
Data Structure IV
Persistent Segment Trees



Introduction

We review the notion of persistent data strcture. Suppose we have
a data structure that supports an update operation U, which takes
an instance of the data structure and returns a new instance after
the update. Consider D1 is an instance of the data structure, and
we say it is of version 1.
We shall support the following operations efficiently.

I Query. Query the data structure at some version k.

I Update. Create Dn+1 = U(Dk), where n is the number of
versions that we have ever created before this operation, and
1 ≤ k ≤ n.



Usually, a linked data structure can be modified to be persistent
data structure easily, without suffering the update time, and with
additional space as the same with the update time.

So does Segment Trees.



Application of Persistent Segment Trees

Main technique: direct use of the history version; difference
between versions.

We start by an example showing the direct use of the history
version.



Distinct Sum1

Suppose we are given an array A[1, . . . , n]. We are to support the
query Q(l , r) that asks the sum of the distinct elements in A[l ,r ].

1http://acm.hdu.edu.cn/showproblem.php?pid=3333

http://acm.hdu.edu.cn/showproblem.php?pid=3333


Discretize A

We can discretize A, so that the value of A is in [1, n]. This can be
achieved by building a one to one correspondence between the
value of A to {1, 2, . . . , n}, and a possible way to do the mapping
is to use STL map (or Java TreeMap).



Observation

Suppose 1 ≤ r ≤ n is fixed. We focus on A[1,r ], and modify it to

be A(r)[1, 2, . . . , r ], such that A(r)[i ] = A[i ] if and only if i is the
largest index that the value A[i ] appears, and other A(r)[i ] = 0.
This way, to answer Q(l , r), we can just return the sum of

elements in A
(r)
[l ,r ].

Moreover, A(r+1) can be constructed from A(r) easily, by modifying
at most one element in A(r), and append at most one element to
A(r).



Proprocessing

We use a segment tree Tr to represent Ar , and then a query of the
form Q(l , r) can be answered in O(log n) time. In particular, we
let Tr support 1) add an integer to some interval representing a
single point, and 2) query the sum of some interval.

Then we can construct T1 to Tn starting from T0 that is set to all
zeros, and build Tr+1 from Tr in O(log n) time and space.



Query

For query Q(l , r), we return the sum from l to r in Tr .

Note that we can use an array to record roots of Ti ’s. Then,
switching to Tr takes constant time.



k-th Smallest In An Interval2

We shall show an example use of the difference of versions.
Suppose we are given an integer array A[1, 2, . . . , n]. We are to
support the query Q(l , r , k) that asks the k-th smallest number in
A[l ,r ].

2http://poj.org/problem?id=2104

http://poj.org/problem?id=2104


Auxiliary Question

Question. Suppose we have an array V with n intergers, and it is
initially set to all 0. How can we use a segment tree to support the
following operations?

I U(i , x). Set V [i ] := x , where 1 ≤ x ≤ n.

I Q(k). Query the k-th smallest integer in the array.



Auxiliary Array

We are going to maintain an array B[1, 2, . . . , n] that is initially set
to all 0. Whenever we are going to perform U(i , x), we set
B[V [i ]] := B[V [i ]]− 1, and then set B[x ] = B[x ] + 1. Then if it is
Q(k), then we return the smallest j such that

∑j
t=0 B[t] ≥ k .

Intuitively, B[j ] intends to represent the number of occurences of
elements V [i ] such that V [i ] = j for all i . You can verify the
correctness of the way we answer the query.



Using Segment Tree

We maintain a segment tree for B. For the update, we only need
to support adding an integer to an interval representing a single
point.

To support finding the largest j , we maintain the sum variable for
each node in the segment tree. Then we define a recursive
procedure F (r , k) that finds the smallest j such that∑j

t=r .L B[t] ≥ k .



If r represents a leaf, return r .L.

If r is not a leaf, then we test if r .leftChild.sum ≥ k . If this is the
case, then we return F (r .leftChild, k). Otherwise, we return
F (r .rightChild, k − r .leftChild.sum).

Note that each invocation of the procedure increases the height of
r by 1, and hence the procedure terminates in O(log n) time.



Original Problem: Preprocessing

We go back to the origianl problem.

So far, we have defined a segment tree that supports 1) add a
value to a single point interval and 2) find the k-th smallest
number in the whole interval.

We make this segment tree persistent. Then, define the original
version T0 to be the segment tree with all zero values. Define Ti+1

from Ti by increasing Ti [V [i ]] by 1.

Observe there are O(n) versions in total, and creating each version
takes O(log n) time and space.



Original Problem: Query

To answer a query Q(l , r , k), the idea is to perform the finding
k-th smallest operation on the segment tree defined by Tr − Tl−1.
By Tr − Tl−1, we mean a new segment tree that has the “sum”
value in each node to be the difference of those in Tr and Tl−1.

However, it is too costly to really build Tr − Tl−1. Instead, we
observe that Tr and Tl−1 has the same structure, and in the
finding k-th smallest procedure, only O(log n) “sum” value is
actually needed.

Therefore, we can calculate each needed “sum” on the fly in the
find k-th smallest procedure, and such a calculation can be done in
O(1).



Some Details

We define the modifies F (r , k) proceudre F ′ with inputs
F ′(r1, r2, k) that doing the search on the difference tree induced by
trees rooted at r2 and r1, where r2 and r1 are the roots of two
versions of segment trees.

During the procedure, we always let r1 and r2 represent the same
corresponding nodes in its own version.



If r1 is a leaf, then return r1.L.

Otherwise, test if r1.leftChild.sum − r2.leftChild.sum ≥ k . If this is
the case, then return F ′(r1.leftChild, r2.leftChild, k). Otherwise,
return F ′(r1.rightChild, r2.rightChild, k − (r1.leftChild.sum −
r2.leftChild.sum)).


