Game | “losing” or winning move
10 20 R14

20 20 losing

15 5 RO

6 9 R4

37 43 losing

Table 5: Winning moves

In the left game, the mex number of position m is mmod3. Together with the mex
numbers for the right game given above, we can complete table 5. (Other answers can
be given for the winning moves.)

O

4.5 (a) The losing positions are positions 2'*'—1 where i is a natural number; all other
positions are winning positions.

The proof is in two parts: we show that, for all i, every move from position 21*'—1
is to a position n where 2'—1<n<2"'—1; also, from a position n where, for all i,
n#2"1—1 we show that we can choose i so that there is a move from n to position
2t-1.

When i equals 0, 2"*'—1 equals 1. Position 1 is an end position and thus a losing
position. When i is greater than 0, every move from position 21*'—1 is to a position
n where n<2"'—1<2xn. But

n<2#1-1<2xn
= { meaning of continued equalities }
n<2t-1 A 2H1_1<2xn

= { integer inequalities , symmetry of A}
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W12 <2xn A n< 2t
= { monotonicity of 2x  }
2i-T<n A n<2¥-1
= { meaning of continued equalities }
21 <n<2H1
This establishes the first part.
For the second part, suppose that, for all i, n#2"'—1. Let i be the largest number

such that 2'—~1<n. Then, by definition of i, n<2"'—1. That is, 2\-1<n <211,
But then

there is a move from n to 2'—1

= { definition of legal moves }
2l-1<n<2x(2-1)

= { arithmetic |}
2L-T<n<2t1-2

= { integer inequalities }
2T <n<2H1 -1

= { assumption: for all i, n#2"'-1 }
2i-T<n <211

= { definition of 1}

true .

(b)

Position: 1
Mex Number: 0

Position: 2 3
Mex Number: 10

Position: 4 567
Mex Number: 2130
Position: 8 9 10 11 12 13 14 15

Mex Number: 4

[\

5 1 6 3 7 0
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No. of Columns | No. of Rows “losing” or winning move
2 15 C1 (or R11)

4 11 C2 (or R9)

4 14 R9

13 6 losing

21 19 C19 (or R10)

Table 6: Solution to rectangle game

In general, mex.(2xn) equals n and mex.(2xn+1) equals mex.n.

O

5.5 Let col be the colour of the square, and n be the number of moves. A move is
then

col,n := —col,n+1
An invariant of this assignment is
col =even.n .

An odd number of moves (63) is needed, but the colour of the square doesn’t change.
So, in order to move the knight as required, a change has to be made to col = even.n,
which is impossible.

O

5.6 Suppose the number of couples is n. There are 2n people, including the host, who
each shake hands with between 0 and 2n—2 people. If 2n—1 of them —everyone but
the host— shake hands with a different number of people, there must be someone who
shakes hands with k people for each k between 0 and 2n—2 (inclusive).

If n is 1, the only person other than the host is the host’s partner. Since couples
do not shake hands, both shake hands 0 times.

Now suppose that n is greater than 1. In this case, there are at least two people
other than the host and the host’s partner. Consider the two people who shake hands
0 and 2n—2 times. The person who shakes hands 2n —2 times does so with everyone
except their partner (and themself, of course). By the symmetry of the shake-hands
relation, it is thus the case that everyone except that person’s partner shakes hands with
at least one person. It follows that the two people who shake hands 0 and 2n—2 times
are husband and wife. Because neither is the host, it also follows that neither is the
host’s partner.
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Now suppose we discount this couple. That is, we consider the party consisting of
the other n—1 couples. The number of times each person shakes hands is then reduced
by one. So, again, all but the host have shaken hands a distinct number of times.

Repeating this process, we eliminate all the couples one by one until the party has
been reduced to just the host and the host’s partner. Each time, the number of times
the host and the host’s partner shake hands is reduced by one. The host and the host’s
partner must therefore have both shaken hands n—1 times.

O

5.8
(a) false
(b) false
(c) false
d) »p

(e) false
(f) a#r
(8) p

(h) true

([
5.9
—true
= { law —p =p =false with p:=true }
true =false
= { law true=p=p with p:=false }

false .

5.10

= { law —p =p =false with p:=—p }
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—p =false
= { law —p=p=false with p:=p

and symmetry of equivalence }

O

5.11 The process of decryption after encryption computes a# (a#b). But,

a#(a#b)

- { # is associative }
(a#a)#b

- { (aZa=false) }
false b

= { definition of # }
false=—b

= { definition of negation: (5.3) }

O

5.12 Let Q be the question. Then, Q=A=A#B, ie. Q=—B. In words, ask A
whether B is a knave.
O

6.1 It is required that any two lines intersect in a single point. If the lines are not
straight and they intersect in a segment of a line, inverting the colours of one of the two
regions does not guarantee that the colouring of adjacent regions at the boundary of the
left and right regions is satisfactory. This is because, along the line segment, the colours
of the adjacent regions are not the same before the inversion takes place contrary to the
assertion made above.

The solution remains valid provided every line cuts the surface in two. A line on a
ball does this, whereas a line on a doughnut need not.

The number of colourings is always two no matter how many lines there are. This is
clearly the case when there are no lines. When there are n+1 lines, choose any one of
the lines. Cut the paper along the chosen line. Assume inductively that, for each half,
there are exactly two colourings. Combining these gives four different ways of colouring
the entire sheet of paper. However, two of these are unsatisfactory because the colours
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of regions adjacent at the chosen line must be different. This leaves exactly two ways of
colouring the paper with n+1 lines.
O

6.5 When m is O, there is just one object. This is the unique object and 0 (which
equals 2x0) comparisons are needed to discover that fact.

Suppose now that m is greater than 0. Split the 3™ objects into 3 groups each of
3™ 1 objects. One of these 3 groups will have a different weight to the other two, which
will be of equal weight. At most 2 comparisons are needed to determine which of the
groups it is. Then, by induction, at most a further 2x(m—1) comparisons are required
to find the unique object in that group. This gives a total of 2x(m—1)+2, ie. 2xm,
comparisons as required by the induction hypothesis.

It is possible to determine whether the unique object is lighter or heavier than the
others (although, in the case that there is just one object, the answer is that it is both
lighter and heavier than all the rest). It can be decided in the first two comparisons.

O

6.6 a) For n=1, it is clear that 0 comparisons are needed. For the induction step,
assume that n—1 comparisons are needed to find the lightest of n objects. To find the
lightest of n+1 objects, use n—1 comparisons to find the lightest of n objects, then
compare this object with the (n+1)th object. The lightest of the two is the lightest of
them all. Also, one extra comparison has been made, making n in total.

b) For n=2, it is clear that 1 comparison is needed. For the induction step, assume that
2n —3 comparisons are needed to find the lightest and heaviest of n objects. To find the
lightest and heaviest of n+1 objects, use 2n—3 comparisons to find the lightest and
heaviest of n objects. Call these L and H. Call the (n+1)th object N. The lightest
of L and N is the lightest of them all, and the heaviest of H and N is the heaviest of
them all. This requires two extra comparisons, making (2n—3) + 2,i.e. 2(n+1)—3 in
total.

c) Compare A and C. The lightest of the two is the lightest of the four. Compare B
and D. The heaviest of the two is the heaviest of the four.

To weigh four objects, first compare two. Call the lighter one A and the heavier
one B. Likewise, compare the remaining two objects and call the lighter one C and the
heavier one D. Then proceed as above.

d) For m=1, it is clear that 1 comparison is needed to find the lightest and heaviest
of 2 objects. And, 1 =3x1-2.

Suppose there are 2(m+1) objects. Select and compare any two of the objects.
Let the lightest be A and the heaviest B. By induction, we can find the lightest and
heaviest of the remaining 2m objects in 3m —2 comparisons. Let these be C and
D, respectively. We now have four objects, A, B, C and D, such that A<B and

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



166 Solutions to Exercises

C<D. By part (c), the lightest and heaviest of these four can be found in 2 further
comparisons. These are then the lightest and heaviest of all 2(m+1) objects. And, the
total number of comparisons is 1 + (3m —2) + 2 which equals 3(m+1)—2.

O

7.1 Formally we have
To.d
= { definition of T }
length(H,.d)
= { definition of Ho.d |}

length.[]
= { definition of length }
0,
and
Thir.d
= { definition of T }
length(Hpq.d)
= { definition of H, ,;.d }
length(Hy.—d ; [(n+1,—d)] ; Hymd)
= { definition of length }
length(H,.—d) + length([(n+1,—d)]) + length(H,,.—d)
= { definition of T (twice) and length }
Tomd + 1 + To—d .
That is,
To.d = 0
Tap1.d = 2xTo—d + 1
If we expand these equations for n=0,1,2,... , just as we did for the equations for

H, we discover that T,.d is 0, T;.d is 1 and T,.d is 3 (in each case for all d). This
and the form of the equation for T,,,;.d (in particular the repeated multiplication by 2)
suggest that T,,.d is 2"—1. The simple inductive proof is omitted.

O
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Figure 15: State-transition diagram for 0-disk problem.

7.2 We begin by considering the permissible states that the puzzle may be in. In any
state, the disks on any one pole are in order of decreasing size. So, if we want to specify
the state of the puzzle we only need to specify which pole each disk is on. For example,
suppose there are five disks and suppose we specify that disk 1 is on pole A, disk 2 is
on pole B, disks 3 and 4 are on pole A and disk 5 is on pole B. Then disk 4 must
be on the bottom of pole A, disk 3 must be on top of it, and disk 1 must be on top of
disk 3. Also, disk 5 must be on the bottom of pole B and disk 2 must be on top of it.
No other arrangement of the disks satisfies the rule that no disk is above a disk smaller
than itself.

The state of an n-disk puzzle can thus be specified by a sequence of n pole names.
The first name in the sequence is the location of disk 1, the second is the location of
disk 2, and so on. That is, the kth name in the sequence is the location (pole name)
of disk k. Since each disk may be on one of three poles we conclude that there are 3™
different states in the n-disk problem.

Now we consider the transitions between states. We consider first the problem where
there are no disks, then the 1-disk problem, then the 2-disk problem, and then we
consider the general n-disk problem.

When there are no disks there is exactly one state: the state when there are no disks
on any of the poles. This is shown in fig. 15. (You may have difficulty seeing the figure.
It consists of a single dot!)

We now explain how to construct the state-transition diagram for the (n+1)-disk
problem, for an arbitrary m, given that we have constructed the diagram for the n-disk
problem. (See fig. 16.) Each state is a sequence of n+1 pole names. The first n names
specify the location of the smallest n disks and the (n+1)th specifies the location of
the largest disk. Thus, each state in the state-transition diagram for the n-disk problem
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gives rise to 3 states in the state-transition diagram for the (n+1 )-disk problem. That
is, a state in the state-transition diagram for the (n+1)-disk problem is specified by
a sequence of n pole numbers followed by the pole name A, B or C. We split the
permissible moves into two sets: those where the largest disk (the disk numbered n+1)
is moved and those where a disk other than the largest disk is moved.

Consider first moving a disk other than the largest disk. When doing so, the largest
disk may be on pole A, B or C. But its position doesn’t affect the permissibility or
otherwise of a move of a smaller disk. That means that every transition from state s to
state t in the n-disk problem is also a valid transition from state sp to state tp in the
(n+1)-disk problem, where the pole name p is either A, B or C. The first step in
the construction of the state-transition diagram for the (n+1)-disk problem given the
state-transition diagram for the n-disk problem is to make three copies of the latter.
The pth copy is then modified by simply adding p at the end of each sequence of pole
numbers labelling the nodes.

Now consider moving the largest disk, the disk numbered n+1. Being the largest
disk it may only be moved if all the other disks are on one and the same pole different
to the pole that the largest disk is on. This gives six possibilities for moving disk n+1,
or three edges in the undirected state-transition diagram: an edge connecting the states
A™B and A™C, an edge connecting the states B"C and B™A and an edge connecting
the states C™A and C™B. The construction is shown schematically in fig. 16, the three
inner triangles representing the set of all moves that do not move disk n+1.

O

7.3 Even, because the direction of movement is opposite to that of the smallest disk
(which has an odd number).
O

7.4 The algorithm is to repeatedly execute the following procedure until it can no longer
be executed (i.e. when it is no longer possible to determine k in step 1).

1. Suppose it is possible to move disk k in the direction d’, where k>1. (Recall
that disk 1 is the smallest disk.) Set d to odd.k=4d’.

2. Move disk k (in the direction d’, of course).

3. Move the smallest disk in the direction d.

The correctness is justified as follows. When step 1 is executed, we know that the
first k—1 disks are all on the pole in direction —d’ from disk k. Progress is made if
these k smallest disks can be transferred to the same pole. To do this, it is necessary
to move the k—1 smallest disks in the direction —d’. The direction that disk 1 has to
be moved is thus d where

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



Solutions to Exercises 169

ATA

-

B“A/ C"A

B"C / a \ C"B
/\

A N

cnC A™C A"B B"B

Figure 16: Construction of the state-transition diagram for the (n + 1)-disk problem
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even.(k—1) = —d’ = even.1 = d .

Simplifying, we get that d = (odd.k = d’). (In words, the direction that the smallest
disk is moved should be the same as the direction that disk k is moved, if k is also
odd; otherwise the smallest disk is moved in the opposite direction to disk k.) The
correctness of the Towers of Hanoi program then guarantees that this action will initiate
a sequence of moves after which all k—1 disks will have been moved onto disk k. During
this sequence of moves the smallest disk will continue to move in the same direction. On
completion, however, the direction of the smallest disk may or may not be reversed.
The only time that step 1 cannot be executed is when all the disks are on the same
pole, as required.
O

7.5 The solution is to place the disks in order, starting with the largest and ending
with the smallest. Let k denote the number of the disks still to be replaced; so, initially
k is N and we are done when k is 0. Each time the value of k is reassigned, we ensure
that the k smallest disks are on the same pole.

If the kth disk is on the right pole, decrease k by 1. Otherwise, suppose it needs
to be moved in direction d from its current position. Move the smallest k—1 disks in
the direction —d, then move disk k to its rightful position. Finally, decrease k by 1.
Continue this process until k is O.

O

9.1

(a) The number of moves that have to be made equals the number of squares. After an
odd number of moves, the colour of the current square is different from the colour
of the starting square. So, after an odd number of moves, it is impossible to return
to the starting square.

(b) It’s easy to see that a straight-move circuit of a 2x1 board is possible —starting
at one of the squares, move to the other square and then move back again— , but,
otherwise, no straight-move circuit is possible. If m is greater than 1, at least one
square is two moves from the starting square; it is impossible to visit such a square
and return to the starting square without visiting the in-between square more than
once.

(c) See (b) for a circuit of a 2x1 board. For n greater than 1, a straight-move circuit
of a 2xm board is completed by starting at a corner, moving one-by-one to all the
squares in the same row, then returning via the second row.

O

Algorithmic Problem Solving (©) Roland Backhouse. May 28, 2008



Solutions to Exercises 171

9.2 For the 3 x 3 board, a circuit can be constructed exactly when the omitted square is
not adjacent to a corner square. For larger boards, the same condition applies. Suppose
the coordinates of the omitted square are (m,n). (It doesn’t matter whether numbering
starts at zero or one.) Then a circuit can be constructed of the remaining squares exactly
when even.m=even.n. The construction is to split the board into four rectangular
boards in such a way that the to-be-omitted square is at a corner of a board with an odd
number of squares. The other three boards each have an even number of squares, and at
least one of them has at least one square. Construct circuits of these three boards, and
—inductively, with the 3 x 3 board as the base case— a circuit of the board with the
omitted square. Then, connect the circuits together as shown in fig. 17 .

odd oo ——=

i) g

Figure 17: Straight-move circuits (shown in red) of a 3 x 3 board, omitting one of the
squares.

O

9.6

o > < 3
o < 3|3
> 60 3 <<
< 3 o J=
3 < T oo

Table 7: Sequential Composition of Flip Operations

Property (9.7) is verified by observing that the table is symmetric about the top-left
to bottom-right diagonal. Verification of the associativity property is much more tedious.
The case that x, y or z is n can be dealt with simply. This leaves 27 other cases to
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consider. This is an example of a “tedious, but straightforward” proof!
O

9.9

o 0o = 3

oo = 3|3
0 3 o =3|=
= 0o 3 o|e
S = 0 ofo

Table 8: Sequential Composition of Rotation Operations

There are 24 different ways to assign a different colour to each of the squares in
a 2x 2 board, so that the size of the full table is 24 x 24! Rather than complete the
full table, it suffices to understand how all the entries are generated by a small set of
primitive transformations. (To be completed.)
O

9.10 See fig. 18.

The parallel moves used to connect circuits of different colours are indicated by dotted
lines depicting the straight moves, and solid black lines, depicting the diagonal moves.

Note how the choice of parallel moves constrains the choice of red circuit. In fact, the
red moves are entirely dictated by this choice. In contrast, there is complete freedom
in choosing a blue or yellow circuit. There is some freedom in choosing a green circuit,
but not complete freedom. In this way, a substantial number of circuits can be found all
based on the same set of combining parallel moves. In the circuit shown, the green, blue
and yellow circuits were constructed by “copying” the red circuit.

The same set of combining parallel moves can be used to construct a circuit of an
8 X 6 board; all that is required is to “shorten” the straight-move circuits in order to
accommodate the smaller board. (But note that they cannot be used to construct a
circuit of a 6 x 8 board.)
O

9.11 Figure 19 shows details of how the straight-move circuits are combined. Moves
indicated by dotted lines are replaced by the diagonal moves indicated by solid black
lines.

Figure 20 shows the circuits obtained in this way. The dotted lines are not part of
the circuit; these are the moves that are replaced.

In order to construct a circuit for any board of size 4m x 2n, where m is at least
2 and n is at least 3, it suffices to use the technique detailed in figs. 9.2 and 9.3 for
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Figure 18: A Knight’s Circuit. Solid lines indicate the circuit. The dotted lines depict
straight moves that are replaced. The diagonal moves that replace them are depicted by
solid black lines.

extending straight-move circuits to boards of arbitrary size. This construction has to
be applied four times, once for each of the straight-move circuits in the solution to the
8 x 6-board problem.

O

9.12 We begin by identifying the moves shown in fig. 9.14. See fig. 21. (Note the
symmetry.)

Now it is easy to fill in the straight-move circuits around the remaining squares. See
fig. 22.

For the general problem, it is easy to extend the straight-move circuits.
O
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AN

Figure 19: Details of how the four straight-move circuits are combined; the straight
moves indicated by dotted lines are replaced by diagonal moves indicated by solid black
lines.)
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Figure 20: Knight’s Circuit of an 8 x 6 and an 8 x 8 board. (Dotted lines are not part
of the circuit; these are the moves that are replaced by diagonal moves, as detailed in

fig. 19.)
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d
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Figure 21: Details of Combining Circuits. Diagonal moves are shown in black. Straight
moves are coloured. The dotted lines represent the moves that are replaced. Solid lines
represent the moves that replace them.

Figure 22: Knight’s Circuit of a 6 x 6 board. The dotted lines do not form part of the
circuit.
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