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In this paper, we study the practical issues on the design of a new communication sub-
system, named Directed Point, on a server cluster with Gigabit Ethernet connection, with
the goals of achieving high performance and good programmability. Our design exploits
the gigabit network architecture and the operating system characteristics. We propose a
realistic communication model which can be used to assess various design tradeoffs and to
calibrate the performance results. Testing shows that Directed Point communication sub-
system can achieve a 16.3 us single-trip latency and 79.5 MB/s bandwidth. To achieve
good programmability, we proposed an abstraction model that allows all inter-process
communication patterns to be easily coded using the provided API. The API preserves
the syntax and semantics of traditional UNIX I/O operations, making the proposed com-
munication subsystem easy to use without long learning period.
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1. Introduction

Commodity supercomputing is one of the targets in building clusters. Being one form
of message passing machines, the performance of clusters depends largely on the perfor-
mance of the interconnection network and the communication software. Recently, the
microprocessor clock speeds have approached gigahertz range. Such explosive growth of
processor performance has greatly improved the computation. Nevertheless, it stresses
the need of a higher speed communication subsystem that can achieve low-overhead calls
to access the interconnect, as the performance of a parallel application depends largely
on the performance of the interconnection network and the communication software.

Gigabit Ethernet is widely available and is becoming the commodity of the next genera-
tion LAN |[3]|. Gigabit Ethernet appears to be an ideal solution to the increasing demands
placed on today’s high-end server that operates at gigahertz clock rate. However, in-
stalling a Gigabit Ethernet adapter in an existing server generally won'’t yield the 10-fold
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performance boost over a fast Ethernet adapter. To achieve high performance, the com-
munication software needs to minimize the protocol-processing overheads and resource
consumption.

With the introduction of low-latency messaging systems, such as Active Messages (AM)
[24], Fast Messages (FM) [16], BIP [17], PM [18], U-Net [25], and GAMMA [6], protocol-
processing overheads induced in communication have been significantly reduced. Some of
these messaging systems achieve low latency by pinning down a large area of memory as
the send or receive buffers. This avoids the delay caused by the virtual memory system for
mapping virtual address to physical address during the messaging stages. Such approach
trades memory space for shorter communication latency. However, without a good flow
control mechanism or an efficient higher level protocol, this type of messaging systems
is usually not scalable. It may experience poor performance when a large number of
concurrent communication channels need to be established during the program execution,
because of the inefficient memory utilization. Some other messaging systems adopted the
user-level approach, which allows moving data from user space to the network adapter
without switching contexts or additional memory copy. This type of communication
software may achieve shorter latency, however memory copy is sometimes inevitable to
maintain the message integrity while extending the messaging system to develop a higher
communication layer with more functions, such as the reliable support. Moreover, to avoid
violating the OS protection mechanisms, these user-level solutions are usually restricted
to have only one process using the communication system on a single host machine.

Besides the performance issue, programmability is also an essential goal for the design
of communication subsystem. Adequate programmability means that programmer’s par-
allel algorithm can be easily translated to parallel code through the provided APIL. This
requres the provision of a communication abstraction model which can be used to depict
various inter-process communication patterns exhibited during the program execution and
a powerful yet ease-to-learn API for translating such patterns to program code. Many
existing low-latency communication packages provide good performance, but they neglect
the need of a simple and user-friendly API. Most of them just form their own program-
ming interface, using complex data structures and syntax, thus making them difficult to
use. They usually lack a good abstraction model for the high-level description of the
communication algorithm, or an API that copes with the abstraction model and is easy
to learn. For example, neither Active Messages nor Fast Messages provide standard set of
operations like those used in the widely accepted MPI [14]|. A message has to be received
within a handler routine, which is specified by the send function. Programs are more
easily prone to errors, especially for those with many communication partners and having
multiple ways of message handling.

In this paper, we present a high-performance communication system, Directed Point
(DP), with the goals of achieving high performance and good programmability. The DP
abstraction model depicts the communication channels built among a group of communi-
cating processes. It supports not only the point-to-point communication but also various
types of group operations. Based on the abstraction model, all inter-process communica-
tion patterns are described by a directed graph. For example, a directed edge connecting
two endpoints represents a unidirectional communication channel between a source process
and a destination process. The application programming interface (API) of DP combines



features from BSD Sockets and MPI to facilitate the peer-to-peer communication in a
cluster. DP API preserves the syntax and semantics of traditional UNIX I/O interface
by associating each DP endpoint with a file descriptor. All messaging operations must go
through the file descriptor to send or receive messages. With the file descriptor, a process
can access the communication system via traditional I/O system calls.

To achieve high performance with the consideration of generation scalability, DP is
designed and implemented based on a realistic yet flexible cost model. The cost model
captures the overheads incurred in the host machine and network hardware. It is used as a
tool for both communication algorithm design and performance analysis. We consider data
communication via the network as an extension to the concept of memory hierarchy. Thus,
we abstract the communication event by means of local and remote data movements, and
express all parameters by their associated cost functions. This model helps the design
of DP adapt well to various speed gaps in processor, memory, I/O bus, and network
technologies, thus achieves good generation scalability.

Based on the cost model, we propose various optimizing techniques, namely directed
message (DM), token buffer pool (TBP), and light-weight messaging call. DP improves
the communication performance by reducing protocol complexity through the use of DM,
by reducing the intermediate memory copies between protocol layers through the use of
TBP, and by reducing the context-switching and scheduling overhead through the use of
light-weight messaging calls. DP allocates one TBP for each DP endpoint. It requires
no common dedicated global buffers for storing incoming messages in the kernel space or
user space. When a process needs to maintain a large number of simultaneous connections
or multiple parallel programs are in execution, separate control of receive buffers avoids
locking overhead. Moreover, the memory resource in a host machine can be efficiently
utilized and can eliminate unnecessary memory copy as the message buffers are mapped
to both the kernel space and the user space.

We have implemented DP for various networks, including Intel EEPro Fast Ether-
net, Digital 21140A Fast Ethernet, Packet Engine G-NIC II Gigabit Ethernet, and
FORE PCA-200E ATM. DP effectively streamlines the communication steps and reduces
protocol-processing overhead, network buffer management overhead and process-kernel
space transition overhead. The performance test of Directed Point shows low communi-
cation latency and high bandwidth as well as less memory resource consumption.

For the rest of the paper, we first introduce the Directed Point abstraction model
in Section 2. Section 3 describes the architectural background and assumptions of our
communication model, together with a layout of all model parameters. The performance
enhancement techniques inspired by this cost model are discussed in Section 4. In Section
5, we evaluated and discussed the performance characteristics of two DP implementations,
which are based on two different Ethernet-based technologies. In Section 6, we briefly
studied and compared DP with other Gigabit communication packages, and finally the
conclusions are given in Section 7.

2. Directed Point Abstraction Model

The communication traffic in a cluster is caused by the inter-process communication
within a group of cooperating processes, which reside on different nodes to solve a s-



ingle task. Various communication patterns are usually used in algorithm design, such
as point-to-point, pair-wise data exchange, broadcast tree, total-exchange, etc. A com-
munication abstraction model can be used to describe the inter-process communication
patterns during the algorithm design stage. It also serves as a guide to implement the
primitive messaging operations or API for the underlying communication subsystem. In
this section, we describe the abstraction model adopted by Directed Point.

The Directed Point abstraction model [12] provides programmers with a virtual network
topology among a group of communicating processes. The abstraction model is based on
a directed point graph (DPG), which allows users to statically depict the communication
pattern, and it also provides schemes to dynamically modify the pattern during the exe-
cution. All inter-process communication patterns can be described by a directed graph,
with a directed edge connecting two endpoints representing a unidirectional communica-
tion channel between a source process and a destination process. The formal definition of
the DPG is given below:

Let DPG = (N, EP, NID, P, E), where N, EP, NID, P and E are:

e N (Node set): A subset of integer set, representing the nodes in a cluster.

e EP (Endpoint set): A subset of integer set, representing endpoints of the directed
edges.

e P (Process set): The power set of EP, each element in P represents all endpoints
created by a communicating process in a cluster. For example, P; represents all the
endpoints created by process i. A process set in DPG is usually shown as a circle;
while the endpoint is shown as a vertex in the circle.

e NID (Node identification function): NID is a function from P to N, represent-
ing the node in a cluster where a process resides. For simplicity, we write NID(P;) as
NID;. The restriction on NID is that VP, P, € P : NID; = NID; — P,NP; = ¢.
This property ensures that no two processes in the same node share the same end-
points.

e E (Edge set): E={(i,m,j,n) | (i € P,)A(j € P)) N(NID, =m) A (NID, = n)
A(a # b)} where i, j, m, n, a, and b are all integers, P, and P, € P. We use the
notation <¢,m>—<j,n> to represent an edge <i,m,j,n> in E, which is a communi-
cation channel for sending messages from the endpoint ¢ of process a to an endpoint
j of process b .

In the DP abstraction model, each node in the cluster is assigned a unique, known-by-all
logical identity called the Node ID (NID), and every endpoint of the directed edge is
labeled with another unique identity known as Directed Point ID (DPID). Thus we can
uniquely identify a communication channel (the directed edge) by using the 4-tuple nota-
tion {local DPID, local NID, peer DPID, peer node NID}. The proposed model supports
not only the point-to-point communication but also other types of group operations. For
example, an endpoint can be used as the root of a broadcast tree or a destination point
for a reduce operation. Below is an example to illustrate the usage of the DP abstraction
model.



Given a DPG = ( N, EP, NID, P, E), where

N = {1,283}

EP = {1,2...,6256}

P = {P,P,P,P}

ND, = 1, ND, = 1, ND, = 2, ND, = 3
P ={1,23} P, ={56} P ={1,278} P, ={3}
E = {<2122,<1,23,1> <1,1,5,1> <8233, <6,1,1,1>}

Figure 1. A simple example of the DP graph

Figure 1 shows the corresponding DP graph of the given example. A white circle
represents a communication process, each vertex represents a communication endpoint,
and a directed edge specifies a unidirectional communication channel between a pair of DP
endpoints. From the function NID, we know that process 1 and process 2 are executed in
node 1. There are five communication channels between these processes. For example, the
channel <1,1>—<5,1> is from the endpoint 1 of process 1 to the endpoint 5 of process
2.

The DP graph provides a snap shot of the process-to-process communication. The
inter-process communication pattern can evolve by adding a new endpoint within a pro-
cess, adding a new edge between two distinct endpoints in different processes, deleting
an endpoint as well as the edges linked to it, or deleting an edge between different end-
points. With these operations, any run-time inter-process communication patterns can
be modeled. With the use of DPG, we abstractly depict the communication pattern-
s and resource requirements of the parallel computation, and this greatly simplifies the
programming task.

While capturing the design features presented above, the programming interface of DP
is also simple to use. It follows the peer-to-peer communication model, providing functions
such as dp_ open(), dp_read() and dp_ write(), which are analogous to the open(), read()
and write() system calls used in the traditional BSD Socket communication. A summary



Table 1
The Directed Point Application Programming Interface

New System Call

int dp_ open(int dpid)

‘ create a new DP endpoint

User-level Function Calls

int dp_read(int fd, char **address)

read an arrived DP message

int dp_mmap(int fd, dpmmap_t *tbp)

associate a token buffer pool (see Section
4.2) with a DP endpoint

void dp_ close(int fd)

close the DP connection

Light-weight

Message Calls

int dp_write(int fd, void *msg, int len)

send a DP message

int dp_fsync(int fd, int n)

flush n DP messages in the token buffer
pool

void dp_target(int fd, int nid, int dpid)

establish a connection with the target end-

point

of the DP API is shown in Table 1. The DP API Layer consists of system calls and
user level function calls, which are operations provided to the users to program their
communication codes.

To provide better programmability, DP API preserves the syntax and semantics of
traditional UNIX I/O interface by associating each DP endpoint with a file descriptor,
which is generated when a DP endpoint is created. All messaging operations must go
through the file descriptor to send or receive messages. The communication endpoint is
released by closing the file descriptor. With the file descriptor, a process can also access
the communication system via traditional I/O system calls.

The DP API provides a familiar user interface to application programmers, which can
reduce the burden of learning new API. Moreover, programmers need not deal with the IP
address and the port numbers of computing nodes anymore. Instead, the NIDs and DPIDs
are used to specify every communication endpoint. By constructing the communication
pattern in the form of a DP graph as illustrated above, one can easily translate the
DP graph into application code without any knowledge of the IP or hardware address
information.

Many other low-latency communication packages provide good performance, but they
neglect the need of a simple and user-friendly API. Most of them just form their own
programming interface, using complex data structures and syntax, thus making them
difficult to use. For example, neither Active Messages nor Fast Messages provide explicit
receive operations like those used in BSD Sockets. A message has to be received within a
handler routine, which is specified by the send function. Programs are more easily prone
to errors, especially for those with many communication endpoints and multiple ways of
message handling. A programmer may specify the wrong handler, causing the program to
exhibit unexpected behaviors. Similarly, GAMMA [6] also allows users to receive messages
within a handler routine only. However, instead of putting the handler address into one of
the send function arguments, the handler has to be specified at a special function, which
is used to establish a communication channel between two GAMMA endpoints before



communication takes place. Moreover, a GAMMA communication channel is specified
using a 6-tuple: {local node ID, local process ID, local port ID, dest node ID, dest process
ID, dest port ID}. This is more complicated than DP, where we use a 4-tuple description.

U-Net [25] adopts a peer-to-peer model with explicit user commands for sending and
receiving messages between two endpoints through a channel. Although the send and
receive operations only require users to specify the local endpoint and channel to be used,
setting up endpoints and channels can be tedious. Programmers have to open a U-Net
device, and use the returned file descriptor to create an endpoint. A channel is then
formed by using the destination address of the U-Net device as input. Each procedure
requires an explicit function call, reducing the user-friendliness of U-Net. On the other
hand, the communication channel established in BIP [17] can be described using a 4-
tuple notation {local node ID, local tag ID, dest node ID, dest tag ID}, just like DP does.
However, a routing program and a configuration program needs to be executed before a
user application is run, so as to determine the network topology and the number of nodes
to be used for the application.

The programming interface of PARMA [13] is closely resembled to the BSD Socket
interface. Therefore it adopts a client-server model and makes use of Unix system calls
such as bind(), accept(), listen(), read() and write() for network communication. The
extra socket layer and the system calls introduce extra overhead. In comparison, DP does
not contain such a socket layer and hence eliminates this software overhead. Moreover,
DP adopts a peer-to-peer model like the MPI, eliminating the need to perform binding
and listening between endpoints of a communication channel. However, it is easy to build
up this socket layer on top of DP in order to cope with user convenience and program
compatibility issues [4].

3. Directed Point Cost Model

We propose a communication cost model that can be used as a versatile tool for perfor-
mance analysis/evaluation and algorithm design. By providing a set of model parameters
that captures the crucial performance characteristics of the cluster network together with
the methodologies to derive those parameters, efficient but portable algorithms can be
designed which are well-fitted to the underlying cluster domain.

A model, in general, is an abstract view of a system or a part of a system, obtained
by removing the details in order to allow one to discover and work with the basic princi-
ple [10]. However, the diversity of computer architectures and the complexity of parallel
applications require models to be used at various levels of abstraction that are highly re-
lated to the application characteristics. Such models should be developed for the relevant
characteristics of the applications together with the characteristics of the architecture.
Hence, with such a diverged domain of applications designated for parallel and cluster
computing, e.g. regular and irregular problems, a simple, rigid model could not serve our
needs.

In general, existing parallel models that focus on message-passing architecture, which
include abstract architecture models (e.g. LogP 9], BSP |22]) and communication models
(e.g. Postal [1]), usually assume reliable network, such that they treat sending a message
as a send-and-forget [1] event. They also assume fully connected network with the exact



architecture of the underlying communication network ignored. Communication is based
on point-to-point semantics, with the latency between any pair of processors roughly
the same time for all cases. These models provide an abstract ground for development.
However, they have some drawbacks.

Under BSP model, parallel algorithm is portrayed as a sequence of parallel supersteps,
which consists of a sequence of local computations plus any message exchange and follows
by a global synchronization operation. With this restricted programming style, the overall
usage may be affected. For the LogP model, it tends to be more network-oriented and
simple. It uses four parameters to capture the cost associated with the communication
events without limits to any programming style. However, its parameters neglect factors
related to message size, communication load, and contention issue, which influence the
communication latency in a large degree in real networks. An interesting feature of
LogP model is the idea of finite capacity of the network, such that no more than certain
amount of messages can be in transit from any processor or to any processor at any
time, and any attempts to exceed the limit will stall the processor. However, the model
does not provide any clear idea on how to quantify, avoid and take advantage of this
information in algorithm design. The Postal model is similar to LogP model, with the
exception of expressing the network more abstractly. The system is characterized by
two parameters only, and this effectively reduces the dimension of analysis. Therefore, it
facilitates communication analysis rather than for performance studies.

Most of the above drawbacks come from the tradeoff between simplicity and accuracy.
The uses of those parameters are subjected to the target level of abstraction together
with the application characteristics that we are going to work on. For instance, using a
simple latency parameter may be good enough to capture the cost of the point-to-point
communication, but is too simple for explaining the many-to-one or many-to-many issues,
where contention problem may affect the communication performance.

In our model, a cluster is defined as a collection of autonomous machines that are
interconnected by a switch-based network. We assume it is a packet-switched, pipelined
network, and operates in a full-duplex configuration. Buffers are provided in the switches
for temporary buffering, but the amount of buffers is assumed to be finite. All cluster
nodes communicate via this switch-based network and assume to have the same local
characteristics, such as computation power, memory hierarchy, operation system supports,
and communication hardware. In our study, we assume that each node is equipped with
one set of input and output channels, that is, it can simultaneously send and receive one
data packet in one communication step.

A cost model is associated with our model parameters, which is focusing on the costs
induced by moving data around, both locally and remotely. We consider data commu-
nication via the network as an extension to the concept of memory hierarchy, such as a
movement from the remote memory region to the local memory region. So there may have
two types of data movements involved in the parallel computation or in a communication
event: a) remote data transfer and b) local data transfer. Our model intends to capture
the cost of point-to-point communication and also contention overheads in various collec-
tive operations. Emphasis has also been made on the derivation of our model parameters
by software approach, which is the key to the whole analytical process.
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Figure 2. Model parameters affiliated with the remote data transfer

3.1. Remote Data Transfer

We abstract the data movement via the interconnection network by three phases, from
the sender address space to the receiver address space. First, communication is initiated
by a sender process, which injects data messages to the network during the send phase.
Then the network delivers the messages to the remote node during the transfer phase of
the communication. At the remote end, receive phase consumes the data and terminates
the transfer event. We encapsulate all the overheads of these phases by a set of model
parameters, and below is a detail description of individual parameters as well as using a
schematic drawing (Figure 2) to show their correlation.

e Machine size p - This refers to the number of processes participating in the current
event.

e Send overhead Og - This parameter stands for the software overhead associated
with the send process for sending an m-byte data packet. From the high level
perspective, we view it as the time used by the user process to interact with the
logical network interface, prepare the message, queue it to the send queue, and
signal the network hardware. The overall cost reflects the processing speed of the
host node, the efficiency of the memory subsystem, and the communication protocol
in use. We model this parameter by a simple linear function, O4(m) = k, + 7ym,
where k, is the startup cost of this event which depends on the node processing
power, m is the message length bounded by the range [1.MTU], and 7; is the data
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transfer rate that depends on the efficiency of the memory subsystem. Subject to
the communication protocol, e.g. under zero memory copy, this linear function can
be reduced to a simple constant, i.e. Os(m) = ks. As this is a synchronous event,
we quantify this parameter by directly measuring the time engaged by the processor
in handling those activities.

Inter-packet transmit gap gs; - Owing to the difference in data movement speeds
between the send and transfer phases, the network card is moving data packets
with a confined capacity, which is captured by this parameter. For example, the
performance of the PCI bus and the network technology are the major factors of
this parameter. This inter-packet gap has two slightly different meanings with
respect to different perspectives, but in general, it delineates the maximum network
throughput available to the user process. From the user process perspective, it views
the gap as the minimum service time of the network in transmitting consecutive data
packets. Thus, sending data faster than this gap yields no performance gain, and
the difference between O; and ¢, indicates the amount of CPU cycles available
for the processor to do other useful computation. From the network perspective, it
represents the maximum injection rate of the packets to the network. This parameter
is delineated as g;(m) = g1 + T1m, where g; stands for the startup cost necessary to
initiate the transfer and 7; reflects the available communication bandwidth provided
by the I/O bus and the network. Due to the limited buffers in the send queue, if a
sender generates messages faster than the network can dispatch, new message can
only be accepted if the network has just finished servicing one. By quantifying this
servicing time with respect to the message size, the required cost function can be
obtained.

Network latency L - This parameter represents the time used by the network in
moving an m-byte data packet from the physical memory of the source node to the
physical memory of the destination node. For example, from the send queue of the
local machine to the receive queue of the remote machine. It is a network-dependent
parameter, which encapsulates the performance of the host, I/O bus, the diameter
between cluster nodes, the network topology and the network technology in use. If
we model the network as a complete graph, both diameter and topology factors can
be eliminated. In general, the value of L is subjected to the traffic loading at any
particular instant in a real network. For example, when routing the packets through
the network, conflicts take place if more than one packet access the same output
line, and temporary buffering is needed. This delay affects the overall network
performance perceived by the users. The amount of buffer memory inside the switch
is assumed to be finite, thus, the network can sustain certain level of congestion
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phase by a bilinear function under the congestion-free condition, L(m,p) = I(p) +
my,(m,p), where [(p) is a function representing the cumulative startup cost of this
network transfer and 77, (m, p) is the available network throughput. Both [ and 77, are
a function of p. Routing a packet involves utilization of some central resources (e.g.
buffer control unit and forwarding control unit), therefore, contention for resources
may occur if more than one routing request happen concurrently. The extent of this



11

contention is subjected to the switch internal architecture, and different routers may
behave differently. Some networks may provide limited aggregate bandwidth, they
cannot support too many communicating pairs at a time and contention arises. So
the allocated network throughput to the transfer phase depends on the aggregate
bandwidth of the network, the number of communicating pairs and the volume of the
communication, thus, 7, is a function of both p and m. To measure it by software
means, we have to calculate it indirectly. Based on the fact that a pingpong test
involves 2x(O;+ L+ 0O, +U,) time units, if we know all other parameters, L(m, p) can
be derived. By artificially generating multiple concurrent pairs of pingpong nodes,
the corresponding bilinear function could be obtained by using linear regression.

Inter-packet receive gap g, - This parameter stands for the minimum time interval
between two consecutive receptions experienced by the receiving host, which is lim-
ited by the performance of the I/O bus and the network technology in use. Similar
to the g, parameter, it is used to delineate the maximum packet arrival rate deliv-
ered by the network. This parameter has two uses. First, the inter-packet receive
gap reflects the CPU cycles available to handle arrived packets, so this information
should be taken into consideration during protocol design. Second, this gap relates
to the minimum service time of the switch in delivering packets, as we cannot re-
ceive more than one packet within that interval. We can adopt this information in
scheduling communication events. Same as the g, parameter, it is captured by a
linear function, g,(m) = g, + 7om. For simplicity, on a homogeneous cluster, we can
generally assume 7 = 75, as both are related to the transfer capability of the net-
work and the I/O bus. To quantify this parameter, we make use of the many-to-one
communication pattern, and measure the minimum time perceived by the receiver
in detecting the arrival of data packets.

Network buffer capacity By, - Limited resources are the major cause of congestion,
which in turn, affect the delay experienced by the applications. In reality, congestion
is a fact that we need to face with. The parameter By, corresponds to the available
buffers in a switch, which is a measure of the network tolerance of a switch in
handling contention. For a single switch, we only have one By value, either it
associates with the whole switch if it is a shared-buffered switch, or associates to a
switch port if it is an input-buffered or output-buffered switch. By capturing the
finite capacity of the network buffers, algorithm designers can calculate the network
endurance, and avoid contention loss with appropriate communication schedule. To
quantify this parameter, we perform a set of tests which flood the switch under
different traffic loads, and record the percentage of packet arrival at the destination.
Then, by mapping the data with the flow analysis equation [20], we can estimate
the buffer capacity of a router switch.

Asynchronous receive overhead O, - This parameter captures the software overhead
in handling incoming messages. An arrived message is handled by the kernel thread
and does not involve the receiving process, so the reception is considered as an
asynchronous event. It captures the costs of all kernel events including interrupt,
memory copy and context switch, and its efficiency is affected by the processing
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speed of the processor and the communication protocol in use. In our model, we
express it as a linear equation, O,(m) = k,+7,m. In which «, represents the minimal
cost of this asynchronous event, such as interrupt cost, buffer management, and
protocol overhead; while 7, mainly reflects the speed of memory movement between
different memory regions if needed. Observed that during the reception, system
resources are consumed, therefore, other computations would be affected. Under
experimental control, we first measure the normal execution time of a small but
CPU-bounded code segment, and then we measure another run of this computation
segment with message reception happening in the background. Then we estimate
the increase in execution time induced by the message reception. Hence, we have
indirectly measured the induced software overhead.

e User receive overhead U, - Due to the asynchronous nature of the communication,
the receiving process needs to find some means to check for data arrival, e.g. polling,
block & wake-up by signal, or hybrid approaches; and consumes the data, e.g. copy
to other memory segment. This parameter reflects the software overhead spent by
the receiving process after arrival of messages. In most of the performance evaluation
reports, due to the artificial nature of the benchmark programs, this parameter is of
insignificantly low cost. However, in real parallel computing, this overhead reflects
the performance loss due to improper coordination of communication events. For
example, in a non-dedicated cluster environment, polling is a user-level event that
is affected by the regular CPU scheduling policy. If the receiving process cannot be
scheduled frequently to poll for its data, the overall performance may degrade a lot.

3.2. Local Data Transfer

e Memory copy overheads Mo, Moy, & My, - Memory copy issue has been ex-
tensively studied in the past, and is being classified as a high overhead event. To
avoid this overhead, most of the low-latency communication systems have removed
it from their protocol stacks. However, in reality, memory copy operations cannot
be avoided completely. To quantify these costs, we provide three memory copy pa-
rameters - M., M.y, and M., to represent the costs induced by data movement
between different memory hierarchies, such as the cache-to-cache, cache-to-memory;,
and memory-to-memory data movement.

For a homogeneous cluster, we can generally assume that g; ~ g, and simplify the expres-
sion by g = max(gs, g-).- To take advantage of the full-duplex communication, we assume
that the cluster communication system must satisfy this condition, (Os+0,+U,) < g < L.
This assumption is generally true under the current CPU technologies and the adoption
of low-latency communication. As a result, under no conflict, the one-way point-to-point
communication cost (T,9,) in transferring an M-byte long message between two remote
user processes is:

Tpop(M) = Os+ (k—1)g+ L+ O, + U, (1)

where k = %, which corresponds to the fragmentation of an M-byte message to k£ data
packets of size b bytes. For optimal performance, b usually stands for the maximum
transfer unit of the underlying communication scheme.
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Figure 3. The architecture of DP

4. Directed Point System Architecture

The cost model discussed in the previous section not only serves as a means of per-
formance analysis and evaluation, it also throws some light to improve the performance
of the communication system architecture. Based on the cost model, we derive the Di-
rected Point system architecture, which involves a number of performance enhancement
techniques to be discussed in this section.

4.1. Overview of DP System Architecture

The system architecture of DP is shown in Figure 3. It consists of three layers: the DP
Application Programming Interface (DP API) Layer in the user space, the DP Services
Layer and the DP Network Interface Layer in the kernel space.

The DP Network Interface Layer consists of network driver modules. Most of the
driver modules are hardware dependent. Each of them is an individual kernel module
that can be loaded to and unloaded from the system without the need to recompile the
whole kernel source tree. Multiple network interfaces can be loaded at the same time.
Currently, supported network driver modules include Intel EEPro, Digital 21140A Fast
Ethernet, Hamachi Gigabit Ethernet, and FORE PCA-200E ATM. We also develop the
DP SHMEM module to support intra-node communication through shared memory. This
layer is responsible for all hardware-specific messaging setup, and signaling the hardware
to receive/inject messages from/to the network. The DP Services Layer implements ser-
vices for passing the packets from user space to the network hardware, as well as delivering
the incoming packets to the user space buffers of the receiving processes. This layer re-
alizes the DP abstraction model and is hardware independent. Hence, to interact with
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the network hardware, the DP Services Layer must go through the DP Network Interface
Layer.
The DP API Layer consists of system calls and user level function calls, which are

operations provided to the users to program their communication codes. Full discussion
of the DP API is provided in Section 2.

4.2. Light-Weight Messaging Techniques

DP is designed with the goals to achieve low communication latency and high band-
width as well as minimizing the resource usage. We propose various techniques, namely,
Directed Message, Token Buffer Pool, and Light-weight Messaging Call. They reduce
protocol processing overhead, network buffer management overhead and process-kernel
space transition overhead.

e Directed Message (DM): To decouple the processor with the network, and allow
overlapping of computation with communication, DP divides a long message into
multiple smaller packets for transmission. Each packet is called a Directed Message.
It consists of a header and a data portion called the container. The header is
constructed at the DP Service Layer and stores the destination NID and DPID,
as well as the length of the container. The simplicity of DM packet requires very
small packet processing time as compared to other complex protocols, and therefore
reduces the O, and O, overheads. In addition, with Directed Message and the
support of asynchronous communication, users have more control over the scheduling
of communication, and efficient communication algorithms can be devised.

o Efficient Buffer Management: DP provides a dedicated buffer at the receiving side
to store the incoming messages. This is known as the Token Buffer Pool (TBP).
TBP is a fixed size physical memory area dedicated to a single DP endpoint (as
depicted in Figure 4). It is allocated when the communication endpoint is opened
and freed when the endpoint is closed. The basic unit of storage in TBP is called
token buffer. It is a variable-length memory chunk for storing the incoming DM
packet. This design can improve the memory utilization as compared to the fixed
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length buffer used in other implementations. Each token buffer has a control header,
called token. It is a data structure containing the length of a token buffer and linkage
information to the next chained token buffer. The TBP is shared by the kernel and
the receiving process through page remapping. This eliminates the delay caused by
data copying from the kernel space to user space, and significantly reduces the user
receive overhead (U,).

e Light-weight Messaging Calls: Most messaging procedures implemented in Direct-
ed Point are implemented in the kernel level. This provides maximum protection to
the network resources. Moreover, the messaging calls to the kernel level routines are
light-weight ones, through the use of Intel 86 call gate. Unlike traditional system
calls which incur CPU exception, process rescheduling and context switching, the
call gate provides a way to enter the kernel with no extra overhead. This light-
weight system call mechanism reduces the software overhead of switching to/from
kernel level, e.g. reduces the send overhead (Oy), and eventually, reduces the overall
communication latencies.

The design of high-speed messaging should also consider the performance gaps between
processor, memory, and the network. For example, a slow host machine, such as a Pentium
PC, is hardly able to drive the 100 Mbits Fast Ethernet in full speed. Reducing the
protocol handling overhead (O;, O, & U,) and minimizing the memory copy costs can
effectively improve the performance. Even though, if memory copy is required, DP tries to
take advantage of the cache locality and avoid memory-to-memory copy. Similar situation
can be observed while using a Pentium III machine to drive the Gigabit network. On the
other hand, additional memory copy performed in a relatively high-speed host causes no
performance degradation while driving a slow network.

We use our Gigabit Ethernet (GE) implementation as an example to illustrate the data
movement journey adopted in DP. The Hamachi GE NIC uses a typical descriptor-based
bus-master architecture [2]. Two statically allocated fixed-size descriptor rings, namely,
the transmit (Tx) and receive (Rx) descriptor rings. Each descriptor contains a pointer to
the host physical memory that stores incoming and outgoing messages. Figure 5 shows the
messaging flow with respect to different components in DP using such descriptor-based
network interface controller.

After preparing the message, the send process initiates the transmission by calling the
dp_write() operation, which switches the execution control from the user space to kernel
space. Now, operations (IOR) in the DP Service Layer are triggered to construct the
Directed Message. To shorten the transmission delay, the Network Address Resolution
Table (NART) is used to translate the NID to the network address. It contains the
network addresses of all computing nodes in the cluster. Then the DM message is passed
over to the DP Network Interface Layer, which directly deposits the message to the Tx
descriptor ring and signals the network adapter to inject the packet to the network.

When the packet arrives, an interrupt signal is triggered by the network adapter. The
interrupt handler calls the Message Dispatcher Routine (MDR) - a service in the DP
Service Layer, examines the header of packet, locates the destination TBP based on the
information stored in arrived DM, and copies the incoming message to a buffer at TBP.
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Figure 5. The messaging flow in DP

Since TBP is accessible by both kernel and user processes, the incoming message can be
directly used by the user program.

DP allocates one TBP whenever a new DP endpoint is opened by the user program.
It requires no common dedicated system buffers (such as socket buffer in BSD Socket)
for storing incoming messages. Separate control of receive buffer avoids locking overhead
when a process needs to maintain a large number of simultaneous connections. Moreover,
the memory resource in a server can be efficiently utilized. The amount of memory needed
is proportional to the number of endpoints created in the applications. The total memory
consumption is roughly the same as the size of total incoming packets because of the use
of variable-length token buffer.

In summary, DP improves the communication performance in the following ways: (1)
by reducing protocol complexity through the use of DM, (2) by reducing the interme-
diate memory copies between protocols through the use of TBP, and (3) by reducing
the context-switching and scheduling overhead through the use of light-weight messag-
ing calls. Other low-latency messaging systems have also adopted similar performance
enhancement techniques but using different strategies. For example, AM eliminates inter-
mediate buffering at the receiving end by pre-allocating storage for the arriving data in the
user program. AM reduces the scheduling overhead through the use of receive handlers,
which interrupt the executing process immediately upon message arrival. GAMMA, an
AM variant using Ethernet-based network, also inherited these techniques. It bypasses
the TCP/IP protocol overhead and reduces the context-switching overhead through a s-
mall set of light-weight system calls and a fast interrupt path. Moreover, to ensure that
messages can be moved directly from the adapter to the receiver buffer, it requires the
user to explicitly pin down the receiver buffer before initiating the associated commu-
nication event. It also reduces the memory copy in the send operation, by moving the
messages right away to the adapter’s FIFO queue, without intermediate buffering in kernel
space. On the other hand, FM also eliminates excess data copying, as the FM interface
uses message streams to eliminate the need to marshal and un-marshal the messages to
be communicated. Users do not need to perform explicit memory copy to assemble a
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message to be sent, even the message contents are not contiguous in the user memory.
However, as mentioned, the handler approach for receiving messages, as adopted by these
three packages, lacks programmability and portability as compared with DP.

For U-Net on ATM, performance is enhanced through removing the kernel from the
critical path of sending and receiving messages. However, due to the absence of network
co-processor on the Ethernet adapters, U-Net on FE has to go through the kernel space
for OS protection. To reduce memory copy, it pre-allocates and pins down a fixed memory
segment, called U-Net endpoint, which is structured to form a complex virtual network
interface. During communication, users have to deposit and retrieve messages through this
endpoint structure. Therefore, users are compelled to allocate a large memory segment
right at the beginning, which is large enough to sustain the maximum load, but could only
be released at the end of the application. Finally, PARMA aims at designing a greatly
simplified protocol (known as PRP protocol) as compared to TCP/IP. By neglecting flow
control and error recovery, PARMA succeeds in reducing the protocol overhead. However,
the implementation of a Socket layer introduces certain amount of system call overhead.

5. Performance Analysis

We have implemented Directed Point on two Ethernet clusters, one is a Fast Ethernet
cluster (FEDP) and the other is a Gigabit Ethernet cluster (GEDP). The FEDP cluster
consists of 16 PCs running Linux 2.0.36. Each node is equipped with a 450MHz Pentium
ITI processor with 512 KB L2 cache and 128MB of main memory, and uses a Digital 21140A
Fast Ethernet adapter for high-speed communication. The whole cluster is connected to
a 24-port IBM 8275-326 Fast Ethernet switch which has 5 Gbps backplane capacity. For
the GEDP cluster, it consists of 4 Dell PowerEdge 6300 SMP servers with 4 Pentium III
Xeon processors sharing 1 GB memory. The Xeon processor consists of 512KB L2 cache
and operates at 500 MHz. All servers are running on Linux 2.2.12 kernel and equip with
one Packet Engine G-NIC II Gigabit Ethernet adapter, and are connected to the Packet
Engine PowerRail 2200 Gigabit Ethernet switch, which has a backplane capacity of 22
Gbps.

To review the performance issues related to high-speed communication on clusters,
we have performed a series of benchmark tests on these clusters. To achieve beyond-
microsecond precision, all timing measurements are calculated by using the hardware
time-stamp counters in the Intel Pentium processors. If applicable, all data presented in
this section are derived from a statistical calculation with multiple iterations of the same
benchmark routine. Each test is conducted with at least 200 iterations with the first and
last 10% of the measured timing excluded. Only the middle 80% of the timings are used
to calculate the average.

5.1. Latency with Performance Breakdowns

We analyze the performance of our DP implementations based on the communication
model described in Section 3. As the model parameters represent some forms of software
overheads and hardware latency, changes in communication hardware and software are
being revealed by any changes in these model parameters. This gives us better insights
on the performance impacts of various design choices.

By executing the associated benchmark routines, we construct a set of model parameters
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Figure 6. Performance breakdown of two DP implementations - Fast Ethernet (FEDP)
and Gigabit Ethernet (GEDP) expressed in the form of our model parameters.
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Figure 7. Single-trip latency performance with back-to-back setup

for the two clusters, as shown in Figure 6. In the figure, there are two sets of parameters
for the Gigabit Ethernet implementation (GEDP), one is obtained when using an SMP
kernel, i.e. with the SMP support for the Linux 2.2.12 kernel (GEDP-SMP), and the
other is without SMP support (GEDP-UP), i.e. uni-processor mode on an SMP server.
The purpose of this comparison is to reveal the differences in performance with respect
to different OS modes and hardware platforms.

The O, parameter reflects the time used by the host CPU to initiate the transmission
while performing the dp_ write() operation. Figure 6(a) shows the cost associated with
the dp _write() operation. The 500MHz Xeon processor slightly performs better than the
450MHz Pentium III processor. We observe that the penalty of preserving the traditional
Unix I/0O abstraction in DP is the use of one-copy semantic in the send operation. How-
ever, by adoption of the Light-weight Messaging Call and the Directed Message protocol,
we manage to minimize the send overhead and achieve good performance in driving the
Gigabit network. For example, the cost to send a full-size Ethernet packet is less than 7
s under the SMP OS, while the theoretical speed in delivering such an Ethernet packet
under Gigabit performance is around 12.3 pus. With the SMP mode, there is an extra 0.5
s overhead associated with it due to the use of locks for integrity control.

When examining on the O, parameter - Figure 6(b), we find that SMP OS has an
extra 20 us overhead added on to this parameter, while both GEDP-UP and FEDP-UP
have similar performance. This is also observed in the single-trip latency of the GEDP
as shown in Figure 7, which is measured with the traditional pingpong test with back-
to-back connection. There is a large performance gap appearing between the two OS
modes. We conclude that this extra overhead is induced by the support of symmetric I/O
and locking mechanism in the SMP kernel. Besides the SMP overhead, we also observe
that the current architecture of the Gigabit Ethernet adapter has a limitation on the
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achievable performance. Due to the lack of intelligence network processor, data messages
are not delivered to the user process directly and this requires a memory copy done in the
interrupt handler. The one-copy cost together with the interrupt overhead would become
a threat to the overall performance, e.g. the total interrupt cost for the full size packet is
19.7 ps under GEDP-UP.

Since the token buffer pool is accessible by the kernel and user process, the receiving
process can simply check on this TBP for picking up and consuming the messages. As
these are done in the user space, no kernel events such as block and wake-up signal are
needed. Figure 6(c) shows the U, cost of picking up a Directed Message directly from
the TBP without any memory copy cost or system call overhead. Constant overheads,
0.34 us, 0.06 pus and 0.07 pus were measured for GEDP-SMP, GEDP-UP, and FEDP,
respectively.

Figure 6(d), (e) and (f) show three other network-dependent parameters, they are
the network latency L, inter-packet transmit gap g; and inter-packet receive gap g.. To
justify their relative performance, all parameters are compared with their theoretical
limits. Looking at the FEDP data, we find that with modern PC or server hardware and
low-latency communication system, we are able to drive the Fast Ethernet network with
its full capacity. For example, the measured g, and g, for m = 1500 bytes is 122.75 us
and 122.84 us, while the theoretical gap is 123.04 us. This means that the performance
of the host machine is faster than the speed of the Fast Ethernet network in all aspects.
For the Gigabit Ethernet, due to the 10-fold increase in network speed, limitations within
the host machine start to pop up. The graph with g,-GEDP data (Figure 6e) shows that
the network adapter cannot transmit data in full gigabit performance. The measured g;
for m = 1500 bytes is 18.76 us but the theoretical gap is 12.3 us. We have performed
some preliminary investigation on this aspect, and the problem seems related to the PCI
performance, even though our Dell server is coupled with a 64bit 33MHz PCI bus. A
similar pattern also appears in the g,-GEDP data, but is not as significant as that of the
gs parameter. The measured g, for m = 1024 bytes is 10.6 us but the theoretical gap is
8.5 us. Part of the reason may be due to the difference in read and write performance of
the PCI bus.

Lastly, when look at the L parameter, the calculated network latency of the GEDP
with back-to-back connection is 6.9 us for a 1-byte message, while the network latency of
the FEDP with back-to-back connection is 9.9 us for the same size message. We observe
that the add-on latency by the GE hardware is much higher than that of the FE, when we
compare the theoretical wire delay for the smallest packet size of the GE and FE, which
are 0.67 pus and 6.7 us respectively. For example, in Figure 6(d), the gaps between the
network latency measurements with FE back-to-back and FE through switch, and between
FE back-to-back and theoretical FE speed are almost constant, while the corresponding
gaps on the GE platform seem to be increasing with the message size.

Figure 7 shows the latency results of the two DP implementations. To avoid add-on la-
tencies from the switches, we connect two nodes back-to-back and measure their single-trip
latencies. The GEDP-UP achieves single-trip latency of 16.3 us for sending 1-byte mes-
sage, while GEDP-SMP achieves 33.4 us and FEDP achieves 20.8 us respectively. From
the above analysis, we obtain a set of performance metrics, which clearly delineate the
performance characteristics of our DP implementations. In summary, the host/network
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combination of the FEDP implementation has the performance limitation on its network
component. This is being observed by comparing the Oy, O,, and U, parameters with the
gs, gr and L parameters. And since their performance characteristics satisfy this condi-
tion, (O; + O, + U,) < g < L, we can directly adopt the previous defined point-to-point
communication cost (72,) whenever we want to evaluate on its long message performance.
Moreover, the host/network combination of the GEDP implementation has the perfor-
mance limitation not falling on the network component. For instance, the O, parameter is
higher than the g, and g, parameters for both GEDP-SMP and GEDP-UP, which means
the performance bottleneck may fall on this region. Therefore, when predicting their long
message performance, new point-to-point communication cost formulae are required. For
example, the new cost formula for predicting the one-way point-to-point communication
cost of the GEDP-UP implementation becomes:

Tpcrppove(M) = Os + L + k(Or + Uy) (2)

5.2. Uni-directional Bandwidth Test

In this section, we are going to explore the one-way bandwidth performance of our
DP implementations with respect to different hardware and OS mode. Two sets of uni-
directional bandwidth measurements are presented in Figure 8. To calculate the raw DP
bandwidth, we measure the time to transmit 10 MB data from one process to another re-
mote process, plus the time for the receive process to send back a 4-byte acknowledgment.
By subtracting the measured time with the single-trip latency of a 4-byte message, we
calculate the achieved bandwidth as the number of bytes transferred in the test divided
by the result timing. We have implemented a simple Go-Back-N protocol on top of DP to
provide flow control and support limited reliable communication. Since all the protocol
works are done in the user space, it has add-on overheads to the O, and U, parameters.
For example, the O,-GEDP-SMP value for sending a full load packet is increased from
6.9 us to 10 ps. To calculate the flow-controlled bandwidth of DP, we performed a set of
tests similar to what we have done to obtain the raw DP bandwidth.

From the figure, we see that the maximum achieved bandwidth for GEDP is 79.5
MB/s, which is the raw DP performance measured under the SMP kernel. Under the
UP kernel, the raw GEDP achieves only at most 75.2 MB/s. Despite the fact that the
SMP kernel has a higher interrupt overhead, it has a better throughput than the UP
kernel. This shows the advantage of sharing the token buffers between the kernel process
and user process. Under the UP mode, the user process can only pick up its arrived
messages after the interrupt thread returns, so the whole interrupt overhead is included
in the delay calculation. But, with the SMP mode, the user process can check out its
messages whenever it gets the CPU cycles and detects that there are arrived messages,
even before the interrupt thread returns. For the FEDP-UP, the maximum achieved raw
DP bandwidth is 12.2 MB/s, which is 97% of the Fast Ethernet performance, while the
raw GEDP only achieves 63.6% of the theoretical gigabit performance. This shows that
there are limiting factors in the host machines which hinder the GE performance. We
have seen in Figure 6(e) that the network adapter cannot transmit data in full gigabit
performance, by dividing the payload size with the corresponding g, value, we have a good
meter to estimate maximum performance we can achieve. Take the value of g, = 18.7 us
at m = 1500 bytes as an example, we find that the maximum transmission throughput
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Figure 8. Uni-directional bandwidth performance

is around 80MB/s, which is closely matched with the above measurement. To reveal how
much improvement we could achieve if we adopt a zero-copy semantic in the send path,
we have done some tests that simulated a zero-copy send operation, (simply by removing
the memcpy() operation and sending out garbage content). The resulting send gap (gs)
is approximately 16.4 us for m = 1500 bytes, which corresponds to a bandwidth of 91.5
MB/s.

With flow control on, the FEDP performs as good as the raw performance for medium
to large-sized messages. But for the GEDP, the higher protocol overhead does affect the
overall performance, especially under the UP kernel mode. Our result shows that under
the SMP mode, the maximum achieved GEDP bandwidth with flow control is 77.8 MB/s,
with an average drop of 3.4% performance for the data ranged between 1K and 1.5K when
compared with the raw speed. While for the performance under UP mode, the maximum
achieved bandwidth with flow control is 65.2 MB/s and the average performance drop is
13% of the raw speed for the same data range. This further supports our argument that
the performance of GEDP-UP is more susceptible to software overheads.

5.3. Bi-directional Bandwidth Test

Most networks support bi-directional communication and lots of communication pat-
terns require concurrent send and receive operations to achieve optimal results, e.g. com-
plete exchange operation, shift operation, tree-based broadcast, etc. We extend the tests
used for uni-directional bandwidth to evaluate the communication performance of the bi-
directional communication. During the experiment, two nodes are involved in each test,
but they are both sender and receiver. To measure the raw bi-directional bandwidth of
DP, both processes are synchronized by a barrier operation before starting the exchange.
We measure the time spent by each process in exchanging 10 MB of data, and calculate
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Figure 9. Bi-directional bandwidth performance

the bandwidth by dividing the exchange message size with the measured time. Similar-
ly, we perform the same set of tests with the add-on reliable layer. When testing the
bi-directional bandwidth on the SMP kernel, we also try to explore the effect of using
multiple CPUs in driving the communication. We have performed a set of tests with two
threads per process, which share the same DP endpoint, one thread takes up the job as the
sender while the other acts as the receiver. All the experimental results are summarized
in Figure 9.

For the GEDP, the best bi-directional performance is observed to be about 58 MB/s
per process, which is measured on raw DP using multi-thread mode on SMP kernel. Com-
paring with the uni-directional bandwidth, we have a performance loss of 22 MB/s. We
attribute this performance loss to the contention on the PCI bus as there are concurrent
DMA transfers to and from the host memory. When compared with the single thread
mode on GEDP-SMP and GEDP-UP, which only achieve 47 MB/s per process, we be-
lieve that the software overhead induced in the concurrent send and receive operations is
the main cause of this performance loss. Therefore, with the add-on flow control (FC)
layer that adds more software overhead, it is sensible to see that all GEDP-FC perfor-
mance suffers more. However, it is surprising to find that the bi-directional performance
of GEDP-SMP-FC with multiple thread support is worse than the single thread mode.
This performance difference is coming from the extra memory contention and synchroniza-
tion needed in accessing shared data structures on the reliable layer as both threads are
concurrently updating those shared information. Finally, similar to the conclusion as ap-
peared in the uni-directional benchmark, the performance of the FEDP on bi-directional
communication has achieved a near-optimal result, which attains 12.16 MB/s per process
on the raw bandwidth, and 11.7 MB/s per process with the add-on flow control support.
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6. Related Works

In the past, several prototype cluster communication systems based on Gigabit net-
working technology have been built. The Genoa Active Message Machine (GAMMA)
[6,8] is an experimental communication system on Fast Ethernet and Gigabit Ethernet.
The GAMMA driver uses a mechanism derived from Active Messages called Active Ports
[7]. Active Ports is the abstract communication endpoint inside processes to exchange
messages with each other. The Active Ports differs from DP endpoint in that an active
port is associated with the message handler designated by the receiver. It can achieve
9.5 us latency and 93.7MB/s bandwidth by connecting two Pentium III PCs. However,
the benchmark program reuses the same pre-pinned data buffer for the send and receive
operations. As the send buffer has already been setup, the time spent in preparing of the
frame header is not counted to the total time of the latency. Besides, in real applications,
the reuse of same memory buffer may require the programmer to do their own data move-
ment between the dedicate buffer and the user-space data buffers, which may introduce
new overheads.

Fast Messages 2.x (FM 2.x) [11] is the core communication layer found inside the High
Performance Virtual Machine (HPVM) package [5]. It has been implemented on Myrinet
and Giganet, and runs on Windows NT. To send a 4-byte message, the measured latency
is 9.63 us on Myrinet and 14.7 us on Giganet. For sending a 16-Kbyte message, the band-
width reaches 100.53 MB/s on Myrinet and 81.46 MB/s on Giganet. The user interface
of FM 2.x is quite different from DP. In DP, the API for the send and receive operations
is quite straightforward, just involving one send and one receive function respectively.
However, in FM 2.x, the send operation involves three functions - FM begin _message(),
FM_send_piece() and FM_end_message(), and the receive operation involves 2 func-
tions - FM_ extract() and FM_ receive(), which may cause inconvenience for the users.

The GigaE PM [18] has been designed and implemented for parallel applications on
clusters of computers on Gigabit Ethernet. It provides not only a reliable high bandwidth
and low latency communication function, but also supports existing network protocols
such as TCP/IP. By adopting a technique similar to the U-Net approach, PM provides a
low-latency communication path through a virtual network object. This virtual network
object encapsulates all the data structures needed to maintain a virtual channel between
processes of the same parallel application, which include the fixed-size send and receive
buffers and the associated queue structures. In its first implementation, it achieved 48.3
us round-trip latency and 56.7 MB /s bandwidth on Essential Gigabit Ethernet NIC using
Pentium IT 400 MHz processor. GigaE PM II [19] has been implemented on Packet Engines
G-NIC II for connecting Compaq XP-1000 workstations, each with 64-bit Alpha 21264
processor running at 500 MHz. The performance results show a 44.6 ps round-trip time
for an eight-byte message. XP1000’s four 64-bit CPU data buses, which support a 2.6
GB/s aggregate bandwidth, help GigaE PM II achieve 98.2 MB/s bandwidth for message
length 1,468 bytes.

Virtual Interface Architecture (VIA) [23| is a novel communication architecture for
clusters. It adopts the user-level communication paradigm and tries to standardize the
interface for high-performance network technologies such as Gigabit networks. VI Archi-
tecture reduces network-related system processing overhead by creating the illusion of a
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dedicated network interface to multiple application programs simultaneously. Each VI
represents a communication endpoint. Pairs of VIs can be logically connected to support
point-to-point data transfer. M-VIA is a prototype software implementation of the VIA
for Linux [15]. It supports the Fast Ethernet DEC Tulip chipsets as well as Packet En-
gines GNIC-I and GNIC-II Gigabit Ethernet cards. It is implemented as a set of loadable
kernel modules and a user level library, and provides software doorbells with a fast trap
for legacy hardware. The design of M-VIA adopts a highly modular approach similar
to DP. M-VIA further abstracts the Kernel Agent defined in VIA specification into the
M-VIA Kernel Agent and one or more M-VIA Device Drivers which are hardware depen-
dent. Currently the evolution version of M-VIA, MVIA-2, is still under development. It
will have much better support for high performance networks such as Giganet, Servernet
IT and Myrinet.

7. Conclusions

The design of DP exploits the underlying hardware architecture and operating system
characteristics to effectively utilize the network and host system resources. We emphasize
on the use of a realistic communication cost model so that designers can use it as a calibra-
tion tool to assess various design tradeoffs. The proposed communication model clearly
delineates the characteristics of the communication network and allows the decoupling of
communication overheads incurred in the host machine and the network, which in turn,
allows a more controllable manner in scheduling communications.

Our messaging mechanisms significantly reduce the software overheads induced in the
communication, as well as optimizing the memory utilization with an efficient buffer
management scheme. Our implementation of the Directed Point communication system
on two Ethernet-based networks achieves remarkable performance, e.g. the single-trip
latency for sending 1-byte message is 16.3 us and 20.8 us on the Gigabit Ethernet and
Fast Ethernet network respectively. With a standard PC, 97% of the Fast Ethernet
network bandwidth is available to user applications, that corresponds to the achievable
bandwidths of 12.2 MB/s and 24.32 MB/s for the uni-directional traffic and bi-directional
traffic respectively.

Although DP achieves 63.6% of the Gigabit Ethernet bandwidth, (i.e. 79.5 MB/s),
the performance evaluation result shows us that there are still rooms for us to further
improve its performance, especially on the bi-directional bandwidth which is involved in
many collective operations. For example, based on our communication model, it shows
that the memory copies on the O, and O, parameters affect the overall performance in
the Gigabit Ethernet network.

The secondary goal of DP is to achieve good programmability. A speedy communication
system on its own does not guarantee to provide the efficient solutions to cluster appli-
cations. To address the programmability issue, DP provides an abstraction model and
an API that has Unix-like I/O syntax and semantics. With the abstraction model, users
can express those inter-process communication patterns on a directed point graph. This
cleanly depicts the runtime system requirement of the target application and allows users
to optimize their design strategies, e.g. allocating appropriate number of endpoints to re-
alize this communication pattern. By providing an Unix-like I/O API, DP assists users in



26

migrating their applications to the new environment, and facilitates the implementation
of high-level communication libraries, e.g. MPI.

Indeed, the advance in the network technology has made the network capable of deliver-
ing packets in Gigabit speed or even higher. However, having the capability to deliver the
packets in higher speed does not guarantee to achieve optimal performance while perform-
ing more complicated communication operations, such as many-to-one and many-to-many
communications [21], since contention problems can happen in host node, network link
and switch. The increasing growth of the network performance has stressed the need
of a better resource utilization and system scalability on the design of contention-free
collective communication algorithm.
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