JUMP-DP: A Software DSM System with Low-
Latency Communication Support

Benny Wang-Leung Cheung, Cho-Li Wang and Kai Hwang
Department of Computer Science and Information Systems
The University of Hong Kong
Pokfulam Road, Hong Kong

Abstract: Communication overhead within the
network is always a main source of performance
bottleneck for sofiware DSM systems. In this paper,
we introduce the JUMP-DP DSM system, which is
an integration of the migrating-home protocol
implemented by the JUMP DSM system, together
with the low latency Socket-DP communication
support. Testing results show that JUMP-DP not
only reduces the amount of data communicating
among processors like JUMP does, but the low-
latency Socket-DP component in JUMP-DP is also
capable of reducing the sofiware protocol overhead
in network communication. Therefore, JUMP-DP is
able to further enhance the performance of DSM
applications substantially over JUMP, which makes
use of traditional BSD Sockelts.

Keywords: migrating-home protocol, low-latency
communication.

1 Introduction

Software Distributed Shared Memory (DSM) is
an attractive parallel programming paradigm on
a cluster of PCs or workstations. It offers a
shared memory abstraction over machines with
physically distributed memory. Programmers
view the whole system sharing a unified piece
of memory, with no need to handle explicit data
communication in writing programs.

However, the performance of DSM is often
a major concern by users, as DSM tends to
communicate excessive amount of data among
processors to maintain memory consistency.
This network bottleneck can be alleviated in
three ways. In terms of hardware, we can use a
high-bandwidth network to speed up the data
transmission within the cluster. In the software
aspect, we can reduce the amount of data
communication in the network, or the software

The research was supported by the Hong Kong RGC
grant HKU 7032/98E & HKU CRGC grant 335/065/0042.

protocol overhead in the communication. The
software solutions are more tempting, since
performance can be improved with lower cost.

Many efforts have been made to reduce the
amount of data transmission in DSM systems.
Some employed a relaxed memory consistency
model such as lazy release consistency (LRC)
[1] or scope consistency (ScC) [2]. Others
propose efficient memory coherence protocols.
There is also work on reducing the software
protocol overhead in network communication,
such as Active Messages (AM) [3] and Fast
Messages (FM) [4]. Yet few systems attempted
to integrate the two technologies together.

In this paper, we introduce the JUMP-DP
DSM system, which supports the low-latency
Directed Point (DP) [5] communication on the
JUMP DSM system [6] through the use of
Socket-DP. 1t also adopts the migrating-home
protocol in JUMP to implement ScC. JUMP-
DP is implemented and tested on a cluster of 16
Pentium-III 450MHz PCs. Results show that
JUMP-DP improves DSM performance by both
software ways: a low-latency DP support toget-
her with an efficient migrating-home protocol.

For the rest of the paper, Section 2 gives an
overview of the JUMP DSM system and its
migrating-home protocol. Section 3 discusses
Socket-DP, which is a layer built on top of DP
with a BSD-Socket like interface. Section 4 de-
scribes the system structure of JUMP-DP. The
performance testing and results are addressed
in Section 5, followed by the related work in
Section 6. We conclude this paper in Section 7.

2 Overview of JUMP

JUMP is a page-based software DSM system
modified from JIAJIA [7] V1.1. It is built on
top of UNIX, making use of its virtual memory
manager and system calls to achieve the shared

memory abstraction on a cluster of homogene-
ous PCs or workstations. Like JIAJIA, JUMP
adopts the ScC memory model. But instead of
using the home-based protocol as adopted by
JIAJIA V1.1, a migrating-home protocol was
proposed and implemented in JUMP.

The migrating-home protocol is a memory
coherence protocol, which specifies how the
rules set by the memory consistency model are
to be implemented. Various protocols can be
adopted for implementing a consistency model,
leading to different performance. Examples are
the traditional homeless protocol [8] as adopted
by TreadMarks [9], or the home-based protocol
as adopted by JIAJIA. For each page in the
shared memory space, the home-based protocol
fixes a processor to hold the most up-to-date
copy of the page. This processor is the home of
the page. Under the home-based protocol, the
updates made by every processor on a page
must be propagated to the home processor at
synchronization time. A processor can then
serve a page fault by forwarding the request to
the home processor of the page.

In contrast, the homeless protocol does not
possess the concept of home. No processor is
responsible for holding the most up-to-date
copy of a page. In order to serve the page fault,
a processor has to contact all the peers which
have updated that page. The other processors
reply the request by sending the updates made
on the page to the faulting processor (e.g. in the
form of diffs [9]). The faulting processor then
applies the updates in order (according to the
timestamps specifying when the updates are
made) to obtain the clean copy of the page. It is
shown in [8] that the home-based protocol is
more efficient than the homeless protocol, and
as the home-based protocol needs not handle
timestamps, it is easier to implement.

Although the home-based protocol is more
efficient than the homeless protocol, the fact
that a fixed home for every page throughout the
program execution may not adapt well to the
memory access pattern of the program. A page
may never be accessed by its home processor.
In such case, it is costly to serve multiple
remote page faults throughout program exec-
ution. This is especially true for remote writes,
as the updates need to be propagated back to
the home processor at synchronization time.

Thus we proposed the migrating-home
protocol, which allows the home location of a

page to be migrated from a processor to another
when the latter requests the page from the
former, provided that certain conditions are
met. The migrating-home concept is shown in
Figure 1(a). In the figure, processor P writes to
variable x in page X, and generates a page fault.
Processor (O, being the original home of page
X, receives the request from P. Q replies by
sending a copy of page X to P, and migrates the
home of the page to P. As P must access page
X, it is an advantage for the home of the page to
migrate to P, since any updates made by P to
page X (in the form of diffs) need not be sent to
other processors when P synchronizes. So the
migrating-home protocol improves the DSM
performance by reducing the amount of data
communication made within the network.

To be more specific, the home of a page X
will be migrated from processor O to processor
P when Q is serving a remote page fault from
P, if and only if (1) Q is the home of X, and (2)
all the other processors having a copy of X
have sent the updates to Q. To compare the
difference among the three protocols discussed
in this section, the behavior for the home-based
and homeless protocols in serving a page fault
is shown in Figure 1(b) and 1(c) respectively.
Readers interested in the migrating-home
protocol may refer to [6] for more details.

It is shown in [6] that the migrating-home
protocol reduces substantial amount of network
communication, enhancing the performance of
JUMP for most DSM applications over JIAJIA.

(& P Q(omeofX) (b) P Q(homeofX)

Send a copy of X
and grant P as
new home of X

e 12
AT

Processors which have modified page X send
the updates to P to form the clean page of X
1 1

1
© =Home of X PF = Page Fault = Clean page X

Figure 1. Serving a page fault in (a) the
migrating-home protocol, (b) the
home-based protocol, and (c) the

homeless protocol.

3 Socket-DP

Socket-DP provides access to the low-latency
Directed Point (DP) communication subsystem
through traditional BSD Socket interface. With
Socket-DP, users can access DP like ordinary
BSD sockets, and Socket-DP will call the
communication functions of DP for the user.

In Socket-DP, the creation and binding of a
socket, as well as the sending and receiving of
messages are all invoked using standard UNIX
I/O system calls, just as BSD Sockets do. The
only difference in the interface lies on the way
to identify sockets. Instead of using IP address
and port number, Socket-DP follows the syntax
of DP and uses Node ID (NID) and Directed
Point ID (DPID) to identify the target socket in
the binding and message sending. The NID is
used to identify each node in the cluster, while
the DPID is used to identify every communi-
cation endpoint (i.e. socket) within a node.

Apart from a familiar programming inter-
face, Socket-DP contains other features which
are crucial for supporting the need of DSM:

e Signal handling for Asynchronous 1/O:
Asynchronous communication with signal
handling is vital for DSM systems. When a
message arrives, a signal is generated to
inform the receiver. The process getting the
signal should respond at once to reduce the
waiting time of the sender. Signal handling
for asynchronous 1/O is thus vital for DSM.
Socket-DP implements the signal handling
feature by delivering a SIGIO signal to the
receiving process on message arrival.

* Message disassembly and assembly: Each
DP packet is of fixed size. For the Fast
Ethernet implementation, the packet size is
1500 bytes. Long messages need to be cut
explicitly into fragments before sending,
and grouped at the receiver side. Socket-DP
provides a simple mechanism for message
disassembly and re-assembly to save
programmers from the tedious work.

* The select() system call: Given a set of
sockets, UNIX provides the select() system
call to check if data has reached any of
them. This call is used in JUMP to check
any arrived messages not being served.
Socket-DP provides a simple implement-
ation for the select() system call. Unlike the
select() system call for BSD Sockets which
handles both message send and receive, the

implementation of select() for Socket-DP
only deals with message arrival. Thus the
code becomes cleaner and more efficient.

To compare the performance of Socket-DP
with BSD Sockets, we performed a simple test
on the point-to-point round-trip communication
time on both types of sockets as shown in
Figure 2. The test is performed on two Pentium
III 450MHz PCs connected by Fast Ethernet
through an IBM 100-based switch. Each of the
machines has 128 MB RAM and runs a piece
of Linux 2.0.36 operating system. The results
are plotted as a graph in Figure 3. It shows that
Socket-DP has improved the performance over
BSD sockets by more than 80% for messages
not exceeding 32 bytes, as the DP layer saves a
considerable amount of time in the software
protocol overhead. For messages longer than
1KB, Socket-DP outperforms BSD Socket by
12.4-16.3%. Thus Socket-DP not only inherits
DP low-latency communication feature, but
it also provides a simple programming interface
familiar to application users.

A B
A I_geﬂn-bytes ‘l
SIGIO
point-to_—poi_nt recoive
comrr;rr:;:atlon n-bytes v
¥
Figure 2. The Point-to-Point Round-Trip

Test.

Comparison of Berkeley Socket and
Socket-DP Performance

3500 20
3000 18
15
2500 14
2000 122
108
1500 g 2
1000 06 E
- 0.4
]
2 500 o
E |:| .-l . o H.m . H oE I |:||:|
—- f i e B ol T T N ol T N ol I T |
5 "HIRRRIEER
— i~ = 00

A Socket-DP RTT (us) [0
B0 Sockets RTT (u=) [B]
—— Ratio (BT

Message Size

(Bytes)

Figure 3.

Comparison of RTT of BSD

Socket and Socket-DP.

4 JUMP-DP

We embedded the DP communication support
into JUMP to form the JUMP-DP DSM system.
A low latency Directed Point support layer has
been introduced into the system to back up
JUMP communication subsystem. Instead of
BSD Sockets, we use Socket-DP running on
Fast Ethernet. As both types of sockets share a
similar user interface, the effort in modifying
the DSM system code is greatly simplified.

5 Testing and Results

We conducted a test to see the performance of
JUMP-DP by comparing it with JUMP and
JIAJIA V1.1 using BSD sockets in executing a
suite of 6 benchmarks. The test was performed
on a commodity cluster built using 16 Pentium
III 450MHz PCs, connected using Fast Ethernet
through a 24-port IBM 100-based switch. Each
machine has 128MB of main memory. Each
runs a copy of the Linux Kernel 2.0.36 as the
operating system. All the three systems JIAJIA,
JUMP and JUMP-DP are tested in this environ-
ment for a fair performance comparison.

The six benchmarks are described in Table
1. MM is a matrix multiplication program of 2
nxn matrices P and O using p processors, with
O initialized as Q". Many implementations of
MM divide the result matrix into p parts, and
each processor handles the calculation of one
part of the result matrix. Our implementation of
MM takes a different approach. The two source
matrices P and O are divided into p parts, and
each of the p processors only accesses one part
of P and O to calculate the subtotal value in its
local matrix. The p local matrices are summed
together to get the final result. ME performs
merge sort on n integers appeared in p sorted
lists using p processors. As two lists are merged

at a time, the sorting is done in (log p) stages.
RX does radix sort on # 32-bit integers. Each
stage 4 bits are sorted, hence the sorting is done
in 8 stages. LU performs LU-Factorization on
an nXn matrix, and the results are verified for
correctness. BK is a bucket sort program on n
integers. Each of the p processors handles 256
buckets. After data distribution, each bucket
holds the numbers within a certain range, and
the numbers in a bucket are sorted by bubble
sort. SOR is the red-black successive over-
relaxation application performing on two nXn
matrices. The main routine that performs the
relaxation loops for 20 iterations.

The testing results are shown in Table 2.
When we compare JUMP with JIAJIA V1.1,
we can see that the migrating-home protocol in
JUMP outperforms the home-based protocol in
JIAJIA V1.1 for most of the applications. This
matches the result in [6], in which a different
testing environment is used. The performance
improvement of JUMP over JIAJIA depends on
the application and number of processors used.
The largest improvement is observed at the LU
Factorization application with » = 1024 and p =
16, in which JUMP runs nearly 15 times as fast
as JIAJIA does. This is because the verification
routine in LU generates an_excessively large
amount of remote page faults in JIAJIA, which
can be much reduced under the migrating-home
protocol in JUMP, since the home migration
turns the subsequent page faults to local ones.

Next, as we compare the timing data for
JUMP and JUMP-DP, we observe that for all
testing benchmarks, JUMP-DP runs faster than
JUMP using BSD Sockets. Most applications
enjoy a 10-20% improvement in performance.
This means the low-latency communication
support by Socket-DP in JUMP-DP is capable
of further enhancing the DSM performance.

Name Parameters Description

MM n,p Matrix Multiplication of two n x n matrices using p processors

ME n,p Merge Sort of n integers appeared in p sorted lists using p processors

RX n,p Radix Sort of n 32-bit integers using p processors in 8 stages

LU n,p LU Factorization of a n x n matrix using p processors with result verification
BK n,p Bucket Sort of n integers using p processors and 256 x p buckets
SOR n,p Red-Black Successive Over-Relaxation on two n x n matrices using p

processors, with the main loop iterating for 20 times
Table 1. Description of the six benchmark applications used.

Appl. | Size JIAJIA V1.1 Time (sec) JUMP Time (sec) JUMP-DP Time (sec) JIAJIA V2.1 Time (sec)

Name| n p=4 p=8 p=16 | p=4 | p=8 |p=16| p=4 | p=8 |p=16| p=4 p=8 p=16

MM 64| 0.051| 0.093(0.218| 0.061| 0.122| 0.293| 0.047(0.105| 0.203| 0.066| 0.144| 0.473

128| 0.215| 0.214| 0.226(0.195| 0.237| 0.428| 0.171| 0.201| 0.332| 0.215| 0.220| 0.330

256| 1.037| 0.895| 0.795| 0.942| 0.798| 0.906(0.869| 0.710| 0.733(1.053| 0.874| 0.830

512| 6.465| 4.489| 3.640| 6.089| 4.108| 3.330(5.766| 3.760| 2.906(6.405| 4.495| 3.587

1024| 44.026(26.695(18.155|42.520(25.331| 17.034| 41.355| 24.418 15.749| 44.284| 27.310| 18.837

ME |[256K| 0.777| 0.909(1.005| 0.462(0.494| 0.547| 0.408(0.439| 0.491| 0.799| 0.918| 1.004

512K| 1.545(1.789| 1.931| 0.897| 0.946(1.007| 0.775| 0.835(0.888| 1.553(1.792(1.940

iM| 3.081| 3.561| 3.824(1.775| 1.847| 1.918| 1.531(1.612| 1.701| 3.093| 3.557| 3.837

2M| 7.875| 9.634| 10.565| 3.521| 3.681| 3.775(3.062| 3.203| 3.341(6.200(7.310| 7.802

AM| 20.096| 23.750| 20.648| 7.176| 7.494(7.673| 6.218| 6.627| 6.875| 15.655| 18.259| 19.154

RX |[256K| 1.685(1.555(1.204| 1.568(1.358| 1.356| 1.287| 1.131| 1.142| 1.274(1.240(1.329

512K| 3.163| 2.803| 2.067| 2.973| 2.578(2.180| 2.545| 2.134| 1.836(2.380| 2.176| 2.086

1IM| 6.100| 4.844| 3.908(5.981| 4.913| 4.038| 4.941(4.065| 3.424| 4.644| 4.146| 3.787

2M| 11.999| 9.202| 7.972|11.983| 9.716| 8.368(10.091| 8.116| 7.410(9.238| 8.505| 7.545

AM| 28.400| 18.662| 14.649|24.414|20.219(17.550(20.358| 16.885| 14.591| 24.476| 17.957| 16.104

LU 64| 0.811| 1.128| 1.170| 0.967| 1.804(1.653| 0.779| 1.419| 1.590(0.968| 1.909| 2.444

128 5.715(4.388| 3.422| 6.405| 4.395(3.972| 5.568| 3.750(3.960| 6.059(6.971| 8.119

256| 24.872| 18.965| 12.926| 13.872| 10.362| 10.415(12.595| 9.613| 9.883(25.597| 28.610| 30.934

512| 45.718| 35.582| 30.916| 18.267| 18.836| 21.853(17.706| 18.054| 20.581(18.259| 19.063| 22.342

1024|1168.88 | 1646.13 | 1994.00 | 134.38 | 129.04| 133.99| 132.54| 125.86 | 130.03| 1094.15 | 1706.87 | 2147.94

BK | 256K| 1.559| 1.082| 2.271| 1.361| 1.000| 2.543(1.245(0.874| 2.341| 2.391| 3.709| 7.812

512K| 3.782| 1.754| 2.622| 3.399| 1.552(2.563| 3.277| 1.413| 2.281| 4.773| 4.713| 8.276

1IM| 13.275| 4.048| 2.773(12.224| 3.614| 2.690| 11.795(3.554| 2.683| 13.948| 7.794| 9.828

2M| 45.073(14.117| 5.041|42.917(12.899| 4.683|42.356| 12.461| 4.428| 47.668| 19.394(14.102

AM| 169.83| 47.440| 15.584| 162.89| 44.041(14.430| 161.97| 43.366| 14.340(175.67| 58.849| 30.967

SOR | 512| 1.745(1.684(2.273| 1.019(0.934| 1.164| 0.914| 0.843| 1.096| 1.027(1.101| 1.615

768| 3.259| 2.575| 2.305(1.884| 1.439| 1.440| 1.765| 1.284| 1.289| 1.810| 1.665| 2.005

1024| 5.807(4.191| 3.893| 3.269(2.208| 1.957| 3.062| 1.947(1.753| 3.270(2.602| 2.730

1536| 12.335| 8.930| 7.717(6.420| 4.074| 3.133(5.912| 3.697| 3.031| 6.681| 4.865| 4.654

2048]1100.635| 18.683(16.319| 12.163| 7.457| 5.277|11.367(6.980| 4.879| 14.388| 8.974| 7.908
Table 2. Execution time of the 6 benchmark applications under JIAJIA V1.1, JUMP, JUMP-DP

and JIAJIA V2.1 with 4. 8 and 16 processors.

If we compare the performance of JUMP-

among machines in the cluster, and the low-

DP with JIAJIA V1.1 using BSD Sockets, a

latency DP support which reduces the protocol

substantial improvement in performance can be

overhead in the communication. Applications

obtained for most applications. This is shown

with heavy data communication and favorable

more clearly as we look at the performance

memory _access patterns are benefited most.

ratio, which is expressed as the execution time

Examples are ME and SOR. For ME. JUMP-

of an application under JIAJIA V1.1, divided

DP executes the application 90.7-273% faster

by the execution time of the same application

than JIAJIA VI1.1. while for SOR, JUMP-DP

under JUMP-DP, using the same problem size

beats JIAJIA by running 78.9-785.3% faster.

n_and number of processors p. A performance

Finally, we consider the speedup of each

ratio over 1 means that JUMP-DP improves the

application under JUMP-DP. We find that the

application performance over JIAJIA VI1.1.

speedup is application-dependent. BK obtains

The higher the ratio, the more the improvement

the best speedup due to the ©(#°) complexity of

JUMP-DP makes.
The performance ratios of each application

the bubble sort routine. The speedup for MM is
also good since the amount of computation is

are plotted as graphs shown in Figure 4. From

relatively high. However, the execution time of

the graphs, it is observed that most applications

LU does not improve much with more process-

achieve a performance ratio larger than 1. The

ors, as its verification routine dominates the

performance improvement is achieved by two

execution and takes rather constant time. ME

factors: the efficient migrating-home protocol

runs_even slower with more processors since

which reduces the amount of communication

the number of merging stages increases.

{a) Matrix Multiplication (MM}

ib) Merge Sort (ME)

100.00 14 1000 3 40
S Bl 12] 35
o 2 3 2
3 X .y
10.00 Niio 3 g" 30 5
T e - B s 8 & R 25 @
z o NF08 g 2 -y 3]
=~ 100] 3 S =100 3 3 20 §
w . = b @ = 3
E s HN R HRI"E & WR 15 E
= o # = ® b s = ® & -
010 % % % N | 3o+ = % % 10§
3 ¥ &
N N N = g 8 0.5
§ 3 § 3] 8 :
¥ 3 3 8 ¥
oor HARN L AN BN : 010 HELE SPLEN 00
G4 128 256 512 1024 296K S12W 1M 2M am
Problem size (n) Problem size (n)
(c) Radix Sort (RX) {d) LU Factorization {LU)
10000 3 14 1000.00 16.0
] 140
12 o s
10§ 100.00 N3 120 5
F Y N100 @
& T 0a g rl % @
T10.00 § N § T 1000 SER-
E =
E N INi“fE E 3 E
=] 3 3 e £ NiE60 =
— = 'Q.q =] — & =]
¥ SENER 3 =
% % % £ 1.00 "% 4.0 E
S
Ig % % N0 % 20
1o B N BN BN HN{g, 010 SER
2TEH 512K M 2M 4M B4 128 256 512 1024
Problem size (n) Problem size (n)
{e) Bucket Sort (BK) (i Red-Black SOR
1000.00 14 100.00 a0
100.00 £ £
T 3 1000 2
u gz 2
))
= 10,00 E = £
't] .]
E E E E
= ,E = 1.00 ,E
1.00 5 1, B
010 : : : 010 : I
256K 512K M 2M 4M 512 7R3 1024 1536 2043

Problem size (n)

Problem size (n)

= JUMP-DP (p=4)
—#— Performance Ratio (p=4)

C— 1 JURMP-DF (p=3)
—8— Performance Ratio [(p=5)

JUrP-DP (p=18)
—+— Performance Ratio (p=16)

Figure 4.

Comparing the execution time of the six benchmark applications under JUMP-DP and

JUMP. The lines show the performance ratio of JUMP-DP over JIAJIA V1.1, obtained

by (execution time of JIAJIA V1.1 / execution time of JUMP-DP). The bar chart shows

the execution time of each application under JUMP-DP in logl0 scale.

6 Related Work

There are some other works which deal with
the home migration of shared memory pages to
achieve better adaptation to the memory access
patterns of DSM applications. One of them is
the home migration protocol implemented by
JIAJIA V2.1 [10] released in 1999. It has the

same objective as our migrating-home protocol
in JUMP, but the mechanism is quite different.
Instead of migrating the home of a page eagerly
in serving a page fault, JIAJIA V2.1 migrates
the home at the barrier after the remote page
fault is served. The home is migrated if there is
only one writer to a page. This less-aggressive
strategy tries to reduce the broadcasting over-

head of the new home location by appending
this information with the barrier grant message.
But the main drawback is that the rule for home
migration is too strict. If two processors write
to the same page between two barriers, the
home is not migrated. Also, applications using
locks cannot be benefited from this protocol.

We tested the performance of JIAJIA V2.1
and compared it with our JUMP and JUMP-DP
systems. The testing environment used is the
same as mentioned in Section 5, and the timing
results are also presented in Table 2. We find
that our migrating-home protocol in JUMP
outperforms the home migration protocol in
JIAJIA V2.1 for most applications. The only
exception is RX, where JIAJIA V2.1 beats
JUMP and JUMP-DP by 2.0-22.9%.

7 Conclusions

We have proposed in this paper the JUMP-DP
DSM system. It improves software DSM
performance in two ways. First, JUMP-DP
adopts the migrating-home protocol in JUMP to
implement the relaxed ScC model. The
aggressive strategy adopted by the migrating-
home protocol is able to adapt better to the
memory access patterns of DSM applications in
most cases, hence reducing the amount of data
communication within the network. Second,
Socket-DP is employed to support low-latency
communication in JUMP-DP, reducing the
software communication overhead. Our testing
shows that the two enhancements of JUMP-DP
combined to improve the performance of DSM

applications substantially.
References

[1T P. Keleher, A. L. Cox, W. Zwaenepoel.
Lazy Release Consistency for Software
Distributed Shared Memory. In Proc. of
the 19th Annual International Symposium
on Computer Architecture (ISCA'92),
pages 13-21, May 1992.

[2] L. Iftode, J. P. Singh and K. Li. Scope
Consistency: A Bridge between Release
Consistency and Entry Consistency. In
Proc. of the 8th ACM Annual Symposium
on Parallel Algorithms and Architectures
(SPAA'96), pages 277-287, June 1996.

[3] T. von Eicken, D. E. Cullerand, S. C.
Goldstein and K. E. Schauser. Active

[5]

[6]

[7]

[8]

[10]

Messages: a Mechanism for Integrated
Communication and Computation. In
Proc. of the 19th International Symposi-
um of Computer Architecture, May 1992,
S. Pakin, M. Lauria and A. Chien. High
Performance Messaging on Workstat-
ions: Illinois Fast Messages (FM) for
Myrinet. In Proc. of the 1995 ACM/IEEE
Supercomputing Conference, San Diego,
California, December 1995.

C. M. Lee, A. Tam and C. L. Wang.
Directed Point: An Efficient Communi-
cation Subsystem for Cluster Computing.
In Proc. of the 10th IASTED Internation-
al Conference on Parallel and Distri-
buted Computing and Systems, pages
662-665, Las Vegas, October 1998.

B. Cheung, C. L. Wang and K. Hwang, A
Migrating-Home Protocol for Imple-
menting Scope Consistency Model on a
Cluster of Workstations. In the 7999
International Conference on Parallel and
Distributed Processing Techniques and
Applications (PDPTA 9), Las Vegas,
Nevada, USA.

W. Hu, W. Shi and Z. Tang. A Lock-
based Cache Coherence Protocol for
Scope Consistency. Journal of Computer
Science and Technology, 13(2):97-109,
March 1998.

Y. Zhou, L. Iftode and K. Li. Perform-
ance Evaluation of Two Home-Based
Lazy Release Consistency Protocols for
Shared Memory Virtual Memory
Systems. In Proc. of the 2nd Symposium
on Operating Systems Design and
Implementation (OSDI'96), pages 75-88,
October 1996.

P. Keleher, S. Dwarkadas, A. L. Cox and
W. Zwaenepoel. TreadMarks: Distribu-
ted Shared Memory on Standard Work-
stations and Operating Systems. In Proc.
of the Winter 1994 USENIX Conference,
pages 115-131, January 1994.

W. Hu, W. Shi and Z. Tang. JIAJIA: An
SVM System Based on A New Cache
Coherence Protocol. In Proc. of the
High-Performance Computing and Net-
working Europe 1999 (HPCN'99), pages
463-472, April 1999.

