
JESSICA: Java-Enabled Single-System-Image

Computing Architecture

Ma Jin Ming

A thesis submitted in partial fulfillment

of the requirements for

the degree of Master of Philosophy

at the University of Hong Kong.

February 1999

Abstract of thesis entitled

“JESSICA: Java-Enabled Single-System-Image Computing Architecture”
submitted by

Ma Jin Ming

for the degree of Master of Philosophy

at the University of Hong Kong

in February 1999

The Java programming language has taken the entire computing community by storm since its

introduction in late 1994. Apart from its object-oriented and network-centric characteristics,

Java also supports the multi-thread model for concurrent programming as a built-in feature of

the language. However, not until recently with the release of Java 2 could multi-threaded

applications achieve true parallel execution as the implementation of the previous virtual

machines did not support the feature, even if the underlying hardware is a symmetric multi-

processor machine.

On the other hand, cluster computing is gaining overwhelming acceptance in recent years

because it offers a viable and inexpensive alternative to supercomputers for parallel execution

of applications. While popular communication libraries like MPI are available for

programming parallel applications in a cluster, they follow the message-passing programming

model which is considered more difficult to handle than the shared-memory model.

This thesis presents JESSICA which combines the merits of both technologies; namely the

parallel execution capability of clusters and the simple thread model of Java for concurrent

programming. JESSICA stands for ‘Java-Enabled Single-System-Image Computing

Architecture’. It is a middle-ware that runs on top of the standard UNIX operating system

and transforms a cluster of computers into a single system with multiple processors, a single

and contiguous memory space and other unified resources. It provides a Global Thread Space

that hides the physical boundaries between machines, and makes a cluster appear as a single

computer to applications. Thread migration is supported by a novel approach called Delta

Execution where only the machine-independent part of a thread’s execution context is

migrated strategically. In addition, migration transparency is achieved by redirecting any

location-dependent operations to the appropriate machines for execution. The result is a

parallel execution environment where threads can freely move across machine boundaries.

JESSICA supports the Serial-Program-Parallel-Subsystem programming paradigm such that

application programmers no longer need to worry about the number of processors available.

The programmers create as many threads as needed and the system will automatically migrate

the threads within the cluster to maximize parallelism. Since JESSICA conforms to the Java

Virtual Machine Specification, the vast number of existing Java applications can run on the

system immediately and gain speedup. By providing the favorable shared-memory model for

writing parallel applications in Java, JESSICA can promote the Java programming language

to become the language of choice for parallel application development in the future.

To prove the JESSICA concept, a working prototype has been implemented on a 12-node

cluster, along with a number of multi-threaded applications that are commonly found in the

parallel computing literature. Experiments show that considerable speedup is achievable in

all the applications, with efficiency ranging from about 95% to 50% with 2 to 12 nodes.

Furthermore, Delta Execution offers fast migration capability with a migration latency of only

about 28 milliseconds.

i

Declaration

I declare that this thesis represents my own work, except where due acknowledgement is

made, and that it has not been previously included in a thesis, dissertation or report submitted

to this University or to any other institution for a degree, diploma, or other qualification.

Ma Jin Ming

February 1999

ii

Acknowledgements

I would like to take this opportunity to express my gratitude towards the following people.

First of all, I would like to thank my supervisors, Dr Francis Lau and Dr Cho-Li Wang for

their invaluable guidelines and perpetual patience. I would also like to thank the early

members of the System Research Group, Anthony Loong and Carl Yau, for providing me

with many stimulating ideas for doing research. My vote of thanks also goes to Doug Kwan,

Tim Yeung, Barry Will, Thomas Li and Paul Chow for their kindest help and support. Last

but not least, I would like to thank Katherine Lau and Roderick Ma for their assistance in the

preparation of the thesis draft.

ii

Contents

Declaration i

Acknowledgements ii

Table of Contents iii

List of Tables and Figures vii

Chapter 1 Introduction 1

1.1 Cluster Computing 1

1.2 Java and Parallel Computing 2

1.3 What is JESSICA 4
1.3.1 Provide a Single-System-Image
1.3.2 Support Preemptive Migration of Java Threads
1.3.3 Support Migration Transparency
1.3.4 Support the Shared-Memory Programming Model
1.3.5 Existing Applications Ready to Run in Parallel
1.3.6 Extendable to a Heterogeneous Cluster
1.3.7 Designed for Java
1.3.8 A Portable UNIX Program

1.4 Contributions of the Thesis 7

1.5 Thesis Organization 8

Chapter 2 The JESSICA Approach 9

2.1 Overview 9

2.2 Single-System-Image and its Levels of Abstraction 9
2.2.1 Hardware Level
2.2.2 Kernel Level
2.2.3 Middle-ware Level
2.2.4 Application Level

2.3 The JESSICA Approach 11

2.4 The Challenge 12

2.5 The JESSICA Solution 13
2.5.1 Bytecode Execution
2.5.2 Memory Management
2.5.3 Thread Creation and Scheduling
2.5.4 Thread Synchronization and Signaling

2.6 Augmenting System Classes 15

iii

2.7 Other Design Issues 16
2.7.1 Symmetry
2.7.2 Transparency
2.7.3 Single Entry Point
2.7.4 Single File Hierarchy
2.7.5 Single I/O System Image
2.7.6 Support for Fast Message Passing
2.7.7 Support for Job Management

2.8 Load Distribution in JESSICA 18

2.9 Issues for Implementing Thread Migration 19
2.9.1 Complexity
2.9.2 Performance
2.9.3 Transparency
2.9.4 Residue Dependency
2.9.5 Scalability
2.9.6 Heterogeneity
2.9.7 Conclusions

2.10 Thread Migration Policy 22

2.11 Migration Granularity 23

2.12 Comparison with Traditional Process Migration 23

Chapter 3 Related Works 25

3.1 Overview 25

3.2 Micro-kernel Augmentation 25
3.2.1 Task Migration on Mach

3.3 Monolithic Kernel Augmentation 27
3.3.1 NOW MOSIX
3.3.2 Solaris MC

3.4 Encapsulation at the Middle-ware Level 30
3.4.1 Java/DSM
3.4.2 Millipede

3.5 Programming Language and Software Library Support 32
3.5.1 Telescript
3.5.2 Arachne

3.6 User-Level Checkpoint-and-Restart 34
3.6.1 Condor
3.6.2 Tui

3.7 Summary 37

Chapter 4 System Architecture and Implementation 38

4.1 Overview 38

4.2 The Console Node 38

4.3 The Worker Node 40

iv

4.4 System Components in the JESSICA Daemon 41
4.4.1 Bytecode Execution Engine (BEE)
4.4.2 Distributed Object Manager (DOM)
4.4.3 Thread Manager (TM)
4.4.4 Migration Manger (MM)

4.5 Implementation of JESSICA 48
4.5.1 A Portable User-Level Thread System
4.5.2 Installing Custom Signal Handlers
4.5.3 Detecting Migration Event
4.5.4 Migrated Thread to Call Native Method

Chapter 5 Delta Execution 54

5.1 Overview 54

5.2 Capturing the Execution Context of a Running Thread 55

5.3 Java Thread Migration – First Attempt 57

5.4 Machine Dependent States 60

5.5 Incremental Thread Migration by means of Delta Execution 65
5.5.1 Two Types of Java Method Frames
5.5.2 Delta Execution

Chapter 6 SSI Transparency Support 67

6.1 Overview 67

6.2 The Master-Slave Design for Thread Migration 67

6.3 Cooperative Semaphore 70
6.3.1 Distributed Thread Synchronization

6.4 Remote Exception 73

6.5 I/O Redirection 76

6.6 Distributed Garbage Collection 79

Chapter 7 Performance Evaluation 81

7.1 Overview 81
7.1.1 The Experiment Environment

7.2 Primitive Operations Overhead 81
7.2.1 Overhead from Accessing Distributed Objects
7.2.2 Overhead from Cooperative Semaphore Operations

7.3 Migration Latency 86

v

7.4 Application Performance 90
7.4.1 Approximation of the value π (PI) by Integration
7.4.2 Recursive Ray-Tracing
7.4.3 Red-Black Successive Over-Relaxation on a Grid

7.5 Conclusions 104
7.5.1 Reduce the Number of Distributed Object Accesses
7.5.2 Reduce the Amount of Distributed Thread Synchronization

Chapter 8 Conclusions and Future Work 107

8.1 To Migrate Or Not To Migrate 107

8.2 The Home Model 107

8.3 An Effective DSM Subsystem 108

8.4 User level Thread System 109

8.5 Transparent I/O Redirection 110

8.6 Conclusions 111

8.7 Executive Summary 113

8.8 Future Work 115
8.8.1 Heterogeneous Migration
8.8.2 Thread Migration with JIT Execution Support
8.8.3 A Java Shell
8.8.4 A Distributed Java OS in the Micro-kernel Approach

References 117

vi

List of Tables and Figures

1.1 Limited parallel execution support in Java Ver1.1 and Java 2 (Ver1.2) 3

1.2 JESSICA’s SSI approach: A Global Thread Space 5

2.1 JESSICA provides the same system services as a standard JVM and at the same

time exploits the parallel execution capability of the cluster 13

3.1 Comparison of characteristics between JESSICA and the related works

discussed 37

4.1 Entities in a JESSICA system 39

4.2 System components in a JESSICA Daemon 42

4.3 Interactions between system components in JESSICA 47

5.1 Delta Execution in action 55

5.2 Factorial.java 57

5.3 Disassembled bytecode of the class Factorial 58

5.4 Execution context of thread main after a number of iterations 59

5.5 Bar.java and Foo.java 60

5.6 Disassembled bytecode of the class Bar 61

5.7 Disassembled bytecode of the class Foo 61

5.8 Simplified implementation for instruction new in BEE 62

5.9 Execution context of thread main after entering the class initializer

“<clinit>” 62

5.10 Revised execution context of thread main after entering the class initializer “<clinit>”

64

5.11 Revised thread execution context representation, shaded blocks are the sets of

machine dependent states not captured by JMFs 65

5.12 Delta sets are sent to the slave thread one by one for execution 66

6.1 Interactions between the master and the slave thread that transparently hide

migration from the rest of the system 69

6.2 Pseudo-code for implementing Cooperative Semaphore in JESSICA 73

6.3 A simple try-and-catch example of exception 74

6.4 The mechanism for handling Remote Exception 75

6.5 Code segment for the implementation of

java.io.FileInputStream.read()with redirection 77

vii

6.6 Code segment for the implementation of

java.net.DatagramSocket.datagramSocketCreate()

with redirection 78

6.7 Service loop of the master thread that handles redirection request of location dependent

operations from Slave 79

7.1 Class Foo measures the time it takes to update an integer object variable

1,000,000 times 82

7.2 Adjusted time for updating an integer object variable 1,000,000 times 83

7.3 Cooperative Semaphore in action: a migrated thread performs an acquire

operation 85

7.4 Interaction between entities in the home and the destination node when a thread

is migrated 88

7.5 Graph of migration latency against size of the 1st transmitting delta set 89

7.6 The graph of 21

4

x
y

+
= 91

7.7 Main-loop for each worker thread to compute a partial sum for the value π (PI) 92

7.8 Total execution time against no. of processors 92

7.9 Speedup/efficiency against no. of processors 93

7.10 Percentage of execution time break down against no. of processors 93

7.11 Recursive ray-tracing 94

7.12 Implementation of getJob() in class RayTracer, notice that the value of

job is initialized to the height of the image 95

7.13 Main-loop of WorkerThread to compute pixels in the image 95

7.14 A snowman image produced by the recursive ray-tracer (480x640 pixels) 97

7.15 Total execution time against no. of processors 97

7.16 Speedup/efficiency against no. of processors 98

7.17 Percentage of execution time break down against no. of processors 98

7.18 Implementation of barrier synchronization between threads 100

7.19 The main execution loop of a worker thread 101

7.20 Total execution time against no. of processors 102

7.21 Speedup/efficiency against no. of processors 103

7.22 Percentage of execution time break down against no. of processors 103

7.23 Class Bar that can minimize the number of distributed object accesses when

migrated 105

1

Chapter 1

Introduction

1.1 Cluster Computing

Topics in Cluster Computing have been under active research in recent years. A cluster of

computers is a federation of computers linked by an interconnection network that are running

an integration software for performing collaborative computation. The integration software

allows computers to coordinate their activities and to share resources within the system, such

as CPU cycles, data residing in memory, file storage, et cetera. Many promising results have

been reported on using clusters of computers for load sharing and parallel computing [23, 29,

30 and 41]. With the advent of high-speed networking and microprocessor technologies,

Cluster Computing has emerged as a favorable alternative to Massively Parallel Machines like

the Cray T3D and the IBM SP2 for high performance and large-scale computing. Clusters are

scalable and they are constructed from affordable, off-the-shelf component hardware.

In general, computers belonging to a cluster are loosely coupled and they do not share

memory. As a result, parallel programs developed to run on a cluster usually follow the

message-passing programming model. In this model, each computer can only access data that

are stored in its local memory, non-local data are obtained as messages being sent from

remote nodes. As a result, parallel computation proceeds as the participating nodes exchange

messages between them. While the message-passing model matches the No-Remote-

Memory-Access (NORMA) characteristic of a cluster, it is generally agreed that

programming in this model is more difficult than the shared-memory model as the latter is

closer to the Von Neumann model for sequential programming, a model which is well

understood by programmers. In the shared-memory model, activities between the processors

are coordinated through updating a region of memory that is shared by all. Mechanisms to

enforce mutual exclusion are provided for accessing the shared memory to ensure data

consistency. Despite of the favorable shared-memory model, most of the programming

libraries available today for a cluster are designed for message-passing, such as MPI [38].

2

1.2 Java and Parallel Computing

The Java Programming Language [16] has been receiving unprecedented acceptance and

support since its introduction in late 1994. It is being studied and deployed by a very broad

range of users and application developers. Many colleges have already adopted Java as the

first language to teach in their beginners’ courses for computer programming. We envision

Java as the language of choice for most kinds of application development. In addition, the

following features of Java also make itself a favorable tool for distributed computing:

• Multi-threaded programming is directly supported and is part of the language.

• A comprehensive set of BSD socket API for inter-process communication is included in

the network extension of the language.

• The object-oriented nature of the language allows incorporation of new communication

libraries by implementing their corresponding classes. Existing library implementations

can be reused immediately by linking them to any Java applications using the Java Native

Interface (JNI).

However, whether to execute multi-threaded Java applications over a cluster or on a

symmetric multi-processor (SMP) machine, neither case is in fact capable of reaping the

maximum processing power delivered by the underlying system. Although the Java

Programming Language has multi-threaded support, SUN only provides a green thread

implementation in its Java Virtual Machine. Hence it is not possible to map multiple Java

threads to multiple processors, and Java threads still run sequentially and are bounded to a

single processor (Fig 1.1a). (This is the case for JDK releases prior to version 1.2 [44].

Version 1.2 supports native-thread on SMP machine (Fig 1.1b). It was released in December

1998 and renamed to Java 2.) To span across multiple machines and achieve real parallelism,

Java programmers currently have to tackle the coordination between processing nodes at the

application level, through some IPC mechanisms such as sockets. Since the introduction of

JDK version 1.1, the burden on the programmers is alleviated by the provision of Object

Serialization [21], Remote Method Invocation (RMI) [22] and the Object Request Broker

(ORB) [20] support. They allow coordination and cooperation of processes at the function

call level, through some remote procedure call (RPC) like mechanisms (Fig 1.1c).

Nonetheless, programmers still have to worry about the availability of the processing nodes

involved, as the usability of a distributed application depends on the nodes’ availability.

Moreover, parallel programming in this paradigm is still not as straightforward as one could

do when using a multi-threaded model.

3

Fig 1.1: Limited parallel execution support in Java Ver1.1 and Java 2 (Ver1.2)

Having observed the advantages and limitations of Cluster Computing and those of the Java

Programming Language, here we propose JESSICA. JESSICA combines the merits of both

technologies. It offers a parallel execution environment over a cluster of computers and

supports the shared-memory programming model using threads.

multiple processors, on an SMP machine.
b) JVM Ver1.2: Multiple threads being mapped to

to one processor only, even on an SMP machine.
a) JVM Ver1.1: Multiple threads being mapped

thread space
application’s

application’s
memory space

����
����
����
����
����
����

����
����
����
����
����
����

Hardware

thread space
application’s

application’s
memory space

����
����
����
����
����
����

����
����
����
����
����
����

Hardware

communicate with each other through RPC.
c) A distributed Java application running on a federation of of JVMs. Participating processes

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
��
��

���
���
���
��
��

processor

machine’s
local memory

��
��
��
��

��
��
��
��

memory
mapping

application-
to-system

thread-to-
processor
mapping

KEYS:

processor

machine’s
local memory

��
��
��
��

��
��
��
��

remote-
procedure-

RMI/CORBA
call such as

memory
mapping

application-
to-system

thread-to-
processor
mapping

KEYS:

processor

machine’s
local memory

��
��
��
��

��
��
��
��

memory
mapping

application-
to-system

thread-to-
processor
mapping

KEYS:

���
���
���
���

���
���
���
���

��
��
�
�

��
��
�
�

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

���
���
���
���
���
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

���
�
�

�
�
�

�
�
�

�
�
�

running threadsrunning threads

INTERCONNECTION NETWORK

4

1.3 What is JESSICA

This thesis discusses our work on JESSICA, our solution that addresses the issues mentioned

previously using the Single-System-Image (SSI) approach. JESSICA stands for ‘Java-

Enabled Single-System-Image Computing Architecture’, a platform for executing multi-

threaded Java applications [5] over a cluster of computers running the standard UNIX

operating system. It is an integration-software that allows multi-threaded applications to

exploit the maximal parallelism obtainable from the cluster. JESSICA is implemented on top

of the UNIX operating system and is therefore portable. It acts as a middle-ware that

encapsulates the distributed nature of the cluster hardware. It provides the applications with

an illusion that they are running on a single multiprocessor-computer, that is, a Single-

System-Image.

The Single-System-Image is realized through the provision of a Global Thread Space. When

an application is instantiated, the JESSICA system creates the logical thread space that spans

over the cluster, for the containment and execution of threads to be created by the application.

The Global Thread Space hides the physical boundaries between machines, Java threads can

then move freely around the cluster from one machine to another. This movement is

supported by a preemptive thread migration mechanism called Delta Execution. Migration is

transparent to threads residing in the Global Thread Space because any location dependencies

are taken care of by the JESSICA system. Moreover, JESSICA provides a single and

contiguous Global Object Space that allows memory objects to remain accessible by threads

independent of their physical locations, even if the threads have migrated to other machines.

JESSICA supports the Global Object Space by deploying a Distributed Shared Memory

(DSM) system over the cluster, so that memory consistency against concurrent accesses can

be ensured. Consequently, the free movement of threads in the Global Thread Space provides

an opportunity for optimizing utilization of shared resources in the cluster.

In order to optimize resource utilization in the cluster, JESSICA supports the Serial-Program-

Parallel-Subsystem (SPPS) computing paradigm [14] where parallel execution can be

achieved by simply creating as many Java threads as needed, just as the case when it is

running in a single execution environment. The system can migrate threads around the cluster

automatically to maximize parallelism. It handles thread-to-processor mapping transparently

and maintains the integrity and consistency of shared resources, which may be distributed all

over the cluster (Fig 1.2).

5

Fig 1.2: JESSICA’s SSI approach: A Global Thread Space

The main characteristics of JESSICA include:

1.3.1 Provide a Single-System-Image

JESSICA transforms a collection of interconnected computers into a single multi-processor

computer when it is viewed from the application level. All the system level details such as

mapping of active Java threads to processors and the redirection of communication data after

a thread is migrated are transparently handled by JESSICA. With a preemptive thread

migration mechanism installed, Java threads can be dynamically redistributed over the cluster

whenever a load imbalance is detected. This kind of Single-System-Image illusion simplifies

application program development by providing a single entry point, a single point for resource

control and a single memory space for programmers. Parallel execution can be achieved

simply by creating as many threads as needed, since the thread migration mechanism helps to

exploit the maximal parallelism and to optimize utilization of shared resources.

1.3.2 Support Preemptive Migration of Java Threads

Delta Execution is a novel approach that we have devised for supporting preemptive thread

migration. A Java thread can be stopped at any time, be migrated to another processor and be

resumed execution there. Delta Execution requires no knowledge from the application when

the migration took place and is therefore transparent. In addition, Delta Execution does not

introduce any migration-specific operations to be embedded into the application code, which

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

�
�
�
�

�
�
�
�

Running Threads

processor

machine’s
local memory

��
��
��
��

��
��
��
��

thread-to-
processor
mapping�

�
�
�

�
�
�
�

memory
mapping

application-
to-system

�
�
�
�
�

�
�
�
�
�

KEYS:

Global Thread Space

Global Memory Space

INTERCONNECTION NETWORK

6

ensures the greatest portability and immediately migratability of any existing Java

applications. A detail discussion of Delta Execution is provided in Chapter 5.

1.3.3 Support Migration Transparency

Migration transparency is upheld in JESSICA by leaving helper threads (also known as

master) at the source node. The helper threads are responsible for performing and any

location-dependent operations on behalf of the migrated threads (also known as slave). In

addition, threads continue to be able to synchronize with one another even though some of

them have been migrated to other nodes. This is achieved by using Cooperative Semaphore.

Detail discussion on how to support migration transparency and the implementation of

Cooperative Semaphore is presented in Chapter 6.

1.3.4 Support the Shared-Memory Programming Model

JESSICA is able to hide the distributed nature of the cluster and to unify the local memory

region attached to each processor to produce a uniform Global Object Space shared by all the

processors. Consequently, programmers are able to follow the multi-threaded programming

model that is a direct extension of the shared-memory model for developing parallel

applications. The multi-threaded model is considered simpler and less error-prone.

Furthermore, since JESSICA does not introduce any new computational model, parallel

applications developed on JESSICA are, in fact, standard multi-threaded applications that are

also runnable on standard uni-processor virtual machines, and vice versa.

1.3.5 Existing Applications Ready to Run in Parallel

Since the implementation of the JESSICA system conforms to the Java Virtual Machine

Specification [36], the vast number of existing multi-threaded Java applications require no

modification to run on JESSICA. They can benefit from the parallel execution environment

JESSICA offers and gain speedup immediately.

1.3.6 Extendable to a Heterogeneous Cluster

The Java features of machine-independent bytecode and virtual machine execution mean that

it is possible to extend JESSICA to run on a cluster of heterogeneous computers. It can

include hardware of various platforms such as PC compatibles, workstations and symmetric

multi-processing machines (SMP). In fact, the design and implementation of the Delta

Execution have already taken care of heterogeneity so that only the machine independent

execution context of a Java thread is migrated. The limitation in the current implementation

is that the DSM subsystem cannot work over heterogeneous hardware. To support a

heterogeneous cluster, the current implementation can either replace the DSM subsystem with

7

one that supports heterogeneous hardware, or to implement an address translation service

such as the one described in Java/DSM [39].

1.3.7 Designed for Java

JESSICA supports one of the most popular programming languages of the 21st Century, Java

provides a parallel execution environment for a wide range of Java applications that are

developed or currently under development. At the same time, the huge developer base of

Java can also help to promote the acceptance of JESSICA and to enlarge its installation base.

1.3.8 A Portable UNIX Program

JESSICA executes Java applications in the form of a distributed Java Virtual Machine

running on top of the UNIX operating system. JESSICA is, after all, just a UNIX program

implemented entirely in the high-level language C/C++, hence it is portable across hardware

platforms. The idea of running JESSICA as a middle-ware on top of an operating system also

makes the goal of a Single-System-Image easier to achieve. Otherwise it would involve

modifying the kernel such as the case in MOSIX [2] and Sprite [12], which can be much more

tedious and time-consuming.

1.4 Contributions of the Thesis

JESSICA is the first system that supports transparent Java thread migration and provides a

Single-System-Image over a cluster of computers. It offers a viable, high-performance and

yet low-cost platform for parallel execution of Java applications. The contributions of our

work are listed as follows:

1. JESSICA provides a parallel execution environment that does not introduce any new

parallel computational model, programming API, or language construct. Because of the

Single-System-Image encapsulation, existing multi-threaded Java applications are

immediately runnable and ready to reap the parallel-processing capability available from

the cluster.

2. Delta Execution provides a transparent and preemptive Java thread migration mechanism,

which can help to exploit the maximal parallelism in the cluster and optimize the use of

computing resources.

3. The concepts of Delta Execution and the Master/Slave design for supporting migration

transparency is language-neutral and platform-independent. They can be applied to other

programming languages that execute by means of virtual machines for implementing

transparent thread migration.

8

4. The JESSICA prototype and its thread migration capability are readily extendable to

establish a Single-System-Image over a heterogeneous cluster. This is a significant step

forward to achieving the goal of Global Computing, as visualized in the Millennium [40]

and the Legion Projects [17].

1.5 Thesis Organization

This thesis is made up of 8 chapters. Chapter 1 is the introduction. Chapter 2 presents the

background and issues on providing Single-System-Image and thread migration in a cluster.

Besides, the JESSICA approach is also discussed in the chapter. Chapter 3 describes

approaches taken by related research that tackle thread migration and Single-System-Image.

Chapter 4 gives the system architecture of JESSICA in details. Chapter 5 introduces Delta

Execution, our solution to preemptive Java thread migration. Chapter 6 discusses how

Single-System-Image transparency is supported in JESSICA. Chapter 7 evaluates the

performance of JESSICA by studying a number of experiments performed. Finally, Chapter

8 concludes our implementation experience with JESSICA and gives directions for future

work.

9

Chapter 2
The JESSICA Approach

2.1 Overview

JESSICA is designed around the concept of Single-System-Image (SSI), to provide

application with an illusion that they are running on a single computer system. This chapter

presents some background of the SSI concept and the issues of concern when implementing it

on a cluster. Furthermore, the approach that JESSICA has taken to achieve SSI will also be

discussed. Apart from providing an SSI illusion over a cluster, another JESSICA’s goal is to

improve resource utilization in the cluster. JESSICA achieves this goal by implementing a

transparent thread migration mechanism where threads can move to underload nodes and

continue execution there. The issues for implementing thread migration and the JESSICA

approach to thread migration will be dealt with in the later part of the chapter.

2.2 Single-System-Image and its Levels of Abstraction

In [14], Pfister believes that the definition of Single-System-Image (SSI) should be part of the

definition of a cluster: A collection of machines is not a cluster until it is used as a single

computing resource, and SSI is what makes a cluster a cluster. Single-System-Image is an

important concept in Cluster Computing for it can simplify the implementation of the

operating system, the applications and even management of running jobs in the cluster,

depending on which level the SSI illusion is provided. The idea behind SSI is to encapsulate

the system resources below it and to create a layer of abstraction, such that the components

sitting on top of the layer can view the encapsulated resources as a single and unified entity.

By establishing a logical boundary that encloses the components lying on top of the

abstraction, the distributed nature of the resources located below the layer of abstraction is

hidden by the SSI from the components above. As a result, the unified view, that is, the

logical boundary provided by an SSI, is dependent on which level in the system the

abstraction is made. Pfister [14] identifies that in general, four different levels of abstraction

can be applied to a cluster. They are the hardware-level, the kernel-level, the middle-ware

level and the application level, each of them provides a different SSI boundary that are

perceived only by components that it encloses.

10

2.2.1 Hardware Level

At the hardware level, the lowest level resources such as memory and I/O devices can be

linked together by special circuits to provide a unified memory and I/O device space. SSI at

this level is usually found on symmetric multi-processor machines (SMP). The operating

system layer immediately above the hardware would perceive the hardware to have a

continuous memory space and a set of globally accessible I/O devices. In this case all the

software layers, including the kernel, operating subsystems and the applications are enclosed

by the SSI boundary. Note that the SSI abstraction provided is at the lowest level.

2.2.2 Kernel Level

SSI at the kernel level means the kernel implementation is responsible for hiding the

distributed nature of the hardware and providing the unified illusion to the software

subsystems and applications above. Any system calls executed by the subsystems and the

application code have to provide the same consistent and coherent SSI illusion. It is believed

that providing SSI at this level is the most desirable. Now that the kernel has the best

knowledge of all the activities and resources that are distributed around the cluster, it can

perform resource management in the most effective manner and the system resembles an

SMP kernel. On the other hand, SSI at this level is also the most difficult to achieve. It is

because the system has to maintain the consistency of huge amount of state information that is

distributed around the cluster and to provide transparency to access at the same time.

Traditional operating systems, such as UNIX, are not designed with the SSI concept in mind,

extending them requires substantial skill and expensive software effort. Contemporary

message-passing kernels such as Mach [7] and Amoeba [34] are proved to be a more viable

choice because the most critical task one has to implement is to extend the message-passing

mechanism to function across machine boundaries transparently, and the result will imply a

cross-machine SSI.

2.2.3 Middle-ware Level

Middle-ware includes software components that are not integral parts of the operating system

and provide desirable or necessary services to application programs. SSI at this level is

available to applications when they make use of the services offered by the middle-ware. The

SSI boundary in this case is defined by the services offered. As long as applications only use

the services offered by the SSI middle-ware, they will see a single-system. An example of

SSI implementation at this layer is the SUN’s Network File System (NFS). The SSI

implementation at this layer may not be as comprehensive as that at the kernel layer because

some of the necessary state information may have hidden under the kernel and is not

accessible. On the other hand, since the middle-ware approach can focus and work on one

11

subsystem at a time, with visible gain from each increment rather than working on all aspects

once and for all, it is considered more manageable than the kernel approach. Besides, this

approach is more promising because it does not require any modification to the operating

system below or to the applications above which make use of its services.

2.2.4 Application Level

This is the highest level where the SSI abstraction can be installed. An application

encapsulates the distributed nature of the underlying system and exports an SSI illusion to the

end-users who operate on the application. The SSI boundary in this case is therefore the

application itself. An example of this approach is the batch job submission system.

Nevertheless, there are some drawbacks in this approach. The applications developed from it

are less portable and existing applications would require modifications, which may not be

feasible, to incorporate the SSI abstraction.

2.3 The JESSICA Approach

An important characteristic about the Java Programming Language is that applications are

executed by means of a virtual machine called the Java Virtual Machine (JVM). A JVM runs

as a user process on a standard operating system and interprets the virtual machine

instructions (called bytecode) that constitute the application. This virtual machine approach

enables cross-platform compatibility for Java applications because there can be a specific

implementation of JVM for each platform.

This virtual machine approach is considered as an advantage to JESSICA for achieving SSI

over a cluster. This is because the virtual machine provides a means for JESSICA to

implement SSI at the middle-ware level, to avoid any modification to the underlying

operating system in order to improve portability. Furthermore, the virtual machine approach

makes the construction of a heterogeneous cluster possible, different versions of virtual

machines running on different hardware platforms can collaborate and create a single, logical

execution environment for running applications.

Hence, the JESSICA approach is to implement an SSI at the middle-ware level in the form of

a distributed virtual machine. There is a distributed virtual machine daemon running on each

node of the cluster, they work together to create a single computer illusion for Java

applications. The SSI boundary created by the distributed virtual machine is a Global Thread

Space that spans across the cluster and hides the physical boundaries between nodes in the

cluster. Threads created by an application live inside this Global Thread Space, the system

12

can freely move them around and bind them to the processors of any nodes for execution. A

Global Object Space is also installed within the Global Thread Space that allows threads to

access any memory objects independent of their current location. As a result, even if threads

are running on separate hardware, they will be able to share data just as they were running on

the same machine. In addition, threads living in the Global Thread Space can signal and

synchronize with each other no matter where they are; their physical locations are transparent

to themselves.

2.4 The Challenge

To establish an SSI view at the middle-ware layer, the challenge is to maintain the same

virtual machine semantics within the Global Thread Space when spanning across the machine

boundaries in the cluster. The distributed virtual machine has to deal with the concurrency

and system resources that are offered by each operating system running on the cluster of

computers. These resources, such as CPU cycles and system memory, are to be collectively

managed by JESSICA. JESSICA is responsible for repackaging the distributed resources and

offering them as system services to the threads executing within the Global Thread Space, in a

manner that resembles the system services offered by a standard JVM running on a single

computer. At the same time, in order to maximize resource utilization, JESSICA is also

required to exploit the parallelism and the multiple system resources that are offered by the

underlying cluster (Fig 2.1).

13

Fig 2.1: JESSICA provides the same system services as a standard JVM and at the same time

exploits the parallel execution capability of the cluster

2.5 The JESSICA Solution

There are four basic system services that are provided by the standard JVM; namely, bytecode

execution, memory management, thread creation and scheduling, and thread synchronization

and signaling. The JESSICA approach in dealing with each of the services are presented as

follows:

2.5.1 Bytecode Execution

This is to provide an execution engine for the execution of virtual machine instructions. The

execution engine is a stack-based machine where each thread has its own associated execution

stack for the engine to operate upon. JESSICA provides an independent bytecode execution

engine on each node of the cluster. Multiple execution engines can proceed simultaneously

by having one execution engine operating on the execution stack of one of the threads. This

scheme forms the basis for parallel execution in the cluster.

Hardware

UNIX OS

M
em

ory
M

anagem
ent

T
hread C

reation
and S

cheduling

T
hread S

ignaling
and S

ynchronization

B
ytecode

E
xecution

Standard JVM

Multi-Threaded
Java Application

UNIX

H/W

UNIX

H/W

UNIX

H/W

UNIX

H/W

M
em

ory
M

anagem
ent

T
hread C

reation
and S

cheduling

T
hread S

ignaling
and S

ynchronization

B
ytecode

E
xecution

JESSICA Distributed Virtual Machine

Multi-Threaded
Java Application

INTERCONNECTION NETWORK

a) Standard JVM on a single computer b) JESSICA Distribued JVM on a cluster of computers

14

2.5.2 Memory Management

This service is responsible for allocating memory for object creation requests, to keep track of

all objects in the system and to reclaim memory space of unused objects by garbage

collection. JESSICA provides a Global Object Space by employing a distributed-shared-

memory (DSM) system that combines the system memory available on all the nodes. The

Global Object Space allows the same operations to be used for accessing both local and

remote memory objects transparently.

To maximize parallelism, JESSICA follows a decentralized approach whereby each node is

responsible for managing its own share in the global memory. An object allocation request at

a given node will be satisfied locally with a memory chunk obtained from the same node,

while at the same time this object is accessible by threads running on other nodes. The

system now has to implement a distributed garbage collection algorithm because objects may

be referenced locally as well as remotely.

2.5.3 Thread Creation and Scheduling

A standard JVM is responsible for creating new thread instances and map them to the

processor for execution, in addition to thread scheduling. JESSICA has to provide similar

services. The Global Thread Space created by JESSICA offers a global name space for

threads. In other words, threads created on any nodes in the cluster are labeled with unique

identifiers. A decentralized scheme is also adopted for thread scheduling, threads residing on

each node are scheduled locally by the local thread manager.

Load distribution in the cluster is achieved by a preemptive thread migration mechanism

called Delta Execution. The execution states of a migrating thread is broken down into

multiple units of states called delta sets. These delta sets are sent to the destination node in an

incremental manner where the execution states of the migrated thread proceeds by delta every

time a set is sent. Hence the name Delta Execution. With the help of such migration

mechanism, thread managers running on each node can work together to perform thread-to-

processor mapping. Threads running on an overload node can be migrated (re-mapped) to

other underload nodes to improve the overall resource utilization. More discussion on load

distribution in JESSICA will be presented later in the chapter.

2.5.4 Thread Synchronization and Signaling

In a multi-threaded execution environment, the standard JVM as well as JESSICA have to

provide a mechanism for threads to synchronize with each other and to communicate. It is

particularly important to maintain consistencies of shared objects because multiple threads

15

may try to update a shared object at the same time, producing a race condition. Thread

synchronization in the standard JVM is supported by semaphore. Moreover, a thread can

deliberately wait for another thread and block itself, the other thread can notify and resume

the waiting thread by sending it a signal.

The Global Thread Space provided by JESSICA extends the semantics for thread

synchronization and signaling to work even when threads are physically residing on different

nodes. When a thread running on a node is trying to acquire a semaphore of a shared object,

this semaphore may have been acquired already by another thread that is running on another

node in the cluster, the first thread is therefore blocked. However, when the second thread

has finished with the shared object, it will release the semaphore which then will cause the

thread manager in the first node to wake up the first thread. Similarly, when a thread tries to

notify another thread, the system will automatically check if the other thread is residing on the

same node, if not, the signal will be directed to the right node and be delivered to the other

thread there.

2.6 Augmenting System Classes

Apart from the standard system services described above, the standard JVM allows the

provision of extended system services by implementing additional packages of system

classes. For example, in the core Java class library [3] the graphical window subsystem is

implemented in the java.awt package, the BSD socket communication subsystem is

implemented in the java.net package. For better performance and portability, these

system packages are usually native implementations that directly access system services

provided by the underlying operating system, such as the java.awt package for UNIX is

implemented on top of the X-Windows system. This modular approach also benefits our

implementation of JESSICA. When we are trying to extend the system classes to work on the

cluster, we can focus on one package at a time, to incorporate the SSI feature into the package

and to make it workable on the cluster. In addition, this approach also permits us to rework

the internals of the package implementation without changing the interface of the package,

thereby providing transparency and portability to applications.

If a set of the system classes provides location-dependent services to applications,

augmentations to their implementations are necessary to uphold migration transparency.

Examples of such classes are the java.io package and the java.net package which

make use of the I/O services offered by the operating system and in turn provide file and

16

network I/O to applications. JESSICA adopts the technique of message redirection to

maintain transparency for location-dependent services. To support message redirection, a

helper thread called the master is left behind at the source node where a thread has migrated.

The master will then perform any location-dependent operations on behalf of the migrated

thread which is identified as its slave. The system classes are augmented such that before a

thread tries to perform a location-dependent operation, it will first check if the current thread

is a migrated thread. If the current thread is a slave, then instead of performing the operation

directly, it will contact its master at the source node by sending it a message and the master

will perform the operation accordingly at its location. In addition, the master at the source

node is also responsible for forwarding messages to the slave, such as signals, being sent to

the latter by other threads in the Global Thread Space. A detail discussion on the

implementation of the master/slave design for the helper/migrated thread and that of the

message redirection are to be found in chapter 6.

An example of location-dependent operation is the <currentTimeMillis()> method

provided by the java.lang.System class. The method returns the current system time in

milliseconds by invoking the <gettimeofday()> system call provided by the underlying

operating system. This operation is location-dependent because the system time of nodes in

the cluster may not be synchronized. If a thread of an application running on node A queries

the system time and after a while, this thread is migrated to node B to perform the same query

there, then it is possible that the thread may observe the system clock to be ‘going

backwards’. This happens when the system clock in node B is substantially slower than that

in node A. To avoid such a scenario from happening, all the system time queries are therefore

redirected back to the node where the thread comes from. Bear in mind that all the

modifications necessary are made to the implementation of java.lang.System class

alone, without changing its interface or any other classes.

2.7 Other Design Issues

In [43], Xu, Wang and Hwang identify the following additional issues when designing SSI:

2.7.1 Symmetry

Applications can be executed from any node of the cluster and obtain the same result. The

level of illusion, services and functionality are all symmetric when viewed from any node in

the cluster; except those which are protected by the usual access rights, if any.

17

In JESSICA, symmetry is realized within the Global Thread Space as the same system

services are offered to applications no matter on which node they are started. By deploying a

DSM system, the same Global Object Space is observed by threads independent of their

locations.

2.7.2 Transparency

Applications can access system resources from any location. The issue can be further sub-

divided into location transparency and network transparency. Location transparency means

applications can access the system resources without knowing where the physical locations of

the resources are.

In JESSICA, the Global Object Space provides a global name space for objects and threads

where applications cannot derive their physical locations from the reference handles.

Network transparency means communication channels are adaptive and self-adjustable such

that the channels still sustain themselves even when one of the communication end-points of

the channels that are bound to the system has changed. JESSICA adopts a master/slave

design for the helper/migrated thread pair. It can redirect any location-dependent operation

automatically, including network communications, to the correct place for execution

irrespective of where a thread has migrated.

2.7.3 Single Entry Point

The system provides the same environment on all the nodes for end-users to start their

applications. No matter where the application is invoked, the system will select automatically

the best node to execute the application so as to balance load.

JESSICA supports the concept of single entry point. The transparent thread migration

mechanism of JESSICA together with a simple thread migration policy can automatically

perform thread-to-processor re-mapping if load imbalance occurs after the application is

started.

2.7.4 Single File Hierarchy

The cluster provides the illusion of a single file system by integrating all the local and global

disks and other file devices into one file hierarchy. This issue is partially solved by the

available distributed file systems such as the SUN’s Network File System (NFS).

18

Since JESSICA runs on top of the standard UNIX operating system, it can make use of the

distributed file system provided by the operating system directly. The JESSICA prototype is

currently running on an environment where NFS is available.

2.7.5 Single I/O System Image

The cluster should have a single I/O space and a single networking. In other words, all the

I/O devices and network interfaces attached to the nodes of the cluster are uniformly

accessible as if they were attached to one single computer. To achieve this, there should be

some kind of scheme by which all the devices and interfaces can be addressed independent of

their locations, or a uniform device naming as proposed in Solaris MC [42]. In addition, a

data forwarding mechanism should also be available for redirecting data between two nodes

when a device in node A cannot be accessed by node B directly.

Although JESSICA does not support single I/O space and single networking at the moment,

implementing such a mechanism is feasible. For example, we can install a lookup table

within the distributed virtual machine that maps uniform device names to the corresponding

location-dependent device names. Moreover, the message redirection mechanism is already

in place in JESSICA.

2.7.6 Support for Fast Message Passing

There should be some kind of fast message passing mechanism between nodes in the cluster

that can act as a reasonably fast internal data bus in the virtual single computer. Since

JESSICA runs on top of standard UNIX, the implementation can make immediate use of the

existing fast message passing package if installed, such as the Directed Point [24].

2.7.7 Support for Job Management

An SSI cluster should provide a global job management system for load sharing and improve

resource utilization in the cluster. JESSICA supports transparent thread migration and when

combined with its simple thread migration policy, the system can support dynamic load

balancing across the cluster to optimize resource utilization. Another possible extension to

JESSICA is to implement a Java shell for job management to support multiple Java

applications to run simultaneously on JESSICA just like a multi-computer. In order to

achieve this some kind of domain protection mechanism is required for individual application

processes co-existing in the same execution environment.

19

2.8 Load Distribution in JESSICA

As discussed in section 2.7.3, one of the SSI implementation issues is how to support a single

entry point for applications, where the system can select automatically the best node to

execute the application so as to avoid any load imbalance, no matter on which node the

application is invoked. JESSICA supports a single entry point by implementing a preemptive

thread migration mechanism called Delta Execution within the Global Thread Space. The

system can migrate threads running on an overload node to other underload nodes

transparently without the application’s knowledge.

The goal of JESSICA is to optimize resource utilization by supporting the Serial-Program-

Parallel-Subsystem (SPPS) computing paradigm. This SPPS feature of JESSICA frees

application programmers from worrying about the actual number of processors available.

They can simply create as many threads as necessary in their applications, the JESSICA

system can migrate threads around the cluster automatically to maximize parallelism. To

support the SPPS paradigm, apart from a preemptive and transparent thread migration

mechanism, a thread migration policy is also enforced so that the system knows when, where

and which threads to migrate across the cluster.

2.9 Issues for Implementing Thread Migration

In [6], Milojicic, Douglis, Paindaveine, Wheeler and Zhou identify the following 6 issues for

consideration when implementing thread or process migration in a cluster of computers.

2.9.1 Complexity

This issue gauges how complex or how much software effort is required to implement a

thread migration mechanism. Similar to SSI, implementation of thread migration can also be

carried out on different levels; namely, the micro-kernel level, the kernel level, the middle-

ware level and the application level. It is agreed that complexity increases when moving from

the application level to the kernel level, except on the micro-kernel level where simple

abstractions and minimal functionality reduce the complexity.

As JESSCIA executes applications by means of a virtual machine, Delta Execution is

implemented at the middle-ware level. The complexity is manageable because the execution

states of a running application are readily available from the virtual machine. In addition, the

UNIX operating system can encapsulate any platform specific issues and provides a standard

POSIX execution environment. Consequently, the implementation can be carried out entirely

in the high-level C/C++ language, making it very portable.

20

2.9.2 Performance

This issue deals with the overhead on carrying out thread migration. Performance is

measured by the initial and run time costs introduced by the act of migration. A major part of

the overhead is the cost to extract and transfer the execution states of the migrating thread

[12]. To reduce this initial overhead, strategies such as pre-copy [26] and on-demand [12] are

proposed, whereby instead of moving all the states at once at the migration point, the copying

of states will be scattered throughout the execution. However, this kind of strategies will

increase the runtime overhead.

In JESSICA, the initial overhead for copying states is reduced to a minimal with the help of

the DSM system. Objects that are referenced by the migrating thread are located in the

Global Object Space and need not be copied, and they are forwarded to the destination node

transparently by the DSM system on demand. The largest data structure to be transferred

when a thread migrates is the execution stack; and that the size of a typical execution stack is

in the order of 100 bytes. Moreover, the execution states of a migrating thread are divided

into a number of separate Delta sets that are only sent to the destination node when needed.

In other words, JESSICA takes an on-demand approach to reduce migration latency and

improves performance.

2.9.3 Transparency

Transparency requires both the migrated thread and the remaining threads in the system not to

be aware of the occurrence of migration, all the threads have to interact the same way as if the

migration has never taken place, except that some changes in performance may be perceived

by them. Since the transparency requirement coincides with that of SSI, migration

transparency follows automatically when SSI is supported. This is the case for JESSICA.

The Global Thread Space hides the physical boundaries between nodes in the cluster, together

with the message redirection mechanism and the Global Object Space, they allow threads to

compute and interact with each other using the same set of operations independent of their

physical locations. Consequently, migration transparency can be achieved.

2.9.4 Residue Dependency

This issue covers the amount of execution state information of a migrated thread that remains

at the source after the thread has resumed its execution at the destination. Residue

dependency is undesirable because it has a negative impact on the reliability and fault

resilience of the system. On the other hand, residue dependency is sometimes unavoidable.

21

For instance, in order to support communication transparency, some state information of the

migrated thread may have to remain at the source node for message redirection.

JESSICA takes the message redirection approach to support migration and SSI transparency.

A helper thread (master) is left behind at the source node to perform any location-dependent

operations on behalf of the migrated thread (slave). This master/slave design can simplify the

implementation of redirection but at the same time some residue dependency is retained.

The residue dependency introduced by such migration mechanism has to be carefully dealt

with, especially when a thread is migrated multiple times. This happens when a migrated

thread needs to move again due to circumstances such as a surge in loading in the current

node. In order to avoid introducing multiple forwarding points after successive migrations, in

which a redirection has to go through multiple helper threads before reaching a thread’s real

destination, a migrated thread has to first retreated back to the source node if it is required to

migrate for a second time.

2.9.5 Scalability

This issue examines if the thread migration mechanism and its performance are related to the

scale of the underlying execution environment, such as the number of nodes in the cluster.

The size of the cluster affects the organization and management of structures that maintain the

residual execution states of migrated threads. If the size of migration related state information

grows exponentially with the number of migrations performed, the system cannot be scalable.

JESSICA avoids the migration related states from growing too fast with the number of

migrations performed by first moving the thread back to the source node before migrating to

another destination. Apart from making the system more scalable, this design also helps to

prevent the migrating thread from leaving its residue dependency all around the cluster as it

moves from one node to another.

2.9.6 Heterogeneity

This issue considers the capability of migrating threads across machines with different

hardware architectures. With the help of special compiler support, it is possible to insert

checkpoints into the binaries for two different platforms of a given program. The positions of

checkpoints are chosen so that there is a one-to-one mapping of execution states between the

two platforms. At any one of the checkpoints, the program running on the source platform

can be stopped and to have its states extracted, translated and transferred to the destination

22

platform where the program resumes its execution at a later time. Examples of systems

following this technique are Emerald [10] and Tui [28].

As JESSICA takes on the virtual machine approach, the set of execution states of a thread is

in fact part of that of the virtual machine. The set of states can therefore, in general, be

expressed in a machine independent manner. It can be migrated to another computer of a

different hardware architecture and resumes execution there. However, heterogeneous

migration is not currently support because the DSM system that the JESSICA prototype is

using does not support heterogeneity. As a result, a migrated thread cannot reference any

object if the computer on which the migrated thread is executing and that the memory objects

are residing are of different hardware architectures. This can be solved either by replacing the

DSM system with a heterogeneous one or implementing an address translation service such as

the one described in Java/DSM [39], hence heterogeneous migration in JESSICA is

achievable.

2.9.7 Conclusions

Since some of the issues discussed above may be conflicting with one another, there are

tradeoffs when deciding which alternatives should be taken. For example, to support

communication transparency, it is necessary to retain some residue dependency at the source

node for message redirection; to provide an implementation that can migrate quickly, the

implementation may leave too much residue dependency at the source node and degrades the

reliability and performance of the migrated thread [12]. The JESSICA implementation

focuses on transparency and simplicity. It is willing to tradeoff and to tolerate a certain

amount of residue dependency and decrease in performance.

2.10 Thread Migration Policy

Once the thread migration mechanism is implemented, the next thing is to decide the policy

for thread migration. In other words, it is to determine the following:

• activation policy – when to trigger a migration

• location policy –where the thread should migrate to

• selection policy – which thread should migrate

These decisions should be made based on the load information of nodes running across the

cluster. The load information should be able to represent the current degree of resource

utilization at the nodes, such as system load index, memory utilization and I/O device

23

throughputs. Depending on the approach of how this information is managed, the information

is disseminated to the nodes around the cluster in a certain manner. For example, if the

system takes on a centralized approach, the load information of each node will be sent to a

load information manager node for analysis. The load information manager collects all the

information across the cluster and then performs the necessary analysis in order to make a

load distribution decision. When the analysis is completed and the three aspects of migration

policy mentioned above are decided, the system is ready to trigger migration operations once

a load imbalance is detected.

As JESSICA focuses primarily on how to implement a transparent and effective thread

migration mechanism, at the moment we only include a simple migration policy in the

prototype for the sake of completeness. JESSICA adopts a centralized approach by which the

load information of each node in the cluster is sent to a manager. The load information

considered is the one-minute system load average returned by the uptime UNIX command.

Its activation policy is simple: the system load average of computer nodes across the cluster

are collected every minute and the average of these numbers evaluated thus giving the one-

minute average of the overall system load in the cluster. For its location policy, if the

manager finds a pair of nodes with system load 20% or more above the global average in one

of them and 20% or more below the global average in the other, threads running on the

higher-loaded node will be selected to migrate to the lower one. JESSICA’s selection policy

is again simple: the current thread that is executing will be selected and migrated to the lower-

loaded node. Note that the policies implemented here and the numbers chosen are ad-hoc,

further investigation is necessary to achieve reasonable result.

Apart from automatic load balancing by thread migration, JESSICA also supports remote

execution. Once it is created, a thread can be migrated to an unoccupied node immediately

before it starts execution. This facility is useful before a better migration policy can be

devised.

2.11 Migration Granularity

The migration granularity in JESSICA is per bytecode instruction. A running thread in

JESSICA can be stopped and migrated between the execution of successive bytecode. It is at

these points where the execution states of the thread can be extracted from the virtual machine

and represented in a machine independent manner. Otherwise suspending the virtual machine

execution at any other points would mean a bytecode instruction being half-way executed,

this would cause some internal states of the JVM implementation, which can be platform

24

dependent, to be introduced into the execution states of the running thread. This situation is

analogous to stopping the execution of a CISC CPU before it can finish the current machine

instruction, at this point the CPU should be in the midst of executing a set of micro-code

instructions that implement the current machine instruction. To represent the state of the CPU

at this point would introduce micro-code level states.

2.12 Comparison with Traditional Process Migration

The implementation of the thread migration mechanism in JESSICA is considered less

complicated and demanding than that of the traditional process migration in UNIX-like

system. First of all, Java thread is a first class citizen in the Java Programming Language,

state information of a thread is well encapsulated in its instance object, and the unit of

migration can be well represented. Secondly, as an application is executed by means of a

virtual machine, the execution states of a thread instance can be readily obtainable from the

virtual machine. Thirdly, the set of system services provided by the standard JVM is much

reduced and simpler than that provided by UNIX. For example, inter-thread communication

is supported by only the object semaphore and the wait-notify mechanism, while in UNIX

there can be pipe, signals, semaphore, … et cetera. So the implementation of communication

between migrated threads is much simplified. Fourthly, despite of the fact that the major

software effort is now shifted to the implementation of SSI, transparent thread migration

follows with little effort due to the high degree of SSI transparency supported by JESSICA.

25

Chapter 3

Related Works

3.1 Overview

This chapter provides a brief survey of works that are related to the JESSICA research. The

majority of them focus on migration of computation load in a network of computers, either in

the form of mobile object, thread, or process migrations. In general, their goal is to improve

resource sharing in the network by migrating computations to idle machines. Some of them

aim for improving reliability by migrating processes away from failed machines, others try to

obtain speedup by migrating threads to multiple machines and execute them in parallel. One

of the works is a distributed version of a commercial operating system that focuses on

establishing a Single-System-Image (SSI) over a cluster.

The approaches that these research works have taken can be categorized into micro-kernel

augmentation, monolithic kernel augmentation, encapsulation at the middle-ware level,

programming language and software library support, and user level checkpoint-and-restart.

The works selected here are the landmark cases in each of the categories.

3.2 Micro-kernel Augmentation

In this approach, the micro-kernel is extended to support load distribution by migrating tasks

across the network. Task is the unit of program execution in contemporary micro-kernels like

the Mach [7]. Task migration on the Mach micro-kernel is the leading example in this

approach. The micro-kernel approach is believed to be the most convenient to support

transparent migration because in a micro-kernel, only the basic abstractions are supported

within, and other functionality is provided in user space.

3.2.1 Task Migration on Mach

The work of task migration on the Mach micro-kernel [7] demonstrates the flexibility and

simplicity for implementing load migration at the micro-kernel level. Mach is a message

passing based micro-kernel that succeeds the work of Accent at the Carnegie-Mellon

University. The micro-kernel approach means that the Mach kernel only provides the

smallest set of critical services such that other services can be built on top of them. Critical

26

services include task creation and scheduling, virtual memory management, and inter-process

communication. Other services such as file storage and network communication are

implemented at the user level in the form of user level servers. Task is a unit of active

execution entity in Mach that corresponds to process in UNIX. It consists of an address

space, some execution threads and a set of channel endpoints called ports for inter-process

communication. A UNIX process is equivalent to a task in Mach with a single thread of

execution.

Task migration in [7] takes advantage of the Mach NORMA version which supports in-kernel

distributed inter-process communications (DIPC) and distributed shared memory (DSM), and

the implementation can be much simplified. To migrate a task, it involves the extraction and

transmission of the task’s states across the network. These states include the task address

space, the communication port capabilities, thread states and others. The DSM handles all the

memory transfer and the DIPC performs the necessary message forwarding, which are done

transparently and automatically. As a result, the modification to the kernel only adds up to

about 300 lines of C code, the rest are implemented as a user level migration server which

accounts for another 600 lines of code. The migration server is responsible for migrating the

task states such as thread states and capabilities. It is also used for studying different address

space migration strategies such as pre-copying and copy-on-reference, using the NORMA

DSM mechanism.

The work of task migration on Mach has verified that relying on DIPC and DSM support can

be a great help to achieving migration transparency. In light of this, JESSICA also

incorporates a DSM system for object sharing between migrated threads. This simplifies the

implementation substantially because the memory migration is handled transparently by the

DSM system. In addition, JESSICA also implements its migration facilities in the user level

above the UNIX kernel. However, the states of a migrating thread in JESSICA are

comprehensively encapsulated within the virtual machine. They are readily extractable from

the virtual machine in the source and are migrated to the destination. There is no need to

modify the underlying kernel as in the case for Mach. On the other hand, JESSICA relies on

the communication libraries such as the BSD Socket provided by the underlying UNIX

operating system to support network communications. It implements its own message

redirection functionality for supporting location transparent communication for migrated

threads, which is more flexible than in the case for Mach.

27

3.3 Monolithic Kernel Augmentation

In this approach, the monolithic kernel of the traditional UNIX operating system is extended

to support SSI over a cluster and/or to support process migration. Since the kernel possesses

the best knowledge of the system resources available in each node of the cluster, this

approach should be able to achieve the optimum SSI transparency as well as process

migration transparency. On the other hand, working at this level is proven to be the most

difficult and costly because modifying a monolithic UNIX kernel to support transparency

would require substantial software effort as UNIX was not designed with the concept of SSI

or process migration in mind. The leading examples in this approach are the NOW MOSIX

[2] of the Hebrew University and the Solaris MC [42] of the SUN Microsystems.

3.3.1 NOW MOSIX

NOW MOSIX is one of the landmark systems that implements transparent process migration

in a monolithic kernel and achieve good load balancing performance. MOSIX is a UNIX

compatible operating system developed at the Hebrew University of Israel. It was originally

developed as an SSI operating system for clusters of computers where the whole cluster

appeared to user processes as one single system. However, the implementation became too

complicated and too difficult to manage as the system evolved. It is redesigned later for a

Network of Workstations (NOW) configuration known as NOW MOSIX using the “home”

model whereby user processes are created to run seemingly at the user’s “home” workstation.

After switching to the “home” model, the implementation becomes relatively simple because

it is confined to the development of the process migration and load balancing mechanisms.

For the rest of the system services NOW MOSIX relies on existing mechanisms provided by

UNIX, such as NFS, without modifying the internal structure of the UNIX kernel.

Migration granularity in NOW MOSIX is in the unit of a UNIX process. Migration

transparency is achieved by separating a migrating process into two parts – the body and the

deputy. The body contains all the system independent states and may be some system

dependent states of the migrating process whereas the deputy contains only the system

dependent states. The states contained in the body are location independent and hence the

body can migrate to any machine on the cluster, while the deputy contains location dependent

states and is not migratable, hence it has to stay at the “home” node of the process and to acts

as a proxy for the body. When the body tries to execute a system call that is location

independent, it will do so directly on the local kernel. Otherwise the system call is redirected

back to the “home” node and it is the deputy that executes the system call on the body’s

behalf, the result is eventually forwarded back to the body. At the same time, the deputy is

also responsible for looking out for any asynchronous events such as UNIX signals sent from

28

the home kernel and forward them to the body. It is the cooperation between the deputy and

the body of a migrating process that provides the necessary location transparency in MOSIX.

Thread migration in JESSICA also follows a similar approach as that in NOW MOSIX. In

JESSICA, the system will extract all its state information from the virtual machine when a

thread migrates. The thread states may contain machine dependent states as well as machine

independent states. The dependent states can be a result of calling a Java method that is

implemented in the hardware native code. A slave of this migrating thread is then created at

the destination node. Only the machine independent states that correspond to bytecode

methods are transmitted to this slave thread. The original thread at the source node now

becomes the master and is responsible for completing the execution of any native method

calls whose states are not migratable. In addition, the master-slave pair is also responsible for

forwarding any location dependent system calls and asynchronous events between them

similar to NOW MOSIX for maintaining network and location transparencies. Hence, the

cooperation between the master-slave pair of a migrating thread in JESSICA supports

heterogeneous migration of threads in addition to providing migration transparency. We call

this technique “Delta Execution” and a more detailed discussion is provided in chapter 5.

3.3.2 Solaris MC

Solaris MC is a more recent work that implements SSI at the kernel layer. Solaris MC is a

prototype distributed operating system for running over a cluster of computers and is

developed by the Sun Microsystems Laboratories [42]. It extends the existing Solaris

operating system to provide a single system image (SSI), a cluster that appears to users and

applications as a single computer running the Solaris operating system. Modifications to the

Solaris kernel are kept to a minimum, most of the extended components appear as loadable

kernel modules to the Solaris kernel. The implementation and extension to the Solaris kernel

are done using the high-level C++ Programming Language and the CORBA object model.

Since object code compatibility and the kernel API are maintained, existing applications and

device drivers are runnable and require no modifications. There are four major components

in Solaris MC that make up the SSI illusion. The first is a global file system called the Proxy

File System (PXFS). It is built on top of the existing Solaris vnode interface. The second

component is the global process layer that provides global process management to the

operating system and the physical locations of processes are transparent to users. The global

process layer supports remote execution of process and redirects operating system signals to

the node where the process physically resides. The third component is a global I/O device

space where it is possible to transparently access any devices from any nodes regardless of

where the devices are physically attached. The last component is a global network subsystem

29

which provides an illusion such that the set of real network interfaces available in the cluster

appears to be local to each other. Transparency is achieved by implementing a packet filter on

each node to forward data packets to and from the network interfaces.

In the global process layer, there are the virtual process (vproc) objects which represent

processes running on the nodes of the cluster. On each node, there is a node manager that

handles the mapping between the vproc objects and the local process running on the node.

The vproc objects maintain information about the parent-child relationships between

processes, they communicate with vproc objects running on other nodes through the CORBA

IDL interfaces. Process-related system calls are also redirected in this layer. The vproc

objects are useful for implementing remote fork and process migration. The proposed scheme

to maintain migration transparency is to leave behind a shadow vproc at the source node when

a process migrates; this shadow vproc can help to forward any operations received to the

vproc on the node where the migrated process resides.

The SSI boundary created by Solaris MC can be considered as a global process space that

spans across the cluster. Processes living within this global process space can be uniquely

identified and have their physical locations hidden. The global process space supports remote

creation of processes and operating-system-related messages are transparently redirected to

the node where the processes reside. This global process space is analogous to the Global

Thread Space in JESSICA that hides the physical boundaries between machines. The Global

Thread Space also supports remote creation of threads and system services are also

transparently redirected to the right location. On the other hand, threads living in the Global

Thread Space can freely migrate around the cluster while those in the global process space in

Solaris MC cannot as yet.

The Solaris MC idea of leaving a shadow virtual process behind when a process migrates is

similar to JESSICA which leaves a helper thread behind in the source node, they both help to

provide migration transparency by redirecting location dependent operations and messages.

Other Solaris MC ideas can also be enlightening to the work on JESSICA; for example, the

ideas of a global network subsystem and using a packet filter for network data redirection can

be incorporated into java.net class library even though they will be done at the user level.

After all, Solaris MC stands out to be a good reference for the implementation of SSI system

such as JESSICA.

30

3.4 Encapsulation at the Middle-ware Level

In this approach, SSI can be achieved by having a middle-ware running between the cluster of

computers and the applications. The middle-ware encapsulates the distributed nature of the

cluster hardware and provides a single virtual parallel machine for the applications to execute

upon. A leading example that is very similar to JESSICA is the work of Java/DSM [39] at the

Rice University, another example that also makes use of an DSM system is the Millipede

system developed at the Technion Israel Institute of Technology [18].

3.4.1 Java/DSM

Java/DSM is a distributed Java virtual machine (DJVM) that runs on a cluster of

heterogeneous computers. It provides an illusion to the Java applications that they are

running on a single JVM with multiple processors attached. Compatibility is accomplished

by maintaining the same system interface as the standard JVM, therefore standard Java

applications are also runnable on Java/DSM without modification. Parallel execution of Java

applications is possible by having multiple Java threads running on multiple nodes in the

cluster.

Java/DSM provides a DSM for all the nodes running across the heterogeneous cluster. A

major issue in providing a heterogeneous DSM is how to handle the hardware differences

when moving data across machine boundaries. For instance, an integer on hardware platform

A can be represented by a 32-bit word in Big-Endian byte-ordering, while on another

hardware platform B the same integer can be represented by a 64-bit double-word in Small-

Endian byte-ordering. Java/DSM proposes to handle the issue by performing data

conversion. Since the Java Programming Language is strongly typed, type information of any

Java objects can be embedded into the runtime of the DJVM. When accessing a Java object

that is stored in a remote page, this type-information can be retrieved to check what kind of

data conversion is necessary for the object. With this data conversion mechanism installed,

the hardware differences of the underlying heterogeneous cluster can be hidden from the Java

applications.

Both Java/DSM and JESSICA follow the same approach by implementing a distributed

virtual machine at the middle-ware level. They utilize DSM systems to simplify the

implementation. However, in Java/DSM load distribution is achieved by remote invocation

of Java thread alone, while JESSICA supports also transparent thread migration.

Furthermore, the current Java/DSM prototype mainly focuses on supporting DSM in a

heterogeneous environment; other issues such as location transparency and signal forwarding

are not addressed, therefore it is not an SSI system.

31

3.4.2 Millipede

The Millipede system is developed at the Technion Israel Institute of Technology. It supports

transparent thread migration and dynamic load sharing over a network of computers running

the Windows NT operating system. Millipede is implemented at the middle-ware level that

does not require any alteration to the operating system and employs the DSM technique to

simplify the migration implementation. There are two major components in Millipede. One is

the DSM system that provides a global memory space for application instances to run over the

network and to keep concurrent accesses made by them consistent. The other is the Migration

Server (MGS) who is responsible for collecting load information and making migration

decisions.

A major issue in supporting thread migration is how to ensure the memory references that are

found inside the stack of a migrating thread to remain valid after a migration. In Millipede,

the DSM system automatically guarantees that any references to global data that are pointing

to the shared memory must be valid no matter how many times a thread has migrated.

However, for local memory references that are pointing to the locations within the thread

stack memory itself, they need to be dealt with carefully. Consider if the stack memory of a

migrated thread starts at a location that is different from that before the migration, then all

local memory references within the stack memory will be invalid. Millipede solved this

problem by statically creating a fix number of worker threads in all application instances

when they are instantiated. Worker threads are threads that are migratable because they do

not possess any location dependent resource. During migration, instead of creating a new

thread at the destination, the execution states of a migrating thread are copied to the

corresponding worker thread at the destination that is residing at the same memory location.

As a result, all memory references are now valid and no address translation is required.

In Millipede, for a worker thread that is running in an application instance, all its thread

counterparts that are occupying the same memory slots in other application instances have to

be reserved. They cannot be assigned any jobs to execute because at any time this running

thread may be migrated to one of their locations and have the thread execution states replaced,

in order to facilitate the thread migration mechanism explained above. As a result, if there are

M application instances running with N worker threads initialized in each of them, they will

be occupying altogether M×N amount of active thread resources while at any time at most N

threads will be running. On the other hand, in JESSICA all the object references stored in the

execution stack of a Java thread are pointing to the Global Object Space. Consequently, the

execution stack of a migrating thread in JESSICA can be copied to the destination without

any special requirement on its new location, and there is no address translation required.

32

3.5 Programming Language and Software Library Support

This approach requires application programs to be written using some special languages with

additional features for mobility or calling a set of software application programming

interfaces (API) to perform thread or process migration. We are going to discuss here two

examples using this approach, the Telescript [19] created by the General Magic Inc and the

Arachne user-level thread package [9] developed at the Purdue University.

3.5.1 Telescript

Telescript is an object-based environment developed at General Magic Inc. It is designed for

intelligent agent computing where a high degree of mobility is supported. There are four

main components in the Telescript technology. The first is the Telescript programming

language which is an object-oriented language similar to Postscript. This Telescript language

is designed to support dynamic and autonomous agents whose nature is to deliberately move

around a network and get a task done, such as migrating to a database server and make an

onsite query. The second component is a Telescript engine called Magic Cap that interprets

and executes programs written in the Telescript language. This Magic Cap virtual machine

can run on small consumer electronic devices such as personal digital assistance (PDA) as

well as workstations and large application servers. They create a heterogeneous environment

for distributed computing. These messages are Telescripts programs themselves that can

contain data as well as active agents for execution. The third component is the Telescript

communication protocol which governs the encoding and decoding of Telescript agents when

sending them between Magic Cap engines. The forth component is the set of software tools

that supports the development of Telescript applications.

Two key elements in Telescript are agents and places. Agents are autonomous entities that

can move around and perform communication and computation tasks. Places are virtual

locations for holding agents; they are bound to Magic Cap engines and do not move. Agents

can come together within a place to meet and interact with one another or with the place itself.

Agents living in different places can also communicate by sending messages between them.

A Magic Cap engine can support concurrent execution of multiple agents and places.

Both Telescript and JESSICA support moving objects under active execution from one place

to another. However, the application programmer is responsible for dealing with the

movement of agents in Telescript – to decide when and where to navigate; while thread

migration in JESSICA is deliberately hidden from the knowledge of programmer. On the

other hand, since the nature of the two systems are very different, one being designed for

intelligent agent programming while the other is for supporting a more general purpose

33

programming paradigm, direct comparison between them may not be appropriate. General

Magic has recently demonstrated this intelligent agent programming paradigm can be

implemented using the Java Programming Language. Odyssey is a set of Java class libraries

that allows the creation of agents and places in Java programs; it supports the same level of

agent mobility as in Telescript [15].

3.5.2 Arachne

Arachne is a portable user-level programming library that supports thread migration over a

heterogeneous network of computers. However, migration is not transparent to application

programmers as they have to include the Arachne migration-related primitives into the code.

It is the programmer’s responsibility to decide when to migrate, which thread to migrate, and

where to migrate. In addition, it introduces new keywords to the C++ Programming

Language to facilitate the implementation of thread migration. Even though the primary

objective of Arachne is to support efficient thread migration on a heterogeneous network, it

lacks certain features such as thread synchronization that is fundamental to a thread package.

Moreover, Arachne does not support asynchronous interrupt and provides only a cooperative

thread scheduling mechanism, a thread will only be scheduled out if it relinquish itself or if it

has reached some suspension point by calling some Arachne primitives, such as

<a_create()> to create a thread. This is a problem because when a migrating thread

reaches its destination node, the scheduler will not be aware of its arrival if there is another

active thread running. The migrated thread will not be scheduled to execute until the current

active thread has terminated or reached some suspension point, even if this migrated thread

has a higher priority than the active thread.

In order to support heterogeneous migration, Arachne avoids using the native runtime stack

provided by the underlying operating system as the execution stack for performing function

calls in an application. Instead, for each function defined, it implements an artificial stack

that is allocated from the heap to store all the local variables of this function. A preprocessor

is used before compiling the application to modify the application code so that accesses to any

local variables are now changed to access the variables defined in this artificial stack. As a

result, the content in the execution stack of a function at the point of migration is readily

obtainable from the artificial stack. Furthermore, since the data-types of variables defined in

the artificial stack are known at the compile time, their values can be translated to formats that

conform to different hardware architectures at migration. Moreover, in order to allow a

thread to resume correctly from the point where it was suspended, Arachne inserts an artificial

program counter and address label at every prospective suspend point in the application code.

When a thread is resumed, it will try to check the value stored in the artificial program

34

counter and jump to the address location where it was last suspended. A shortcoming of this

design of artificial stack and artificial program counter is the extra overhead it introduces

during the execution of a function, even if migration has never taken place. Experiment

shows the extra overhead due to this design can account for 61% of the execution time.

Another problem with the Arachne thread package is that it does not allow sharing of any data

between threads if they are running on different nodes. At the point of migration, any

functions called by the migrating thread that have not returned yet cannot contain any

memory reference to the local heap as the system does not support remote memory access or

data forwarding. All the local variables of these functions can only be of simple data types.

Besides, object migration is also not supported; that is, there cannot be a local variable, whose

type is non-simple, such as a C data structure or a C++ class. It is because the content in such

a non-simple variable cannot be properly marshaled and migrated, unless a data marshaling

and demarshaling routine is defined by the programmer for each non-simple variable

concerned.

When comparing Arachne with JESSICA, JESSICA provides a more flexible, portable,

efficient, and useable thread package for application programmers. First of all, migration is

entirely transparent to programmers in JESSICA. There is no migration primitive that

programmers have to insert into their code; therefore existing applications can run on

JESSICA without modification and benefit from thread migration. Secondly, JESSICA

supports thread synchronization and inter-thread signaling even if the threads are residing on

different machines. Migrated threads can share object of any data types, may it be simple or

complex. Thirdly, JESSICA supports asynchronous interrupt and a migrated thread can be

scheduled to run immediately if it has the highest priority among other threads in the

destination node, there will be no starving for a migrated thread. Fourthly, JESSICA is more

portable as it does not introduce any new keyword to the Java Programming Language.

3.6 User-Level Checkpoint-and-Restart

This approach relies on a stable storage where the states of a running process are extracted

and saved in. The states are restored on another machine or on the same machine at a later

time. The approach safeguard any failure of the original machine and allows for load

balancing when the process is restored on a machine with less loading. Here we are going to

discuss the Condor distributed processing system [25] developed by the University of

Wisconsin-Madison, which is a classic example using this approach; and a more recent Tui

35

System created by the University of British Columbia whose aim is to support heterogeneous

process migration [28].

3.6.1 Condor

Condor is a user-level batch processing system running on top of UNIX and supports load

sharing over a cluster of computer. It allows the CPU cycles of otherwise idle computers to

be used in a pool, by having a central load manager to monitor the utilization of computers

across the cluster. A user can submit a job through the load manager that will locate an idle

computer and start the job. When Condor detects there is an active user reclaiming the

computer, it will first create a checkpoint file of the running job before killing it. The

checkpointed job is placed in a queue to be restarted later when Condor spots another idle

machine in the cluster. The checkpoint file contains all the necessary states of the running

process so that it can be resumed correctly at the point when it was checked. The process is

effectively migrated from one machine to another and the migration provides a kind of load

balancing service over the cluster.

The Condor checkpoint-and-restart mechanism is entirely implemented at the user level

which requires no modifications to the UNIX kernel or the application code, though an

application has to link itself to the Condor checkpointing library in order to utilize the Condor

facility. Correct implementation of migration depends on whether the states of a

checkpointing process can be accurately captured. The states include the address space, open

files, pending signals and CPU states. One of the less trivial tasks is to capture the states of

any open files, without modifying the application code. This is accomplished by providing

Condor’s own version of open() and close() system calls which are then linked to the

application code. The Condor implementation will in turn invoke the actual system calls by

using the syscall() interface. After linking the application with Condor’s version of

augmented system calls, any files that are opened or closed by the application can now be

recorded in the Condor runtime, so that they can be reopened at the restoring node afterwards,

if necessary. In addition, migration transparency is maintained by redirecting location

dependent system calls, such as file I/O, back to the home machine. A home machine is one

where the application is originally started, and Condor will maintain a shadow process there

to handle any system calls request that may be redirected from the migrated process sometime

in the future. The system calls are transparently redirected without the application’s

knowledge by using the method of system call augmentation described above.

Library linking in Java follows some kind of delay-binding. The binary code of a class is not

loaded and linked into the system until the time when the class is first referenced. In other

36

words, in JESSICA there is no need to re-link the augmented system classes to the

applications because they will be so linked automatically by the system when the applications

invoke them. On the other hand, although Condor and JESSICA follow two entirely different

approaches to handle load migration, their migration transparency mechanisms do share some

similarities. For instance, both systems will leave a shadow process/master thread at the

home node to handle any location dependent operations.

3.6.2 Tui

Tui is a system that supports heterogeneous process migration by employing the

checkpointing technique, which is developed at the University of British Columbia. It

supports process migration over four different types of hardware architecture; namely,

m68000, SPARC, i486 and PowerPC. A major issue in providing heterogeneous migration is

the requirement of translating the entire state of the migrating process so that it can be

understood by different machine architectures. This requires knowledge on the type of all

data values that are used by the process as they are being stored in the global variables, stack

frames, and the dynamic heap. Tui solved the problem by using special compiler support.

To migrate a process, a modified compiler is first used to compile the source program and to

generate binaries for the various hardware architectures. The compiler will insert preemption

points into the binaries at various locations where the execution states can be expressed

equivalently in all the four architectures. In this way when migration is triggered,

checkpointing is carried out at the next preemption point reached. Furthermore, the compiler

will also insert stubs at function entry points that describe the data type information of the

input parameters and the return value in the function calling stacks. At migration time, an

external program called “migrout” will analyze the executable binary of the migrating process

and extract the type information of all the data used in the process. With the help of these

type information, “migrout” checkpoints the migrating process at the next preemption point

and creates an intermediate checkpoint file that encodes the data values and other states of the

process in a machine independent format. This machine independent checkpoint file is then

shipped to the target machine where a new process is created and its execution state is then

initialized using the information from the checkpoint file.

Providing heterogeneous migration in JESSICA is simpler than in Tui because Java programs

are interpreted. The execution states are readily extractable and represented in a hardware

independent format that follows the standard JVM specification [36]. In addition, the strong-

typed nature of the Java Programming Language can also ease the task of data conversion

when migrating a Java thread: type information of data storing in the stack is known because

37

it is operated upon using strong-typed instructions such as pushi, fadd, and aload. As in

JESSICA, entries stored in the execution stack of a thread are either simple data type such as

integer or object references, they are tagged with type information as they are pushed, popped

or modified. Finally, both JESSICA and Tui require migration that only takes place at certain

points where the execution states can be represented unambiguously across machines. These

points have to be close enough so that migration can take place as soon as possible. In Tui

they are the preemption points whose locations are determined by the special compiler, they

are usually inserted at the beginning of a loop and at the end of each compound statement. In

JESSICA, the preemption point is chosen naturally at the end of each bytecode instruction

where the execution states can be represented in a machine-independent way.

3.7 Summary

Finally, we summarize the chapter by providing below a table of comparison between

JESSICA and the characteristics of the related works discussed.

JESSICA Mach NOW

MOSIX

Solaris MC Java/DSM Millipede Telescript Arachne Condor Tui

Level of

Approach

Middle-

ware

Micro-kernel Monolithic

kernel

Monolithic

kernel

Middle-

ware

Middle-

ware

Programming

language

support

Application

programming

interface (API)

User-level

checkpoint-

ing

User-level

checkpoint-

ing

Method of Load

Distribution

Thread

migration

Task

migration

Process

migration

Remote

execution of

process

Remote

execution

of thread

Thread

migration

Migration of

mobile object

Thread

migration

Process

migration

Process

migration

Implementation

Techniques

DSM +

Message

redirection

by helper

threads

DSM + DIPC Message

redirection

by shadow

process

Message

redirection by

vproc +

CORBA RPC

+ packet

filtering

DSM +

data

translation

DSM +

Migration

Server

Execution

engine (Static

Place) +

Program

scripts & Data

(Mobile

Agent)

Provide a set of

migration

related routines

to be included

into

applications

Provide

customized

system call

library to be

relinked

with

applications

Checkpoints

inserted by

special

compiler

support

Characteristics Execution

by means

of a virtual

machine

Demonstrated

that micro-

kernel

approach is

suitable for

implementing

transparent

task migration

Process

migration

following

the home

model

Commercial

OS with

contemporary

software

techniques

Execution

by means

of a virtual

machine,

heterogen-

eous

A pool of

worker

threads is

reserved

on each

node

Execution by

means of a

virtual

machine,

supports

heterogeneous

migration

Heterogeneous

migration, no

data sharing

between

migrated

threads

Use shadow

process to

provide

message

redirection

Heterogen-

eous

migration

Support

Migration or

SSI

Transparency

Full SSI &

migration

transpar-

ency

Full migration

transparency

Full

migration

transpar-

ency

Full SSI

transparency

Not

supported

Limited

migration

transpar-

ency

Not supported Not supported Fair

migration

transpar-

ency

Not

supported

Support SSI Yes No No Yes No No No No No No

Table 3.1: Comparison of characteristics between JESSICA and the related works discussed

38

Chapter 4
System Architecture and Implementation

4.1 Overview

JESSICA is designed as a group of daemons running on all the nodes in a cluster of

computers. They execute as user level processes on top of the UNIX operating system and it

is the collaboration and coordination between these JESSICA daemons that offer an SSI

illusion to Java applications. Together they act as a distributed system that integrate the

resources such as system memory and CPU cycles which are distributed around the cluster

and offer them as system services from a single virtual computer. A Java application can be

started on any node and it will appear to be running on a JVM that has multiple processors.

In other words, the SSI illusion offered to Java applications is a JVM that can execute multi-

thread applications in parallel.

4.2 The Console Node

Java applications can be started on any node in the JESSICA cluster. They are running on the

distributed virtual machine that follow a home model, which is similar to that in Sprite [12]

and NOW MOSIX [2]. Any node at which the Java application is initiated will become the

home of that application and is known as the console node. The whole cluster will appear as

an extension to this console node where system resources including processors, memory

pages and file storage that are located at other nodes are all become transparently accessible

by the application, as if they were located at the console node. The access of remote

processors is supported by the transparent thread migration mechanism where an active thread

of the application can be moved and bind to a remote processor and execute there. The access

of remote memory pages is supported by the DSM system where remote pages can be paged

in and cached locally when necessary, the cache coherent protocols implemented in the DSM

system maintains the consistency of shared memory. The access of remote files is supported

by NFS installed in the underlying operating system (Fig 4.1).

39

Fig 4.1: Entities in a JESSICA system

The console node is responsible to handle any system service requests made by a migrated

thread that are location-dependent. In general, when a thread is migrated from the console

node to another node in the cluster, the system resources request made by the migrated thread

will now be served by the local daemon running on the destination node. However, when the

daemon discovers the requested service call is location-dependent, the call will be redirected

back to the console node for it should be handled there. For instance, if a migrated thread

wants to write a message to the application’s standard output, the request will be forwarded

back to the console node and the message will be displayed on the console’s screen. In

general, a thread can access devices and network interfaces that are attached to the console

node only because they are location-dependent resources and service requests made by a

migrated thread will be automatically directed back to the console. In other words, JESSICA

currently does not support the concept of global device space and global networking as that in

Solaris MC [42], where devices and network interfaces in the cluster can be accessed from

any node as if they were attached locally. It is possible to implement similar feature in

Thread-to-Processor MappingKEYS: Java Thread

Multi-Threaded Java Application

Global Thread Space

Global
File System

Global
Object Space

Multiple CPUs

N
etw

ork

F
ile S

ys

M
em

ory

C
P

U

Daemon
JESSICA

N
etw

ork

F
ile S

ys

M
em

ory

C
P

U

Daemon
JESSICA

N
etw

ork

F
ile S

ys

M
em

ory

C
P

U
Daemon
JESSICA

N
etw

ork

F
ile S

ys

M
em

ory

C
P

U

Daemon
JESSICA

INTERCONNECTION NETWORK

Console Worker Worker Worker

40

JESSICA by providing a universal name space for devices and network interfaces that are

attached to the cluster. JESSICA can maintain an internal table that maps the name of a

device to its physical location, and a thread can then transparently access the device by

redirecting the access request to the node where the device is attached.

Note that this console node is also responsible to enforce the migration policy by managing

the load information of itself as well as that sent from other nodes in the cluster. Although

this centralized approach may not be scalable with the number of nodes in the cluster, the

primary goal of JESSICA is to provide a transparent migration mechanism and therefore the

current scheme of load distribution is rather primitive, and the migration policy devised is

simple. On the other hand, JESSICA also supports remote execution of Java threads, where a

user can specify the initial degree of parallelism when a multi-threaded application is invoked.

The specified number of threads will be migrated to other nodes in the cluster when they are

first created. As a result, they will resume and execute from their first instruction on the

remote processors, and the user can observe the effect of parallelism immediately.

4.3 The Worker Node

When an application is instantiated on the console node, the role of other nodes in the

JESSICA cluster is to support the console node to execute the application and they now act as

an extension to the console. They are the worker nodes with respect to the console, who are

responsible to stand by and serve any requests forwarded from the console, in order to help

the console to execute the application to its completion. For example, when a worker node

receive a migration request from the console, it will create a new thread instance to represent

the migrating thread. The execution states of the migrating thread, which are marshaled into a

machine independent format by the console, will then be shipped to the worker. The worker

node will have to demarshal the state data, allocate a thread execution stack and other

necessary system resources locally, and to use the data to initiate the newly created thread to a

state which is identical to the original at the console just before the migration is triggered.

The thread then resumes execution at the worker node and it has now become the migrated

thread.

During its course of execution, the migrated thread will continue to make system service

requests to the worker node as if it was running at the console. The worker node will have to

differentiate whether the request is location-independent or not. If it is independent the

request will be served locally, otherwise, the request will be forwarded back to the console.

The console, after receiving the request, will perform the necessary operations and return the

41

result back to the thread. The whole redirection process is carried out transparently without

the knowledge of the thread. In addition, the worker node will also prepares itself to receive

any asynchronous messages that may be sent from the console. These messages can be the

result of threads that are running elsewhere who want to signal this migrated thread. The

worker node has to forward these messages to the right migrated thread.

The worker node takes its part in the DSM system by forwarding its memory pages to the

console or other worker nodes, if the other nodes try to access objects that are stored in its

local memory pages. Furthermore, the worker node is also responsible to periodically send

the system load information back to the console to facilitate the enforcement of the migration

policy.

4.4 System Components in the JESSICA Daemon

Each JESSICA daemon is composed of four major components (Fig 4.2); namely the

Bytecode Execution Engine (BEE), the Distributed Object Manager (DOM), the Thread

Manager (TM) and the Migration Manager (MM). They provide the following system

services the same way as a standard JVM to Java applications:

• Bytecode execution

• Memory management

• Thread creation and scheduling

• Thread synchronization and signaling

Furthermore, they are also responsible to coordinate with other daemons to create an SSI in

the form of a Global Thread Space. This SSI illusion is supported by:

• a Global Object Space for distributed data sharing between threads

• a transparent thread migration mechanism for moving threads around to execute on

different processors

• a message redirection mechanism for migrated threads to maintain the SSI transparency

This section discusses each of the four components in more details.

42

Fig 4.2: System components in a JESSICA Daemon

4.4.1 Bytecode Execution Engine (BEE)

The BEE is the heart for the execution of Java applications. It is designed to bind to an active

thread and to execute its start()/main() method until the method’s point of return is

reached. The BEE is a stack-based engine that follows the JVM Specification [36] where

BEE operates on the execution stack of the thread that is bound to. A method call stack is

implemented in the BEE that allows the thread to perform repeated method invocations.

Notice that the execution states of the BEE for an active thread is equivalent to the execution

state of the thread itself. To facilitate thread migration the states of the BEE are designed to

be readily extractable and be shipped to other worker node. Detailed discussion of how the

states are extracted and migrated can be found in the Chapter 5, which is dedicated to the

discussion of Delta Execution.

Since the states of the BEE need to be marshaled into a hardware independent format when

they are shipped to another node during migration, the type information of values stored in the

thread execution stack has to be known beforehand. This is achieved by implementing an

auxiliary stack in conjunction with the thread execution stack. The auxiliary stack is operated

on simultaneously with the execution stack, however only type information will be pushed

and popped from the auxiliary stack. In this way the data type of a value stored in the thread

execution stack can be found by looking up the corresponding slot in the auxiliary stack.

The task of the BEE is not solely to operate on the execution stack of a thread alone, it is also

responsible to maintain the global class repository. When BEE encounters a bytecode that

creates an object instance of a given class, it is responsible to check if the corresponding class

is already loaded into the global class repository, and to load the class if it is not so. The class

is loaded by executing a class loader method of the system. Once the class is completely

loaded and verified, the BEE will then request the DOM to allocate space from the Global

M
anager (M

M
)

M
igration

M
anager (T

M
)

T
hread

D
istributed O

bject
M

anager (D
O

M
)

B
yte E

xecution
E

ngine (B
E

E
)

JESSICA Daemon

43

Object Space for the new object. Finally BEE executes the class constructor to instantiate the

new object instance.

4.4.2 Distributed Object Manager (DOM)

The DOM in a JESSICA daemon is responsible to manage the local memory resource and to

cooperate with DOMs running on other nodes to create a Global Object Space, where object

in the global space can be accessed independent of their locations. The DOM is implemented

on top of a DSM system. The Global Object Space is collectively managed by all the

participating DOMs where each DOM is responsible to manage its own share of local

memory resource. A DOM will forward any of its memory pages to other DOMs for caching

to support remote memory accesses made by threads running on other nodes. It employs

cache coherent protocol to maintain the consistency of the shared memory. The global class

repository is also part of the Global Object Space. Since it is possible for multiple BEEs on

different nodes to upload classes into the repository simultaneously, semaphore is used to

avoid any race condition and to maintain consistency. The design of the global class

repository is to allow a single instance of each class to be shared by all the nodes in the

cluster.

Object allocation requests made by threads are always satisfied locally. When a migrated

thread on a worker node issues an object allocation request, the DOM will allocate the space

from its local memory instead of forwarding the request back to the console. This design is

justified by the principle of locality where the migrated thread on the worker node is likely to

access the object again and again in the near future. It should be more effective to allocate

from the local memory of the same node where the thread resides.

Each DOM manages the local memory resource by dividing the memory space into a number

of big memory trunks of various sizes; their sizes are multiples of the size of a memory page.

A fix amount of space is reserved at the beginning of each memory trunk to facilitate

accounting and garbage collection, the remaining space is divided into many equally sized

free blocks. These free blocks from all the trunks are then chained together to form a number

of free memory lists for new object allocation. The block sizes in all the trunks range from a

few bytes to sizes that are of multiple page large, so that the free lists formed contains blocks

of many different sizes which are comprehensive enough to satisfy different object allocation

requests. When a new object is allocated, the DOM will locate the memory trunk where the

object is belonged to, and to record the type information of the object in a corresponding slot

in the header of the trunk. The type information is recorded by saving the memory reference

that points to the class of the object in the global class repository. In this way the class type

44

can always be determined given any objects. The header of a trunk is also useful for garbage

collection, where it can provide a flag to indicate whether an object has already been visited

or not during the mark phase.

When a DOM tries to perform garbage collection, it will obtain the execution stacks of all the

active threads from the TM, so that it can start tracing recursively there and look for any

objects that are reachable from those threads. In the simplest case when no migration has

ever taken place, the remaining objects that are not reachable after this mark phase are

inactive and so can be safely freed. On the other hand, if there is migration, the unreachable

objects may still be referenced directly or indirectly by threads running on other nodes.

Therefore a distributed garbage collection algorithm need to be deployed in order to prevent

freeing any active objects inadvertently. Further discussion on our proposed scheme of

distributed garbage collection is given in chapter 6.

4.4.3 Thread Manager (TM)

The TM is responsible to create, destroy and schedule active Java threads running on the local

node. In the Global Thread Space the physical boundaries between all the nodes in the cluster

is gone, threads running on different nodes can see each other as if they were running on the

console node. The mapping between threads to node-processors is dynamic and transparent

to the threads themselves. Consequently, thread scheduling in the cluster is performed in a

distributed fashion. Each TM is responsible to schedule threads that are running on its local

node, and at the same time, threads running on different nodes can be synchronized and signal

each other by sending messages between the TMs. The implementation of distributed

synchronization and remote signaling will be discussed in chapter 6.

Thread scheduling in the TM is implemented using a set of ready queues with multiple

priorities. Note that as the case in the standard JVM, the scheduling mechanism implemented

is not on a time-slicing basis, where threads of the same priority are given equal time slice to

execute in a round-robin fashion. Instead, when there are more than one ready thread having

the same highest priority, only some of them, a number that is equal to the number of the

available processors will be scheduled. The rest of the ready thread will be kept waiting in

the ready queue until one of the running thread deliberately relinquish itself, or is blocked by

a semaphore, or is trying to read from/write to a file descriptor that is not ready. To

implement this blocked on semaphore and blocked on I/O mechanism, there is one block

queue for each semaphore and opened file descriptor. When, for example, the BEE that is

executing the current thread tries to acquire a semaphore, it will check if the current thread is

already the owner of the semaphore. If it is not the BEE will notify the TM to de-schedule the

45

current thread and put it onto the semaphore’s block queue. Later when the semaphore is

released by some other thread and it comes to the thread’s turn, the TM will place the thread

back to the ready queue.

In the process of migration, it is the TM who is responsible to extract, marshal and transport

the execution states of a migrating thread to the destination worker node. And the TM at the

destination is also responsible to receive, demarshals and instantiates the migrated thread so

that it can resume from the same point when it was frozen by the TM at the console. TM

supports remote execution of threads by allowing a user to explicitly specify the degree of

parallelism at the time when the application is invoked. As a result, whenever a new thread is

created by the TM, it will migrate the thread to other worker nodes until the specified degree

of parallelism is reached. On the other hand, migration can also be triggered internally by the

MM. When MM discovers there is any load imbalance, it will notify TM which thread

should be migrated and to where.

A thread can migrate multiple times: when the MM at the worker node of a migrated thread

discovers there is load imbalance again, the migrated thread is possible to be selected again as

the candidate for another migration. However, instead of directly migrating to another worker

node, the TM will first migrate the thread back to console node, where the TM at the console

will look for another worker node to migrate the thread to. This approach is taken because if

the migrated thread is directly migrated to another worker node without moving back to the

console, it will again leave behind residue dependency at the first worker node so as to

maintain transparency. From then on messages forwarded from the console will have to first

go through this worker node before they can reach the new home of the migrated thread,

which result in one more level of redirection. If further migrations are made, there will be

more redirection of messages and the migrating thread will leave behind too many residue

dependencies on multiple nodes. The multiple forwarding points so introduced are not

desirable, as the redirection overhead in this case will be proportional to the number of

migrations. However, if the thread is first migrated back to the console before taking another

migration, the residue dependency on the first worker node will be removed with the leaving

thread. On the other hand, it is also possible to support direct migration to a second worker

node, by notifying the console TM that the thread has moved to a new location. However,

this would involve readjustment of all the communication links of the migrated threads

between the console TM and the worker TM. The current implementation opts for a simpler

approach by first migrating the thread back to the console. Another point to note is that the

cost for moving the migrated thread back to the console node will be much smaller than that

for the initial migration, since in the former case only the content in the execution stack will

46

be copied back to the console. Besides, in the latter case extra time is required to re-

instantiate the migrated thread and to setup communication channels between the console TM

and the worker TM.

4.4.4 Migration Manger (MM)

The MM is responsible to collect load information in the local node and to exchange the

information with MMs running on other nodes so as to enforce the migration policy for load

distribution around the cluster. When MM decides to perform thread migration, it notifies the

TM about which thread should be migrated to where, and the TM will perform the migration

operation on behalf of MM. A sophisticated scheme can take into account of various system

parameters such as CPU load, memory access and I/O throughput. For example, in the case

of Millipede [18], threads that are accessing a significant amount of shared data or making

frequent communications are moved together to the same node to optimize the locality for

memory access or to minimize communication overhead. This is achieved by having the

system to monitor the amount of remote memory accesses made to the underlying distributed-

shared memory system. On the other hand, because the primary goal of JESSICA is to

implement an effective migration mechanism, we have only devised a simple migration

policy. In JESSICA, the one-minute system load average obtained from the uptime UNIX

command is used as the load information. In addition, JESSICA takes a centralized approach

in managing the load information; the MM of the console node is responsible to manage all

the load information across the cluster and make migration decision.

To perform load management in JESSICA, each MM obtains the one-minute system load

average from its operating system every minute. The MMs on all the worker nodes will

forward this average value back to the console node. The MM at the console node computes

the average of all the system load values received and the result is an estimation of the overall

one-minute system load average across the cluster. The console MM will then try to compare

the system load average of each node with this global average. If it can find a pair of nodes

whose system load average is 20% or more higher than the global average for one of them,

and 20% or more lower for the other, it will trigger a migration. The console MM will notify

its counterpart at the higher-loaded node to migrate a thread to the lower-loaded node. At the

higher-loaded node, the MM will simply select the thread that is currently executing as the

candidate for migration. Note that the current migration policy is an ad-hoc design. It is

implemented just for the sake of completeness of the whole system, and further investigation

is necessary to obtain reasonable result.

47

The following figure illustrates the interactions between the four system components in a

JESSIA daemon.

Fig 4.3: Interactions between system components in JESSICA

DOM

MM

new object
allocation request

read/write request
object field

request for the runtime stacks of all
the active threads in order to
carry out the mark phase in GC

thread migration
request

new thread object allocation request

carry out the mark phase in GC

thread migration
request

semaphore

request
acquire/release

request to
send/receive the
wait/notify signal

request to execute
the java.lang.Thread.start()
method

TM

BEE

48

4.5 Implementation of JESSICA

The implementation of JESSICA is based on Tim Wilkinson’s work of the KAFFE virtual

machine [37]. KAFFE is an open source implementation of JVM that supports execution of

Java applications in both the interpreter mode and the just-in-time compiler mode. We began

our work with KAFFE implementation version 0.9.1 that is compliant to the SUN JDK 1.1.2.

The KAFFE code provides the basis for implementing the bytecode execution, the thread

system and the memory system in JESSICA.

We have made considerable modifications and extension to the KAFFE code in order to

support the Global Thread Space in JESSICA. For example, we have replaced the original

method calling mechanism with our own method calling stack and stack frames, so that the

method calling sequence of a Java thread can be expressed in a machine independent manner.

In addition, message-forwarding mechanism is added into the network and system classes in

order to support the required SSI transparency in communication.

We employ the Treadmarks package [1] for the distributed-shared memory support in

JESSICA. Treadmarks is a DSM system that runs on clusters of computers of various

architectures, such as SUN SPARC and Intel i386. JESSICA has incorporated Treadmarks

version 1.0.1 as its DSM layer, which does not yet support heterogeneity. We have

augmented the signal handlers of the Treadmarks system to include our own processing for

segmentation fault and I/O events. The current version of JEESICA runs on the SUN Solaris

2.6 operating system.

The implementation techniques presented in the following sections cover various areas of the

JESSICA implementation. These areas are careful selected such that their implementation

contain certain subtleties which are worth to mention. The purpose of including them here is

to help people who would like to study the source code of JESSICA to understand the

implementation better. While the discussions on Delta Execution and the implementation of

SSI transparency shall be provided in detail in the two separate chapters that follow.

4.5.1 A Portable User-Level Thread System

The thread system in the original KAFFE source is implemented using assembly code. We

have reworked the system to make it more portable by using the UNIX

setjmp()/longjmp() system calls and implemented a thread system at the user level.

Notice that when a user process first executes the setjmp(jmpbuf) call, the values of the

CPU registers such as program counter (PC) and stack pointer (SP) are all saved in an array

49

pointed to by the jmpbuf variable. So that when the process later executes the

longjmp(jmpbuf, val) call with the jmpbuf as its argument, the CPU registers and

the state of the process will be restored back to the point when setjmp() is first executed,

only that the value return by setjmp() this time is non-zero. Here, the idea is to overwrite

the SP value in the jmpbuf array such that when the process executes the longjmp() call

the second time, the process is redirected to execute within the execution stack of the user

thread, and from this point onwards, the process can be set to execute the corresponding

function that is bound to the thread. So the next step is to identify the position where the SP

is stored in the jmpbuf array. This position is a machine dependent value where different

architectures can save the SP at different positions. For the case of our implementation, the

SP is located at the 2nd element within the jmpbuf array, i.e. <((void **)

jmpbuf)[1]>. Therefore, to instantiate a user thread, we do the following:

At line 01, the thread’s jmpbuf is initialized to point to the array that stores the CPU registers,

and when setjmp() is invoked the first time, control flow will goes to line 02, where the

stack content of the process is copied to the thread’s stack space. At line 03, the SP value in

the jmpbuf is overwritten with the top of the execution stack of the thread. As a result,

when the process later execute longjmp(t->jmpbuf, val) again with jmpbuf as its

argument, the control flow will return to line 04 as if setjmp() has returned with a non-

zero value. Now if the thread proceed to call its own function()at line 06, the thread will

execute within its thread stack.

To complete the discussion, here we introduce how to schedule out the current thread and let

another thread to gain the CPU control.

01 void threadSwitch(thread to, thread from) {
02 if (setjmp(from->jmpbuf) == 0) {
03 longjmp(to->jmpbuf, 1);
04 }
05 }

00 void threadInit(thread t) {
01 If (setjmp(t->jmpbuf) == 0) {
02 memcpy(t->stackBase,((void **)t->jmpbuf)[1], t->stackCopy);
03 ((void **) t->jmpbuf)[1] = t->stackBase + t->stackCopy;
04 } else {
05 t->function();
06 }
07 }

50

Now when the current thread (from) wants to let another thread (to) to resume its execution,

at line 02 the current thread will first save the current CPU registers in its own from-

>jmpbuf with the setjmp() call, and then jump to the execution context of the to thread

by the longjmp(to->jmpbuf, 1) call at line 03, using the to->jmpbuf that was

previously initialized by a setjmp() call made by the to thread itself.

4.5.2 Installing Custom Signal Handlers

In JESSICA, the BEE is required to catch any SIGSEGV signal that may be generated by

faulty Java applications and to throw the null pointer exception as a result. In addition, it is

required to catch the SIGIO signal to handle asynchronous I/O. However, the Treadmarks

DSM package that we are using has already installed its own handlers for the SIGSEGV and

the SIGIO signals: to detect any page faults due to remote memory access and to update its

remote memory cache when the remote pages arrives. If we simply installed our own

handlers with the signal() system call, then the original handlers installed by the DSM

package will be overwritten and the DSM system cannot function correctly. On the other

hand, we cannot modify the DSM signal handlers and include our processing code directly

because source code for the DSM system implementation is not available. We have solved

the problem by first extracting the DSM signal handlers immediately after the system has

started up, and then register our own custom signal handlers that will invoke the DSM signal

handlers eventually. The following code illustrates how it is done for the SIGSEGV signal.

When the application has been started, inside the main() block, the original signal handler

for SIGSEGV is first extracted using the sigaction() system call at line 12. The original

handler is then saved in the orginal_sigsegv_handler variable so that it can be later

invoked by the new signal handler at line 05. Afterwards, the custom signal handler is

01 void(*)(int) original_sigsegv_handler = NULL;
02 void my_sigsegv_handler(int signal) {
03 // my own processing here
04 // ...
05 (*original_sigsegv_handler)(signal);
06 }
07
08 void main() {
09 //...
10 struct sigaction act;
11 // replace SIGSEGV handler
12 sigaction(SIGSEGV, NULL, &act);
13 old_sigsegv_handler = act.sa_sigaction;
14 act.sa_handler = (void(*)(int)) new_sigsegv_handler;
15 sigaction(SIGSEGV, &act, NULL);
16 // ...
17 // ...

51

registered with the system at line 15. From this point onwards, if the process generates any

SIGSEGV signal, it is the my_sigsegv_handler that will be invoked. And before this

handler return, the original handler will also be invoked at line 05.

4.5.3 Detecting Migration Event

The migration granularity in JESSICA is per bytecode instruction. That is, when the MM

issues a migration request to the TM, the migration process can be triggered once the current

bytecode instruction has completed its execution. The bytecode execution is implemented in

the BEE as a switch statement within a for loop to handle different bytecode instructions

as follows:

Our first approach is to insert the necessary checking as an if statement at the top of the for

loop at line 04 to see if migration has been triggered after finishing the last instruction.

However, we discovered this would mean the checking for migration will be executed

together with every bytecode instruction. This scheme will incur too much overhead and slow

down the execution tremendously. Eventually, we solved the problem by adding a pseudo-

instruction MIGRATE and deliberately change value in the next-program-counter (npc)

variable and the code variable so that the next instruction is to execute MIGRATE. The

following code illustrates how.

01 for (;;) {
02 pc = npc;
03 npc = pc + instr_length[code[pc]];
04 switch (code[pc]) {
05 case NOP:
06 break;
07 case ILOAD_0:
08 // load integer zero onto the stack ...
09 // ...
10 // ...
11 } // end switch
12 } // end for

52

When the MM would like to trigger a migration, it calls the triggerMigration()

function which will change the next-program-counter (npc) and the code variable to points

to the instruction MIGRATE (line 06, 07). Now within the BEE when the execution of the

current bytecode has finished and the control goes back to line 15 to load the next instruction.

The change made by the triggerMigration() function will caused the MIGRATE

instruction to be loaded (line 17). And as a result, the TM will be invoked to perform

migration at line 24. Notice that the case statement for the MIGRATE instruction is

inserted at the end of the switch statement so that it will not introduce any extra comparison

operation under normal situation.

4.5.4 Migrated Thread to Call Native Method

JESSICA allows a Java thread to call native methods that are implemented using another

programming language such as C/C++. These native methods have to be first compiled and

be prepared in the form of a dynamic linked library so that their binary image can be linked to

the JESSICA daemon runtime address space when the methods are being invoked later.

Within the implementation of BEE, when it discovered the method that the current thread is

invoking is a native method (line 01 of the code example in the following page), it will check

if the method has already been initialized (line 02). If not, the corresponding dynamic linked

00 int pc, npc;
01 ByteCode[] code;
02 ByteCode migration_code[1] = { MIGRATE };
03
04 // to be called by migration manager MM
05 void triggerMigration() {
06 npc = 0;
07 code = migration_code;
08 // ...
09 // ...
10 }
11 // ...
12 // ...
13 // inside the BEE implementation
14 for (;;) {
15 pc = npc;
16 npc = pc + instr_length[code[pc]];
17 switch (code[pc]) {
18 case NOP:
19 break;
20 // ...
21 // ...
22 // ...
23 case MIGRATE:
24 TM->performMigration(currentThread);
25 break;
26 } // end switch
27 } // end for

53

library is loaded into the daemon process space (line 03) and the beginning address of the

method is located its value is assigned (line 04). Finally the native method is invoked (line

06). The situation is illustrated using the following code.

This implementation is fine if there is no migration. On the other hand, if migration has taken

place, there will be problems when a migrated thread tries to execute a native method again

which was previously executed at the console node before the migration. This is because in

this case the method->nativeCode has already been initialized and its value is pointing

to the function whose location is only meaningful within the JESSICA daemon at the console

node. Notice that for a dynamic linked library, the location where it is loaded to a process

space can be different every time it is loaded into the space, which means the same native

function can be located at a different address inside the JESSICA daemon space at the worker

node. In other words, the value pointed to by the method->nativeCode variable is the

most likely meaningless at the worker node, and executing method->nativeCode() as a

function call (line 06) can be catastrophic. The correct solution is to lookup the address of the

native function in the worker daemon again before executing.

The above code shows that the method->nativeCode should be re-instantiated again if it

has not been initialized or if the current thread has migrated to a worker node (line 02), before

invoking the native function.

00 // within the BEE, where it is about to invoke a method <meth>
01 if (method->isNative) { // the current method is a native method
02 if (method->nativeCode == 0|| currentThread->hasMigrated) {
03 lib = LoadNativeLibrary(method->signature);
04 method->nativeCode = lookupMethod(lib, method->signature);
05 }
06 (*(method->nativeCode))(argc, argv);
07 } else { // it is a bytecode method ...
08 // ...

00 // within the BEE, where it is about to invoke a method <meth>
01 if (method->isNative) { // the current method is a native method
02 if (method->nativeCode == 0) {
03 lib = LoadNativeLibrary(method->signature);
04 method->nativeCode = lookupMethod(lib, method->signature);
05 }
06 (*(method->nativeCode))(argc, argv);
07 } else { // it is a bytecode method ...
08 // ...

54

Chapter 5

Delta Execution

5.1 Overview

Preemptive thread migration can be an effective means to support load distribution in a cluster

of computers by moving threads from highly loaded nodes to execute on other underload

nodes. This chapter introduces Delta Execution, a preemptive thread migration mechanism

that we have devised for JESSICA by using an analytical approach. The availability of a

migration mechanism such as Delta Execution allows a cluster to enforce its load distribution

policy so that the overall resource utilization in the cluster can be improved.

In the Delta Execution approach, we have formulated a structural expression for representing

the current execution states of a running thread. The expression enables us to identify and

separate the machine dependent execution states from the machine independent states of a

running thread, where the machine independent states are well defined in the expression.

Consequently, we are able to develop a high level thread migration mechanism so that only

the machine independent states of a migrating thread are extracted and are moved to a

destination node for execution. We have successfully avoid the manipulation of any machine

dependent states by leaving them behind at the source node so that any execution that

involves these machine dependent states will still be performed at the source.

The machine independent states of a migrating thread at the source node are encoded into

multiple units of execution called delta sets, between the delta sets are the non-migratable

machine dependent execution states. Active execution of the migrated thread will be

observed as shuttling back and forth between the source and the destination node. A delta set

is executed on the destination and then followed by the execution of non-migratable machine

dependent instructions back at the source. This process is repeated until all delta sets are

exhausted (Fig 5.1).

Because Delta Execution avoids the manipulation of any machine dependent state

information, the implementation of the migration mechanism can be done without touching

the low-level details of the operating system or the hardware. The result is a very portable

implementation. In addition, since only the machine independent states are migrated, it is

55

possible to extend the mechanism for supporting heterogeneous migration, where a thread is

migrated to a computer that is of different hardware architecture.

Fig 5.1: Delta Execution in action

In general, the Delta Execution approach can be applied to implement thread migration on

any language systems that execute by means of a virtual machine. Because all the machine

dependent operations are performed back at the console node, correctness of execution can be

guaranteed. Furthermore, thread migration is transparent to application programmers and all

existing programs will remain functional and be ready to execute.

5.2 Capturing the Execution Context of a Running Thread

The primary task for performing thread migration is to capture the execution context of a

migrating thread completely so that the context can be correctly reproduced at the destination

worker node. The set of execution states so reconstructed will be used to instantiate a newly

At time T1, the
first delta set
D0 is moved to
the worker for
execution.

D0

D1M1 M0

At time T2, after
the execution of
D0 has finished,
Active execution
now returns to
console and M0
is being executed.

D1M1 M0

At time T3, after
the execution of
M0 has finished,
the next delta
set D1 is migrated
to the worker
node and is being
executed there.

D1

M1

At time T4, after
the execution of
D1 has finished,
the last machine
dependent states
is being executed
at console. When
the execution is
done, the thread
will also has
completed its
execution.

M1

At time T0, a
migrating thread
at the console is
represented as
a sequence of
delta sets D0, D1
interleaved with
sets of machine
dependent states
M0, M1

D1 D0M1 M0

Worker

T0 T1 T2 T3 T4

Console

Mi Machine Dependent Execution Set

Di Machine Independent Delta Set

Set under Active Execution

KEYS:

TIME

56

created thread instance, which represents the migrated thread and resumes execution at

exactly the same place as it was frozen at the console node.

Observed that the life of an active Java thread begins with the calling of the

<java.lang.Thread.start()> method, or the equivalent if this thread has sub-

classed the java.lang.Thread class. The bytecode instructions of this method will be

executed by the BEE, which may further call other methods and so on. The thread completes

its task when this <java.lang.Thread.start()> method or the equivalent returns. In

other words, the execution states of a running thread can be represented by a method calling

sequence and their respective execution context local to each method.

To implement the method-invocation mechanism in JESSICA, we have defined a structure

called Java Method Frame (JMF) to construct the method-invocation stack of a thread. The

purpose of JMF is to store the context of the current executing method. A JMF contains:

• a program counter PC which points to location of the bytecode currently being executed

• the next instruction NPC, it points to the next instruction to execute after finishing the

current PC

• a stack pointer SP that points to the top of the current method stack

• an array for storing the local variables of this method

• the method stack

• other miscellaneous information such as Java Exception information

Note that information contained in a JMF is architectural neutral.

When a running thread that is executing a method (M-0) tries to invoke another method (M-1)

from within (M-0), the thread will instantiate a new JMF (JMF-1) for storing the execution

context of the newly called method (M-1). This JMF-1 is then pushed onto the runtime stack

of the running thread immediately before method (M-1) starts to execute. Note that the JMF

sitting on the top of the runtime stack represents the execution context of the current method.

When the method (M-1) returns at a later time, its method execution context will also be

discarded, which is done by popping the JMF-1 from the runtime stack. As a result, the

execution context of the previous method (M-0), that is, JMF-0 is also restored automatically.

This is because JMF-0 was pushed onto the runtime stack before JMF-1 when method (M-0)

was invoked. Therefore when JMF-1 is popped, JMF-0 will again be sitting on the top of the

runtime stack. Now since the NPC of JMF-0 at this point is pointing to the next instruction

immediately following the one that invoked M-1, the thread can continue to execute correctly.

57

Consequently, with this JMF structure defined the method-invocation stack of a running Java

thread can be represented as a sequence of JMFs stored in the runtime stack of the thread.

5.3 Java Thread Migration – First Attempt

To illustrate how thread migration is carried out and how execution states are captured and

transferred based on the JMF structure, let us follow the Factorial.java example below, which

recursively calculate the factorial of 10 (Fig 5.2, line 06). The compiled bytecode instructions

are also shown in Fig 5.3. Note that the numbers following the line numbers in Fig 5.3

represent the corresponding location of the bytecode instructions as stored in the program

counter (PC).

Fig 5.2: Factorial.java

00 class Factorial {
01 static public int f(int n) {
02 if (n == 1) return 1;
03 else return n*f(n-1);
04 }
05 static public void main(String argv[]) {
06 int result = f(10);
07 }
08 }

58

Fig 5.3: Disassembled bytecode of the class Factorial

When the Factorial program is invoked, the main thread of the virtual machine will enter the

<main()> method of the Factorial class (Fig 5.2, line 06), pushing the first JMF onto

the runtime thread stack. And when it executes the 2nd bytecode instruction (Fig 5.3, line

02), it will call the factorial method <f()>, which will cause another JMF to be pushed.

After that, the method <f()> will recursively call itself at PC = 11 (Fig 5.3, line 21), and

push more JMFs onto the runtime stack.

After a number of iterations, suppose <f()> has recursed 3 times and the running thread is

frozen at PC = 8 of the method <f()> (Fig 5.3, line 18), when the local Migration Manager

(MM) triggers a migration. After the current instruction at PC = 8, i.e. <iload_0> has

been completed, the thread execution context can be represented as pictorially follows:

00 Method void main(java.lang.String[])
01 0 bipush 10
02 2 invokestatic #4 <Method int f(int)>
03 5 pop
04 6 return
05
06 Method Factorial()
07 0 aload_0
08 1 invokespecial #3 <Method Object()>
09 4 return
10
11 Method int f(int)
12 0 iload_0
13 1 iconst_1
14 2 if_icmpne 7
15 5 iconst_1
16 6 ireturn
17 7 iload_0
18 8 iload_0
19 9 iconst_1
20 10 isub
21 11 invokestatic #4 <Method int f(int)>
22 14 imul
23 15 ireturn

59

Fig 5.4: Execution context of thread main after a number of iterations

Note that for the tail-JMF there are two elements on the method stack, both of them are values

of the method calling parameter integer n, after the execution of the load instruction

<iload_0> twice at PC locations 7 and 8 (Fig 5.3, line 17, 18).

Suppose at this moment this main thread migrates, the above 5 JMFs which constitute the

entire execution context of main, are packed and shipped to a worker node by the local

Thread Manager (TM). After the execution context arrives at the destination worker node,

they are unpacked and reconstructed at the worker node, and eventually bind to the execution

context of a newly created slave thread. When the slave thread resumes execution, it

continues from the tail-JMF, and updates the value of PC to PC = 9 <iconst_1> (Fig 5.3,

line 19) according to the content of the NPC, the result is an integer constant 1 being pushed

onto the tail-JMF’s method stack. From this point onwards, the slave thread continues

execution correctly from the point where the master was previously stopped, just as if the

thread migration had not taken place. When the recursive method <f()> at this level <n =

7> returns, the JMF is popped and the context of the previous JMF <n = 8> is restored.

The method stack now should contain two integral elements: 8, and 5040, i.e. the value of n

and the evaluated value of <f(7)> respectively. BEE would then updates the value of PC to

STACK:
METHOD

SP:

NPC:

PC:

Method: int f(int)

11
14
1

8
9

STACK:
METHOD

SP:

NPC:

PC:

Method: int f(int)

11

1
14

7
8

STACK:
METHOD

SP:

NPC:

PC:

Method: int f(int)

8
9
1

7
7

STACK:
METHOD

SP:

NPC:

PC:

Method: void main(String[])

2
5
0

10

STACK:
METHOD

SP:

NPC:

PC:

Method: int f(int)

11
14
1

9
10

60

14 <imul> (Fig 5.3, line 22), which would multiplies the 2 elements on the method stack

together, the result <f(8)> is finally return to the upper level when BEE executes the next

instruction, PC = 15 <ireturn> (Fig 5.3, line 23). The slave executes this way until all the

JMF are exhausted, by then the slave will have completed its task. The console TM will

eventually receive a “done” message from the worker node.

5.4 Machine Dependent States

If a thread completes its execution without calling other methods except the

<java.lang.Thread.start()>; or the calling of other methods is performed by

directly executing one of the invokeMethod1 bytecode instruction, then the scheme of

using a sequence of JMFs described above can sufficiently capture and represent the states of

this running thread at any point of its execution. On the other hand, if this thread calls a

native method or the BEE tries to execute a bytecode instruction that within its

implementation would call another method, this will generate machine dependent states that a

sequence of JMFs alone cannot sufficiently capture the entire execution context. The

following example illustrates this.

Fig 5.5: Bar.java and Foo.java

1 A Java method can be invoked by executing one of the invokevirtual, invokespecial,
invokeinterface and invokestatic bytecode instructions.

00 class Bar {
01 static int count;
02 int id;
03 static { count = 100; }
04 Bar() { id = count--; }
05 }
06
07 class Foo {
08 public static void main(String argv[]) {
09 Bar b = new Bar();
10 }
11 }

61

Fig 5.6: Disassembled bytecode of the class Bar

Fig 5.7: Disassembled bytecode of the class Foo

In this example, the static block in the class Bar defines the class initialization routine (Fig

5.5, line 03), internally denoted as method “<clinit>” (Fig 5.6, line 12), is to be executed

once when the class is first loaded by the JVM. According to this example, the static block

will initialize the class variable count to 100 when Bar is loaded (Fig 5.5, line 03).

When the Foo program is executed, supposed the main thread of the virtual machine, enters

the <main()> method of the class Foo (Fig 5.5, line 08) and executes the first instruction at

PC = 0 <new> (Fig 5.7, line 06), to create a new object instance of class Bar, a JMF for the

<Foo.main()> method will be pushed onto the runtime thread stack. At the point, the BEE

which tries to execute the instruction <new>, will lookup and load the class Bar, as given in

the argument to the instruction (Fig 5.7, line 06). After the class is loaded, BEE will then

check if there is any class initializer to execute. Finally BEE will request the Distributed

Object Manager (DOM) to allocate a memory block to hold the Bar object. The following

00 Method Bar()
01 0 aload_0
02 1 invokespecial #4 <Method java.lang.Object()>
03 4 aload_0
04 5 getstatic #5 <Field int count>
05 8 dup
06 9 iconst_1
07 10 isub
08 11 putstatic #5 <Field int count>
09 14 putfield #6 <Field int id>
10 17 return
11
12 Method <clinit>
13 0 bipush 100
14 2 putstatic #5 <Field int count>
15 5 return

00 Method Foo()
01 0 aload_0
02 1 invokespecial #5 <Method java.lang.Object()>
03 4 return
04
05 Method void main(java.lang.String[])
06 0 new #1 <Class Bar>
07 3 invokespecial #4 <Method Bar()>
08 6 return

62

code segment shows a simplified internal implementation of the <new> bytecode instruction

in C/C++ for the BEE, which summarizes the above actions:

Fig 5.8: Simplified implementation for instruction new in BEE

When the main thread invokes the “<clinit>” method at line 05 of the

<instruction_new> function (Fig 5.8), it will push another JMF onto the runtime

thread stack to record the entering of a new method context. If at the moment the local MM

initiates a migration when the thread is trying to execute the first instruction at PC = 0,

<bipush> (Fig 5.6, line 13), the main thread will be frozen after the <bipush> instruction

has been completed successfully. And the execution context of the thread can then be

represented by the following sequence of JMFs:

Fig 5.9: Execution context of thread main after entering the class initializer “<clinit>”

// A simplified internal implementation of the
// bytecode instruction new in BEE
//
00 void instruction_new(char *className) {
01 javaClass* class = lookupClass(className);// if the class is not
02 // loaded, load it too
03 if (class->needInitialize) { // if the class has a class
04 // initialization method to execute, invoke the method
05 vmExecuteJavaMethod(class, “<clinit>”);
06 class->needInitialize = false; // the initialization method
07 // only need to be executed once
08 }
09 // ask DOM to allocate a memory block for the new object
10 javaObject* object = DOM->alloc(class->objectSize);
11 *SP++ = object; // push the object handle onto the method stack
12 return;
13 }

STACK:
METHOD

SP:

NPC:

PC:

Method:

STACK:
METHOD

SP:

NPC:

PC:

Method: <clinit>

0
2
0

100

void main(String[])

0
3

stack is empty

63

When the slave thread resumes at the destination worker node, it continues within the method

context of “<clinit>” at PC = 2, which stores the value 100 found from the top of the

method stack to the class variable “count” and then return (Fig 5.6, line 14). The JMF of

this context is therefore popped from the runtime thread stack, and the method context of the

<Foo.main()> is restored. Now if we follow exactly the scheme as described in section

5.3, we will continue the execution within the method context of <Foo.main()> and

execute the next instruction at PC = 3 <inovkestatic> (Fig 5.7, line 07). But this will

lead to incorrect result, as the slave thread has “forgotten” to allocate memory for the new

Bar object.

Note that if there is no migration, the control flow of the main thread should continue at line

06 (Fig 5.8) of the <instruction_new()> function code after the “<clinit>” method

return. That is to set the needInitialize flag to false, obtain a memory block from

DOM, and finally push the memory handle onto the method stack (Fig 5.8, line 06-13); before

returning to the method context of <Foo.main()> at PC = 3 <invokestatic> (Fig 5.7,

line 07). In other words, there are certain state information of the execution context failed to

be represented between the two JMFs (Fig 5.10).

64

Fig 5.10: Revised execution context of thread main after entering the class initializer

“<clinit>”

The missing information, including the return address at line 06 of the

<instruction_new()> implementation code (Fig 5.8), are in fact stored in the runtime

C-stack2 of the JESSICA Daemon at the console node. They are by all means implementation

and hardware dependent, as illustrated in Fig 5.10 above.

2The C-stack we described here is the runtime stack of a UNIX process. We called it a C-stack to
differentiate from the runtime thread stack of the BEE.

METHOD
STACK:

SP:

PC:

Method: <clinit>

NPC: 2
0

100

STACK:
METHOD

0

SP:

NPC:

PC:

void main(String[])

0
3

stack is empty

Revise

STACK:

Method:

SP:

NPC:

PC:

Method: void main(String[])

0
3

stack is empty Machine
Dependent
State
Information

METHOD
STACK:
METHOD

SP:

NPC:

PC:

Method: <clinit>

0
2
0

100

65

5.5 Incremental Thread Migration by means of Delta Execution

As the shaded block in Fig 5.10 above is machine dependent and so cannot be shipped across,

here we propose an alternative approach to thread migration that is independent to the lower

level implementation of the operating system.

5.5.1 Two Types of Java Method Frames

Concluding from the two examples discussed above, we can categorize JMFs into two types:

"B" Frame –

The JMF that is pushed to the runtime thread stack as a result when a method is

invoked from within another method. The invocation is called from within bytecode,

by the execution of (invoke[virtual| special| interface|

static]) instructions. For example, in Factorial.java, the calling of

<Factorial.f()> at PC = 2 of <Factorial.main()> (Fig 5.3, line 02) as

well as the recursive invocation in <Factorial.f()> itself at PC = 11 (Fig 5.3,

line 21) will both push a "B" frame to the stack.

"C" Frame –

The JMF that is pushed to the runtime thread stack when the implementation code

(assuming in the language C/C++) of BEE or a native method explicitly invokes a

method through the <vmExecuteJavaMethod()> function, such as at line 05 of

the <instruction_new()> implementation shown in Fig 5.8. It is the machine

dependent states introduced by the implementation code before pushing this "C"

frame onto the thread stack that cannot be captured directly.

Consequently, for any thread execution context, the correct representation should be a

sequence of B frames and C frames interleaving between each other, with a set of machine

dependent states inserted before each C frame. Note that every queue must begin with a "C"

frame, as any thread execution must be initiated by the VM implementation itself (Fig 5.11).

Fig 5.11: Revised thread execution context representation, shaded blocks are the sets of

machine dependent states not captured by JMFs

C B C C B B B

66

5.5.2 Delta Execution

Our approach is to partition a thread execution context into chunks of JMFs, known as delta

sets, ∆Ei. (Fig 5.12) Each delta set begins with a C frame and followed by zero or more B

frames. Now, instead of shipping the whole execution context to the destination as done in

the traditional way of thread migration, we ship them in an incremental manner; one delta set

at a time.

When the local TM of the console node performs a migration operation, it packs and ships the

tail delta set in the sequence of thread execution context. The slave thread at the destination

worker node will bind to this delta set and resume execution until the JMFs in this set is

exhausted. After which the execution control will return back to the master thread, to let it

finish whatever machine dependent context whose states cannot be shipped to the destination,

such as from line 06 to line 13 in the <instruction_new()> example (Fig 5.8).

Immediately after the machine dependent execution is completed, control flow will migrate

back to the slave with the next delta set so as to continue execution at the worker node.

Fig 5.12: Delta sets are sent to the slave thread one by one for execution

With this arrangement of Delta Execution, every time the destination only incrementally

advances the execution states of the migrating thread by delta. We are able to isolate those

non-migratable machine dependent context and to have them executed locally at the console;

while at the same time machine independent context are able to migrate across machines of

any hardware architecture and execute remotely.

MASTER

C B C

∆E1 ∆E2

SLAVE

C B B B

∆E3

67

Chapter 6

SSI Transparency Support

6.1 Overview

This chapter discusses the implementation of the support for SSI transparency in JESSICA.

SSI transparency is an indispensable feature in JEECIA, with this the support of migration

transparency for threads can follow immediately. It is this SSI transparency that provides a

Global Thread Space for threads executing on different nodes in the cluster to see each other

as if they were running on the same virtual machine, where threads can freely move around

the cluster without breaking this view. Following the home model as described in chapter 4, it

extends the parallelism of a JVM that spans over a cluster without changing the semantics of

runtime interactions between objects, therefore making JESSICA compatible with the

standard JVM, in addition to support the Serial-Program-Parallel-Subsystem (SPPS)

programming model. The core implementation of SSI transparency is based on a master-

slave design for thread migration, where the cooperation between the master thread running

on the console node and the slave thread running on the worker node together produce the

required transparency. With this master-slave design we are able to implement transparent

network communication and file operations, distributed thread synchronization and remote

exception. Their implementations are discussed in the following sections.

6.2 The Master-Slave Design for Thread Migration

In JESSICA, when a thread running on the console node migrates, it does not actually pack

up itself and move to the destination worker node. Instead, it is split into two cooperating

entities, with one running at the original console node, called the master; and the other

running at the destination node, called the slave. The slave thread is in fact created at the

destination node anew and acts as the migrated image to continue the execution of the original

thread. The master thread remaining at the console node is actually the original migrating

thread, which is now reduced and be responsible to perform any location-dependent

operations like I/O on behalf of the slave thread, plus other message forwarding between the

slave and the rest of the system. The master and slave pair is responsible to carry out the

interactions between the console and the worker nodes as described in chapter 4 in order to

maintain migration transparency.

68

The following steps are taken when the current thread running on the console tries to migrate

to another worker node:

1. The Thread Manager (TM) at the console node freezes the migrating thread and extracts

the execution states in the form of a series of Java Method Frames (JMF) from the local

Bytecode Execution Engine (BEE). The JMFs are then grouped into a sequence of delta

sets in order to isolate the machine dependent execution states, as explained in chapter 5.

2. The Migration Manager (MM) then identifies a destination worker node for the thread to

migrate to, and to notify the corresponding MM at the destination node to prepare for the

migration.

3. After receiving the migration notification, the destination MM requests the local TM to

create a new thread instance to represent the migrated thread. This newly created thread

instance is known as the slave thread.

4. The original thread at the console detaches itself from the local BEE and obtains its

execution states from the TM as a sequence of delta sets. It is now known as the master

thread which is responsible to control the execution of the slave thread that is created at

the destination node.

5. After the instantiation, the slave thread at the destination creates a dedicated

communication channel with the master at the console. This dedicated channel is used for

sending control information and message redirection between the master and the slave.

6. Finally the slave thread at the destination node sends a ready message to the master to

signify that it is ready to resume execution. The master thread at the console then sends

the first delta set to the slave for execution.

7. The slave thread resumes its execution by using the JMFs from the delta set that it

received. After finishing execution of the given delta set, it sends a ‘more’ signal to the

master and ask for the next delta set to execute. The master thread at the console after

receiving this ‘more’ signal, will complete any machine dependent execution that are not

migratable, and then send the slave the next delta set to execute.

8. The last step is repeated until the whole sequence of delta sets is exhausted, which implies

the original thread has completed the execution of its primary function

<java.lang.Thread.start()>, or its equivalent. At this point, the master will

notify the slave with an ‘end’ signal signifying that the execution has been completed, so

that both threads will eventually terminate themselves.

Note that the 7th step of the above scheme is the critical step for the system to maintain

migration transparency, it is in this step where redirections take place. While the slave thread

is executing the delta set at the destination node, the master thread is also responsible to

monitor the communication channel and see if there are any messages of redirection requests

69

sent from the slave thread. These messages can be network channel read/write operations or

semaphore acquire/release operations where the master has to perform on behalf of the slave

back at the console node, so as to maintain the network and location transparency. In

addition, the master is also responsible to redirect any asynchronous signals sending from

other running threads on the console node, so that the original thread appears to other threads

as if it was still running on the console node and the migration has never took place.

Fig 6.1: Interactions between the master and the slave thread that transparently hide migration

from the rest of the system

With this design we are able to create a Global Thread Space and maintain the same

semantics and relationships between all the objects in the execution environment as if there

was no migration (Fig 6.1). This is because for the rest of the threads that are running on the

console node, only the master thread is visible to them, they are not aware of the existence of

the slave thread. All the interactions between the slave thread and the rest of the threads have

to go through the master, and the fact of migration is transparently hidden by the master, who

redirects the all interactions to the slave. The redirections make the master appears to the rest

of the threads that they are still interacting with the original thread as if there is no migration.

In addition, for the slave thread which is now running at a worker node, it will also appears

that it is running on the console node, since all the location-dependent operations are

transparently redirected back to the console and be performed by the master. As a result, the

WORKER
NODE

location
independent
operations

slave

location
dependent
operation

master

interactions between
the master/slave pair
and other threads
on the console

other
threads
running
on cosole

redirected messages
such as:
semaphore operations,
asynchronous signals,
I/O and other location
dependent operations

CONSOLE
NODE

INTERCONNECTION NETWORK

70

execution environment observed by a running thread in JESSICA is the same as that of a

standard JVM, no matter whether the thread has been migrated or not. Hence, multi-threaded

applications runnable on a standard JVM can also be executed correctly on JESSICA.

In addition, the master-slave design also simplifies the implementation of network

transparency and other location-dependent operations, by having the master to act as a proxy

to forward any messages between the slave thread and the rest of the system. The redirection

code can be inserted within the implementation of the operations themselves, without

changing the interface definitions for invoking the operations; hence no modification is

necessary for existing applications that perform the operations. For example, the change of

communication end-points when a thread has been migrated can be transparently hidden by

the master. The master takes care the redirection of network messages, so that the other

parties trying to communicate with the migrated thread cannot aware of the change of

location. The redirection code can be inserted within the <read()>, <write()> and other

socket operations in the set of java.net classes without changing their method signatures.

Moreover, because applications will be automatically linked to the modified network classes

when they are first invoked, they do not need to be re-compiled before starting on the

JESSICA system and still be able to correctly handle the changes in socket end-points as a

consequence to thread migrations.

Finally, the design of having a master thread running at the source node and a slave thread

running at the destination node is also necessary for implementing Delta Execution for

heterogeneous thread migration. This is because by leaving the master thread behind at the

source node, we are able to complete all the machine dependent executions that are not

migratable with the help of this master thread, while all the machine independent executions

can be performed by the slave thread running elsewhere.

6.3 Cooperative Semaphore

The essence of multi-threaded computing is that threads can share resources and execute

concurrently to multiplex multiple computations, or even communications, at the same time.

In such a multi-threaded runtime environment like JESSICA, mechanism for providing

mutual exclusion is necessary to ensure coordinated access to shared resources so as to

maintain their integrity. The Java Programming Language utilizes semaphore to implement

mutual exclusion control. A semaphore is associated with every shared object so that it is

possible for application programs to avoid any race condition by first acquiring the associated

semaphore before updating a shared object.

71

Thread synchronization is a direct consequence of using semaphore. Because if a thread that

is trying to acquire a semaphore of a given object, but the semaphore is already acquired by

another thread, then the thread will be blocked. This is in effect having the Thread Manager

(TM) to schedule out the thread and place it at the waiting queue. This blocked thread will be

re-scheduled back to the ready queue by the TM when all the other threads that have

previously acquired the semaphore before the blocked thread did later release it. As a result,

the implementation of semaphore has to couple to that of the TM, so that semaphore

operations are able to trigger thread rescheduling when necessary.

In JESSICA, as a thread is possible to migrate to other nodes and continue to execute there,

the implementation of semaphore and the TM have to be augmented in order to maintain the

same semantics of semaphore operations even when a thread is migrated, as described in the

last paragraph. This is because when a migrated thread tries to acquire a semaphore of a

shared object, the semaphore may be located back at the console node, hence a mechanism for

remote semaphore operations is required. In addition, when re-scheduling a thread that is

previously blocked by an already acquired semaphore, the thread can be a migrated one and a

mechanism for notifying the TM of the node where the migrated thread is located is also

necessary in order to schedule in the migrated thread.

A possible solution is to implement these mechanisms in a centralized approach. TMs

running on all the nodes are integrated together so as to perform cooperative scheduling in a

global manner. When a thread T running on node A tries to release a semaphore, which

would in turn causes another thread T’ running on node B to be re-scheduled, the TM of node

A will send a reschedule message to node B to place thread T’ back to the ready queue. In

addition, a thread cannot directly operate on a semaphore, since this will create another race

condition when more than one thread tries to operate on the same semaphore at the same time.

Instead, operations of a semaphore have to be performed by a manager of the semaphore,

which can be the thread who created the semaphore. However the global scheduling scheme

in the centralized approach can make the solution less scalable and less reliable. This is

because the scheme requires each TM to be aware of the existence of all the other TMs

running in the system and their locations, so that scheduling messages can be directed to the

right TM. Moreover, all the TMs have to be notified whenever a new node is added to or

removed from the system. In addition, the implementation of forwarding semaphore

operations back to their managers is also non-trivial.

Instead, JESSICA takes a de-centralized approach to implements distributed semaphore. The

approach makes use of the master-slave thread pair to forward semaphore operations between

72

the console node and the worker nodes. The TMs are not required to be aware of the

existence of other TMs and work together, each TM can perform its own local thread

scheduling without affecting the other TMs. In addition, all the semaphore operations are

performed at the console node by the master threads, so the same semaphore semantics is

enforced as if there was no migration. The de-centralized approach is therefore more scalable

and reliable than the centralized approach. The implementation of distributed semaphore in

JESSICA is called Cooperative Semaphore. It is the cooperation between the master thread at

the console and the slave at the worker node that provides a transparent, scalable and reliable

implementation.

Observed that a running thread T will be blocked and scheduled out from the ready queue if:

• It tries to acquire a semaphore S where S is previously acquired by another thread T’, or

• It tries to perform an I/O operation in blocking mode and the I/O channel is not ready, or

• It explicitly performs a wait operation on a given object O.

And a blocked thread T will be rescheduled back to the ready queue when:

• The semaphore S that T has previously requested is released by another thread T’ and it is

now T’s turn to acquire S, or

• The I/O channel that T previously tried to operate on is now ready, or

• Another thread T’ has issued a notify operation on an object O which T has previously

waited upon.

We take advantage of the property that a thread will block when trying to read from an I/O

channel until data has arrived. When a slave thread tries to acquire a semaphore S, instead of

directly operating on the semaphore S, it sends a message to its master, asking the master to

acquire S at the console on its behalf. After that the slave thread will be blocked waiting for

the master reply. Now at the console node, when the master thread received the semaphore

acquire request on S from its slave, it will try to acquire the semaphore S accordingly. Until

eventually the master has successfully acquired the semaphore S, it will then send a successful

message back to its slave so that the slave can continue its execution at the worker node as if

it has successfully acquired the semaphore itself. Similarly, when the slave thread later tries

to release the semaphore S, it again sends a message back to the master and asks it to release

the semaphore S on its behalf. After the master has received the message and released the

semaphore accordingly, the local TM at the console can then re-schedule any threads that

have previously issued a acquire operation on the semaphore. With this design the observed

effect for the slave thread is that a semaphore acquire operation will block until the

73

semaphore is acquired, and a semaphore release operation will causes other threads that are

also trying to acquire on the semaphore to be rescheduled. Hence the fact of migration is

transparently hidden from the slave. And for the rest of the threads that are running on the

console node, what they observed is still the master thread who performs all the semaphore

acquire and release operations, therefore the fact of migration is also transparently hidden

from them. The following code segments illustrate how the above mechanism is

implemented at the master and the slave thread:

Fig 6.2: Pseudo-code for implementing Cooperative Semaphore in JESSICA

6.3.1 Distributed Thread Synchronization

Note that by similar design, we are able to implement remote thread signaling where the

master is responsible to transparently forward any wait and notify signals between its slave

and the rest of the threads running on the console node. With the Cooperative Semaphore and

the remote signaling mechanism installed, we are able to implement distributed thread

synchronization in a decentralized manner that is reliable and scalable.

6.4 Remote Exception

The Java Programming Language supports a language exception construct where a method

can defined a block of code for handling any specified exceptions that may be generated as

the method executes (Fig 6.3). In the example, the code segment that can generate a divide-

by-zero exception is enclosed in the try block from line 03 to 04, and the code segment to

// Master waiting for
// redirection request
// at the console ...

00 while (true) {
01 req = waitForRequest();
02 switch (req.cmd) {
03 case REMOTE_SEM_ACQUIRE:
04 semAcquire(req.sem);
05 replyResult(ACQUIRE_OK);
06 break;
07 case REMOTE_SEM_RELEASE:
08 semRelease(req.sem);
09 replyResult(RELEASE_OK);
10 break;
11 // ...
12 // ...
13 // ...
14 } // end switch
15 } // end while

// Slave performs the following
// remote semaphore operations
// to redirect the operations back
// to the master

00 void remoteSemAcquire(Sem s) {
01 Request req;
02 req.cmd = REMOTE_SEM_ACQUIRE;
03 req.sem = s;
04 sendRequest(req);
05 Reply rep = waitForReply();
06 assert(rep == ACQUIRE_OK);
07 }
08
09 void remoteSemRelease(Sem s) {
10 Request req;
11 req.cmd = REMOTE_SEM_RELEASE;
12 req.sem = s;
13 sendRequest(req);
14 Reply rep = waitForReply();
15 assert(rep == RELEASE_OK);
16 }

74

handle the exception is enclosed in the catch block from line 05 to 08 that follows. If the

virtual machine can execute the try block without generating any exception, the program

continues to execute from line 09, otherwise the catch block will be executed before resuming

execution from line 09.

Fig 6.3: A simple try-and-catch example of exception

The idea of language exception is that when the current execution has generated an

anticipated error, the execution can be aborted and then be rewind back to a point where the

program has pre-defined a specific handler to deal with the anticipated error. As a result, to

implement language exception in the Bytecode Execute Engine (BEE), the sequence of Java

Method Frames (JMFs) are to be scanned from the tail to the head to locate the nearest called

method which has implemented a catch block that can handle the exception. When this

method is located, the execution context of the current thread is rewind up to this method so

that execution can continue from the exception handling block of this method.

00 class Foo {
01 public float divide(int a, int b) {
02 float c;
03 try {
04 c = a / b;
05 } catch (ArithmeticException e) {
06 System.out.println(“divide-by-zero!”);
07 c = float.NaN;
08 } // end try-catch
09 return c;
10 } // end divide

75

Fig 6.4: The mechanism for handling Remote Exception

Notice that when a thread is migrated, according the Delta Execution implementation, only

the tail-most delta set is sent to the worker node for the slave thread to execute. Now if this

slave thread generates a remote exception, it is possible that the worker node is unable to

locate the JMF from the delta set that can handle the remote exception. This is because the

JMF of the method that contains the catch block for this remote exception is still located at

the console node. Hence, instead of generating an uncaught exception error, the system

should discard the slave thread and forward the exception back to the master thread at the

console, so that the searching for the right JMF to handle the exception can continue (Fig 6.4).

Once the JMF has been located, the corresponding delta set that contains this JMF can be sent

to the worker node and a new slave thread can be instantiated to continue execution of the

catch block that handle the remote exception.

INTERCONNECTION NETWORK

CONSOLE NODE WORKER NODE

master slave

BB BC

JMFs to be
discarded

BC B B C B BC B

machine
dependent
states

JMF that contains
the catch block

delta set
to be migrated

76

6.5 I/O Redirection

An important issue in providing migration transparency is how to ensure all the opened files

and network communication links to remain functional the same way as they are before

migration. They are the primary requirements for implementing location transparency and

network transparency. They have been a non-trivial problem for traditional process migration

systems implemented at the kernel level such as Sprite [12] because the control information

relating to the open files and network communication end-points are all stored within the

kernel and migrating them is difficult. On the other hand, for higher level implementation

like Condor [25] and JESSICA, it is possible to achieve location and network transparency by

augmenting the subsystems implementation that provides the files and network

communication services to the applications running on top of them.

As in the case of JESSICA, location and network transparency are achieved by having the

master and the slave thread to forward the corresponding messages and operations between

the console and the worker node. File and network communication operations are location-

dependent operations and hence they are all redirected back at the console node where it is the

master thread to perform the operations. The redirection code are implemented within the

java.io and the java.net class libraries for files operations and socket communications

respectively. Their interface definitions are kept unchanged so that existing classes that make

use of their methods can still function correctly without modification. An important feature

of JESSICA that has simplified the implementation of I/O redirection is its object-oriented

nature. The class hierarchies of both the java.io and the java.net class libraries are

well organized. There are base classes located towards the top of the hierarchies who are

responsible for performing the raw I/O operations on the underlying operating system. All of

their children classes who are specialized to perform specific I/O operations inherit the

functionality offered by these base classes and will directly invoke the methods provided by

them when trying to access the raw I/O channels. As a result, when these base classes in the

hierarchies are augmented to support the required migration transparency, the rest of the

children classes who inherit them will automatically support migration transparency also.

This is also one of the favorable feature of object oriented programming.

77

When file I/O is concerned,

• the java.io.File,

• the java.io.FileInputStream,

• the java.io.FileOutputStream,

• and the java.io.RandomAccessFile base classes

in the java.io class libraries are identified as necessary to incorporate the redirection code

for supporting location transparency. The following code segment demonstrates how the

java.io.FileInputStream.read() (Fig 6.5) is augmented. Note that because the

method needs direct access to the underlying operating system, it is a native implementation.

Fig 6.5:Code segment for the implementation of java.io.FileInputStream.read()

with redirection

Notice that at line 04, the system check if the current thread is a slave. If it is a slave then

instead of performing the read operation locally, the operation is sent back to the master

thread and ask it to read the file channel on its behalf, the FileInputStream object is

also transported for the master to operate upon (line08).

00 // implementation of java.io.FileInputStream.read() method with
01 // redirection
02
03 jint java_io_FileInputStream_read(
04 struct Hjava_io_FileInputStream *this) {
05 if (currentThread->isSlave) {
06 Request req;
07 req.cmd = JAVA_IO_FILEINPUTSTREAM_READ;
08 req.obj = this;
09 sendRequest(req);
10 Reply rep = waitForReply();
11 return rep.result;
12 } else {
13 int fd = unhand(unhand(this)->fd)->fd;
14 char byte;
15 int r = read(fd, &byte, 1);
16 if (r > 0)
17 return byte;
18 else return r;
19 }
20 }

78

Simiarly, when socket I/O is concerned, the following are the classes from the java.net library

that need to be augmented:

• java.net.SocketInputStream

• java.net.SocketOutputStream

• java.net.PlainSocketImpl

• java.net.PlainDatagramSocketImpl

The following code segment demonstrate how the to modify the method for creating a

datagram socket:

Fig 6.6: Code segment for the implementation of

java.net.DatagramSocket.datagramSocketCreate() with redirection

00 // implementation of java.net.DatagramSocket-
01 // .datagramSocketCreate() method with redirection
02
03 void java_net_DatagramSocket_dataSocketCreate (
04 struct Hjava_net_PlainDatagramSocketImpl *this) {
05 if (currentThread->isSlave) {
06 Request req;
07 req.cmd = JAVA_NET_DATAGRAMSOCKET_DATAGRAMSOCKETCREATE;
08 req.obj = this;
09 sendRequest(req);
10 Reply rep = waitForReply();
11 assert(rep.result == SUCCESS);
12 } else {
13 int fd = socket(AF_INET, SOCK_DGRAM, 0);
14 unhand(unhand(this)->fd)->fd = fd;
15 return;
16 }
17 }

79

Now for the master thread to be able to handle the redirection request correctly, its service

loop has to be augmented as follows:

Fig 6.7: Service loop of the master thread that handles redirection request of location-

dependent operations from Slave

The master thread after receiving the I/O redirection requests from slave at line 13 and line

18, it has to perform the request locally (line 15 and line 20) and reply the slave with the

result of the operations (line 16 and line 22).

6.6 Distributed Garbage Collection

JESSICA employs a decentralized approach for memory management, where the Distributed

Object Manager (DOM) running on each node of the cluster is responsible to manage its own

share of distributed shared memory. This scheme allows multiple DOMs to perform memory

management operations concurrently, and the parallelism of the system can be improved. On

the other hand, care has to be taken by these DOMs when they are performing garbage

collection because objects that are not referenced by local objects may still be referenced by

// Master waiting for redirection request at the console ...
00 while (true) {
01 req = waitForRequest();
02 switch (req.cmd) {
03 case REMOTE_SEM_ACQUIRE:
04 semAcquire(req.sem);
05 replyResult(ACQUIRE_OK);
06 break;
07 case REMOTE_SEM_RELEASE:
08 semRelease(req.sem);
09 replyResult(RELEASE_OK);
10 break;
11 // ...
12 // ...
13 case JAVA_IO_FILEINPUTSTREAM_READ:
14 Reply rep;
15 rep.result = java_io_FileInputStream_read(req.obj);
16 replyResult(rep);
17 break;
18 case JAVA_NET_DATAGRAMSOCKET_DATAGRAMSOCKETCREATE:
19 Reply rep;
20 java_net_DatagramSocket_dataSocketCreate(req.obj);
21 rep.result = SUCCESS;
22 replyResult(rep);
23 break;
24 } // end switch
25 } // end while

80

other objects that are located on other nodes of the system. JESSICA proposes a simple

mark-and-sweep algorithm for garbage collection.

In the simplest case when there is no migration, to performing garbage collection the DOM

will start tracing from a list of local root objects which include all the running threads in the

local node, and to mark all the objects that can be reached from them. Any remaining local

objects that are not marked will imply they are not reachable by any means and therefore can

be safely reclaimed. However, when there is migration, those unmarked objects may still be

reachable either directly or indirectly by migrated threads running on other nodes in the

system. A necessary requirement for performing garbage collection correctly is therefore to

identify all the local objects that are not reachable from the list of local root objects but are

still being referenced remotely.

JESSICA proposes a simple solution to address the issue by partitioning the global shared

memory into a number of shares so that each DOM is responsible to manage its own share, as

a range of contiguous memory. Each DOM satisfies local object allocation requests with the

memory space from its own share. As a result, by looking at the address of where an object is

located, it is simple to deduce which DOM is the owner of this object. Hence, during the

marking phase of garbage collection, each DOM will maintain a list of remote objects for

each of the other DOMs where all the objects in a given list belong to the same DOM. At the

end of the marking phase these lists of objects are then forwarded to their respective owners,

which as a result would enable a DOM to identify all the objects that are being referenced

remotely by objects residing on other node of the cluster. Eventually, the DOMs are able to

carry out the sweeping phase and reclaim objects that are not referenced by anyone, and the

operation of distributed garbage collection can then be completed successfully.

Notice that distributed garbage collection is a classical research problem by itself and here we

have only opted for a trivial solution for the sake of implementation. Interested reader can

refer to [8] for more information.

81

Chapter 7

Performance Evaluation

7.1 Overview

In this chapter we present the results of our experiments with the JESSICA system. The

experiments have verified that considerable speedup is achievable by migrating Java threads

transparently over a cluster and to execute them in parallel. Section 7.2 studies the operating

cost of primitive operations introduced as a result of allowing threads to distribute around a

cluster and to execute on remote nodes. Section 7.3 examines the migration latency for

resuming a migrated thread. Section 7.4 demonstrates the performance improvement with

various types of multi-threaded applications. The applications are standard applications that

can be found in the literature of Parallel Computing, they include an approximation of the

value π by evaluating an integral, a recursive ray-tracing program on a simple 3D scene and a

Red-Black Successive Over-Relaxation program where elements of a huge matrix

(1024x1024) are interpolated. Finally, we draw our conclusions on the performance of the

JESSICA system from the experiments conducted in section 7.4. In addition, techniques of

how to improve performance in JESSICA are also presented in the last section.

7.1.1 The Experiment Environment

The experiments presented in this chapter are conducted on the HKU Pearl Cluster, using 12

SUN SPARC Ultra-1 machines that are connected together by a Fore ASX-1000 ATM

switch. The ATM switch supports a point-to-point bandwidth of 155Mbps. Of the 12 SUN

SPARC Ultra-1 machines, 8 of them are Model 140 with 64MB RAM and the remaining 4

are Model 180 with 128MB of internal memory, they are all running the Solaris 2.6 operating

system. Experiments in this chapter that are running on eight or less processors are all

conducted on the Model 140 machines.

7.2 Primitive Operations Overhead

This section studies the extra overheads that are incurred as a result of allowing threads to

distribute around the cluster and to execute in parallel on multiple nodes. These overheads

come from distributed object access and distributed thread synchronization. Note that they

82

are not presented in the traditional case where there is no migration as all the threads are

running on the same machine.

7.2.1 Overhead from Accessing Distributed Objects

In order to ensure objects to be continuously accessible by any threads even after they have

migrated to another machine, objects in the JESSICA system are allocated from the

distributed-shared memory (DSM). The use of a DSM system can simplify the

implementation of the distributed virtual machine substantially. On the other hand, since it is

possible to have two or more threads to update a given object at the same time, extra

operations have to be executed in order to prevent such race condition from occurring. They

are the semaphore acquire and release procedures available from the DSM subsystem for

maintaining the consistency of the shared memory. However, these operations introduce

additional overhead for object accesses. Furthermore, when a thread tries to access an object

that is either not cached locally or located in a dirty memory page, this will also cause the

DSM subsystem to fetch the page in which object is residing from a remote node, and thus

introducing extra access penalty.

To study the performance difference for object accesses, we have designed the following

simple class Foo (Fig 7.1), which measures the duration for updating an object variable j

1,000,000 times. To obtain the time for the case of distributed object access, we simply create

an instance of the Foo thread and migrate it to a remote node before the <run()> method is

invoked.

Fig 7.1: Class Foo measures the time it takes to update an integer object variable 1,000,000

times

00 class Foo extends Thread {
01 int j;
02 public void run() {
03 long begin = System.currentTimeMillis();
04 for (int i = 0; i < 1000000; i++)
05 j = 1;
06 long total_time = System.currentTimeMillis() – begin;
07 System.out.prinln(“time for 1000000 iteration = “+total_time);
08 }
09 }

83

Notice that an experimental error is introduced by the loop counting variable i in the Foo

class because extra time is taken for incrementing it 1,000,000 times (Fig 7.1, line 04).

However, the fact is for local variables like i which are defined locally in a method and are

of simple data type, they are allocated from the local method stack which do not belong to the

DSM. To eliminate the error we need to run another test program that measures the time to

update a local integer variable i 1,000,000 times, the corresponding duration is found to be

about 3562 milliseconds. The adjusted result for updating an object variable both with or

without migration support is tabulated in Table 7.2. From the result shown, it is found that

the access penalty for distributed object accesses is about 9 times more than the case when

objects are allocated locally.

Object allocated in DSM for

supporting migration (msec)

Object allocated in local memory when

not supporting migration (msec)

Adjusted time for 1,000,000 updates 35343 3929

Table 7.2: Adjusted time for updating an integer object variable 1,000,000 times

Another point to note is that when updating an object variable, the virtual machine has to

execute an additional bytecode instruction that loads the address of the object onto the method

stack first, before it can store value to the object using the PUTFIELD instruction. On the

other hand, a local variable can always be directly stored in a slot of the local stack, whose

location is already determined at compile time. Therefore the time to update a local variable

which is of simple data type will always be shorter than that for an object variable of the same

data type, no matter the implementation supports migration or not. In light of this, we have

also measured the time to update a local integer variable 1,000,000 times by defining j in

class Foo as a local variable instead. As a result, we found that the ratios of memory access

overhead between object variable that is allocated from the DSM, object variable that is

allocated in the local heap, and local variable that is allocated from the method stack are:

Distributed Object Variable

Access Penalty
(simple data type)

:
Local Object Variable
 Access Penalty
(simple data type)

:
Local Stack Variable
Access Penalty
(simple data type)

= 19.54 : 2.17 : 1

84

7.2.2 Overhead from Cooperative Semaphore Operations

As explained in section 6.3, the Standard Java Virtual Machine [36] utilizes semaphore for

implementing mutual exclusion control between threads. For the case of JESSICA, mutual

exclusion control is implemented as Cooperative Semaphore where the same semaphore

semantics is maintained even after threads are migrated to other nodes. Notice that

Cooperative Semaphore is independent from the DSM semaphore that is mentioned in the last

section. When a thread tries to enter a critical section in the DSM and is blocked, the whole

JESSICA Daemon running on the node will be blocked, too. On the other hand, Cooperative

Semaphore works in conjunction with the Thread Manager (TM); when a thread tries to

acquire a Cooperative Semaphore and is blocked, the TM will schedule in another ready

thread to continue execution so as to keep the JESSICA Daemon alive. Since the Cooperative

Semaphore is built on top of the TCP/IP protocol, a migrated thread has to send message

requests back to its master in order to have the master to perform the semaphore operations on

its behalf, therefore it will take longer time for a migrated thread to acquire and release a

semaphore. This section compares this Cooperative Semaphore overhead with that when

there is no migration.

85

Fig 7.3: Cooperative Semaphore in action: a migrated thread performs an acquire operation

Consider when a migrated thread tries to acquire a Cooperative Semaphore (Fig 7.3), it will

send a semaphore-acquire message back to its master thread (T0). When the message arrives

at the console node, it will trigger a SIGIO signal and the corresponding signal handler of

JESSICA will notify TM that data is ready for the master thread, and the master thread is then

rescheduled back to the ready queue. However, the master thread may not be able to resume

its execution immediately because there may be other threads which have higher execution

priorities. Even if they are of the same priority, they may be queuing in front of the master

thread at the ready queue. Anyhow after a while (T1) it will come to the master’s turn to

execute, and as a result the master can acquire the semaphore accordingly (T2). Finally, when

the semaphore is successfully acquired, the master then sends a successful message back to

the slave. Once the message arrives and the slave is resumed (T3 + T4), it will notice that its

master has successfully acquired the semaphore and therefore it can continue its execution.

SIGIO handler detects the arrival of a
message for the blocked slave thread,
so it reschedule slave thread back to the

for its turn to be executed.
ready queue; the slave thread waits

message size = 40bytes

the ’semaphore acquire’ request is
successfully completed by its master, and

Slave thread resumes and discovers that

hence it continues its execution.

SIGIO handler detects the
arrival of message and
schedule master thread back
to the ready queue; master wait
for its turn to be executed

message size = 40bytes

for requests
Master thread block waiting

Remote Node Network

T0

T1

T2

T3

T4

Slave thread sends a ’semaphore acquire’
message request back to its master and
block waiting for result.

acquire’ operation on its slave
behalf

Master thread resumes execution.
It perfroms the ’semaphore

Master thread successfully

sends a successful message
acquired the semaphore, it then

back to the slave.

Console Node

86

From the diagram illustrated in Fig 7.3, it can be seen that the total time for a slave thread to

acquire a Cooperative Semaphore equals to (T0 + T1 + T2 + T3 + T4). While for a local

thread when there is no migration, the time for a thread to acquire a semaphore will be simply

T2 only. Hence, the extra overhead in this case is (T0 + T1 + T3 + T4).

We have conducted a series of experiments to measure the time it takes for a migrated thread

to acquire a free Cooperative Semaphore remotely and that it takes for a local thread to

acquire a free semaphore locally when there is no migration. A free semaphore means the

semaphore is not currently hold by anyone else and a thread can acquire it immediately. In

this case, the value for T2 will be the smallest possible. In addition, both the master and the

slave thread are set to be the only active threads runnable on their respective node, therefore

the time to wait before they can resume execution after data was arrived (T1, T4) will also be

zero. It is found that the time it takes to acquire a remote Cooperative Semaphore for a slave

thread in this way is about 1.20 milliseconds. And for the case for a local thread where it

does not migrate, the time is about 16.29 microseconds. In other words, the ratio of the time

to acquire a free semaphore remotely to that locally is about 74 : 1. By similar arrangement,

we are able to determine the time for releasing a semaphore both remotely and locally. And

the result shows that the corresponding times are about the same: it takes about 1.18

milliseconds to remotely release a Cooperative Semaphore and again 16.29 microseconds to

release a semaphore locally. The time it takes to transmit the message between the nodes, the

time for the local operating system to notify the JESSICA daemon that data is ready with

SIGIO and the time to execute the SIGIO handler account for a major portion of the

Cooperative Semaphore overhead. A point to note is that the times determined here are

minimum values. In general, it will take some time for a thread to resume execution after it is

rescheduled, since there can be other threads, with the same or higher execution priority,

already running on the same node. Moreover, a semaphore may not be always available

immediately when a thread tries to acquire it. Hence, T1 and T2 will be much longer. For

example, in our recursive ray-tracing example to be discussed later, where threads are tightly

synchronized, it is found that the time to acquire a Cooperative Semaphore increases from 27

to 84 milliseconds when more migrated threads are introduced into the system.

7.3 Migration Latency

This section discusses the overhead for triggering a thread migration at the console and the

time taken before the migrated thread can resume its execution at a remote node.

87

When the Migration Manager (MM) at the console triggers a migration, it notifies the Thread

Manager (TM) with which thread and where to migrate. The TM will freeze the execution of

the migrating thread and to contact the destination node asking it to prepare for the thread

migration process. When the TM at the destination node receives the migration request, it

will create a new thread object by cloning the migrating thread, using the

java.lang.Object.clone() method, in order to inherit the internal states of the

migrating thread. This newly created thread object becomes the slave and it represents the

migrating thread at the destination. Afterwards, a new communication end point is created at

the destination node for the establishment of a dedicated communication channel between the

slave and the master for future message redirection. The slave thread then sends back the

connection information, which include the destination’s IP address and the port number, of

this communication end point back to the console and waits for the migrating thread to

connect to it. At the console, when the migrating thread receives the connection information,

it will then establish the dedicated channel with the slave thread using the information

received. After establishing the dedicated channel, the slave thread will send a ready signal

back to the migrating thread signifying that it is ready to accept delta sets for execution.

When the migrating thread receives the ready message, the migrating thread will be turned

into a master, to marshal and to ship the first delta set to the slave for execution. After

sending a delta set, the master will be blocked waiting for the slave until it receive a

notification from the slave saying the delta set has been completed. By then the master will

continue its execution until the next set of machine dependent states are completely

consumed, after which the next machine independent delta set will be sent to the slave. This

process is repeated until all the machine independent delta sets and the machine dependent

states are consumed, at this point the execution of the migrated thread will also be completed.

All the communications conducted between the entities residing on the console and that on

the destination are done in a blocking fashion. When a thread tries to receive a message from

its counterpart but the message has not yet arrived, the thread will be blocked and scheduled

out by the local TM. When the message later arrives, the system will generate a SIGIO signal

and causes the thread to be rescheduled back to the ready queue. The scenario described here

is illustrated in Fig 7.4.

88

Fig 7.4: Interaction between entities in the home and the destination node when a thread is

migrated

D3 D2

D1

D3 D2

D3 D2

D2

D3

D1

D2

Network Remote NodeConsole Node
TM sends a thread migration request to
the target remote node. The Execution
states of the migrating thread is frozen
here.

D3 D2 D1

thread to act as the slave thread
creates and initializes a new

for the migration, the migrating

TM receives a migration request, it

thread is cloned using the
java.lang.Object.clone() method.

The slave thread creates a comm.
endpt for establishing a dedicated

thread at the console. The

the console and the slave is then
connection info is sent back to

blocked waiting for the master

channel to be linked to the master

to connect to the new channel.

the first delta set is
ready signal from slave.

marshalled and
sent to the slave.

master thread received

for reply
master blocked waiting

its execution until the first
set of machine dependent

master received the done
message, it resumes

states is consumed.

master thread completed

first set of machine

marshals and sends the
slave thread the next
delta set to execute.

the execution of the

dependent states. it

slave received the delta set and
resumes the execution here

execution of the first delta

with a done message.
set is completed, slave replies

slave received the delta set and
resumes the execution here

for reply
master blocked waiting

The migrating thread is turned into the
master. After receiving the connection
info about the new dedicated channel,
it sends a connection request to the
slave.

the dedicated channel is
established and it sends the master
a ready signal that it is ready to
receive delta set for execution.

slave receives a connection request,

T0

T1

machine independent delta sets

machine dependent execution states

89

From the diagram, it can be seen that the migration latency is the time between the migrating

thread is first frozen by the local TM and that is restarted later as a slave thread at the

destination, i.e, T0 + T1. Now T0 is the time taken to notify the destination node and have

the destination node to prepare itself for the migration, the value of T0 is relatively constant.

T1 is the time taken to marshal a delta set at the console node, sending the marshaled data

across the network, and eventually be de-marshaled at the destination node. The value of T1

is therefore proportional to the size of the transferring delta set. As discussed in chapter 5, a

delta set is a sequence of Java Method Frames (JMFs) that represents the method calling

sequence of the current thread. Hence, the number of JMFs in a delta set depends on how

many levels of method calls the current thread has made. Furthermore, each JMF stores the

execution context of the current thread at a given method calling level that includes the

method calling stack. The size of this method calling stack varies from cases to cases. Due to

the varying factors, the migration latencies for different sizes of the delta sets are measured

and the result is presented as follows:

Fig 7.5: Graph of migration latency against size of the 1st transmitting delta set

According to the data collected, when the size of delta set is set to zero, the migration latency

is about 24.55 milliseconds (T0). T0 is the time taken to execute the

java.lang.Object.clone() method at the slave as well as that for sending the 4

handshake messages between the master and the slave (Fig 7.4). A further break-down of this

T0 value reveals that the time required for executing the java.lang.Object.clone()

method takes about 17 milliseconds, while on average it takes about 2 milliseconds for a

0

20

40

60

80

100

120

140

0
20

8
41

6
62

4
83

2
12

48
14

56
16

64
18

72
20

80
22

88
27

04
31

20
39

52

Size of the 1st Delta Set(byte)

M
ig

ra
ti

o
n

 L
at

en
cy

 (
m

se
c)

90

handshake message to be sent between the master and the slave. Now consider the case when

a thread is migrated just before it starts executing the first instruction, the delta set will only

contain one JMF and the method calling stack will be empty. The JMF will only contain the

local variables of the current method and state variables such as program counter and stack

pointer. If there is no local variable defined in the method, the size of this minimal JMF will

be 208 bytes. In this case the minimum migration latency is therefore about 28.12

milliseconds.

In MOSIX, the minimum migration latency (projected) is about 3 milliseconds for a zero-size

process, while in Arachne, the minimum time to migrate a thread with a 12-byte active record

takes about 4.3 milliseconds. It can be seen that the time of minimum migration latency in

JESSICA is about an order of magnitude higher than the other two systems. This is because

the minimum time in JESSICA is dominated by the overhead for executing the

java.lang.Object.clone() method, which accounts for over 60% of the migration

time. What the clone method does is to create a new object and to copy data stored in the

source object to the newly created object. Since both the source object and the newly created

object are located in the DSM, the access cost is much higher than that for the local memory.

In addition, the overhead of invoking the Java method also contributes to the relatively longer

migration time.

7.4 Application Performance

This section presents the performance results of a number of multi-threaded Java applications

that were tested on the JESSICA system. JESSICA was set to perform load distribution

through remote execution – a worker thread will be automatically migrated to a remote node

immediately after it is initiated. Newly created worker threads are migrated to remote nodes

until there is a migrated worker thread running on each of the remote node. Since the

applications are set to execute using the same number of threads as the number of processors

available, we are able to study the effect on the execution performance when all the threads

are running in parallel.

The execution times presented here do not include the sequential initialization time, such as

the time taken for initializing elements of a matrix or that for loading data from a file. The

timer is started immediately before the parallel computation begins so as to arrive at a more

accurate estimation on the performance improvement.

91

7.4.1 Approximation of the value π (PI) by Integration

This is a simple parallel application that is adapted from the popular MPI book [38]. The

application is ported to Java and the message-passing code of MPI is replaced by using Java

Thread. The application is based on the formula:

From the diagram above, the value of π is given by the area under the curve from 0 to 1. The

computation is therefore straightforward: the [0, 1] interval in the integral is divided into

100,000,000 sub-intervals and each thread is responsible to compute a sub-area under the

graph and to accumulate the partial sum. The value of π can then be obtained by adding

together the partial results of all the threads after they have finished. The following code

segment shows the main loop of a worker thread. Note that the sub-intervals for the worker

threads to compute are interleaved between each other (Fig 7.7, line 08).

dx
x∫ +

=
1

0
21

4π (Eq. 1)

1 + x 2
4y =

0

P0 P1 P2 Pn-1 P0 P1 P2

x1

4
y

Fig 7.6: The graph of 21

4

x
y

+
=

92

Fig 7.7: Main-loop for each worker thread to compute a partial sum for the value π (PI)

The application was executed on 1, 2, 4, 8 and 12 processors, with 1, 2, 4, 8 and 12 worker

threads running respectively. The result is presented as follows:

Fig 7.8: Total execution time against no. of processors

Approximation of PI by Integration with 100M Intervals

0

500

1000

1500

2000

2500

1 2 4 8 12
No. of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

00 public void run() {
01 double partial_sum = 0;
02 int N = 100000000; // no of sub-interval
03 double h = 1.0/((double) N);
04 // my_thread_id ranges from 0 to no_of_worker_thread - 1
05 int begin = my_thread_id+1;
06 int end = N;
07 int width = no_of_worker_thread;
08 for (int i = begin; i <= end; i += width) { // the mainLoop
09 double x = h*((double i) – 0.5);
10 partial_sum += 1/(1+x*x);
11 }
12 result[my_thread_id] = 4*partial_sum;
13 }

93

Fig 7.9: Speedup/efficiency against no. of processors

Fig 7.10: Percentage of execution time break down against no. of processors

From Fig 7.9 it can be found that we are able to obtain almost ideal speedup and efficiency.

This is because once the computation is started, there is no communication nor coordination

between the worker threads until the computation is over, hence there is no remote

synchronization overhead. In addition, because all the variables that the worker threads

accessed during the main computation loop are of simple data type, which are allocated from

the local method stack, there is no additional DSM access penalty. As a result, we are able to

achieve close to optimal speedup.

Approximation of PI by Integration with 100M Intervals

100.00 99.98 99.34 99.20 98.47

0%

20%

40%

60%

80%

100%

1 2 4 8 12
No. of Processors

E
xe

c
T

im
e

B
re

ak
 D

o
w

n

DSM Cooperative Semaphore Computation

Approximation of PI by Inegration with 100M Intervals

1.00 0.96 0.98 0.94 0.93
0

2

4

6

8

10

12

14

1 2 4 8 12
No. of Processors

S
p

ee
d

u
p

/E
ff

ic
ie

n
cy

Speedup

Efficiency

Ideal Speedup

94

7.4.2 Recursive Ray-Tracing

Recursive ray-tracing is a technique in Computer Graphics to produce photo-realistic image

for a 3D scene. It computes the pixel values of points lying on a 2D window when the 3D

scene is projected onto it with respect to a given viewpoint (Fig 7.11). Each pixel value is the

amount of light that passes through the window at the corresponding location and enters the

viewer’s eye at the viewpoint. To perform recursive ray-tracing, for each point lying on the

surface of the window, a ray is traced backward from the viewpoint into the 3D scene through

the point, until it hits the first object or the ray goes off to infinity. If the ray does not hit

anything, then the amount of light that passes through the point will be simply the amount of

the ambient light in the 3D scene. Otherwise, the amount of light emitted from the light

sources in the environment that is reflected at the point of intersection back to the viewpoint is

evaluated. In addition, a reflected ray at the point of intersection is spawned and trace into the

scene recursively to determine the amount of light entering the viewpoint that is due to

indirect reflections from other objects in the scene. When calculating the pixel value, the

optical properties of objects’ surfaces, such as diffuse and specular reflectivity are considered.

In addition, the position and brightness of the light sources and the attenuation are also taken

into account. On the other hand, for simplicity we do not consider refraction.

Fig 7.11: Recursive ray-tracing

�
�
�

�
�
�

VIEWPOINT

WINDOW

3D SCENE

��
��
��
��
��
��
��
��

LightSource 0

��
��
��

��
��
��

��
��
��

��
��
��

LightSource 1

95

Recursive ray-tracing is an ideal candidate for parallel computing because there are plenty of

pixel values to compute. The computations of the pixels are independent and can be

conducted in parallel.

We have implemented a multi-threaded recursive ray-tracer in Java for testing on the

JESSICA system. The program is adapted from a single-threaded Java ray-tracer written by

Sahin [11]. The ray-tracer supports simple object shapes such as sphere, triangle, and 2D

plane. When the program is started, the 3D scene is loaded from the file system and stored

into the DSM so that any migrated threads can have immediate access to the objects in the

scene. After loading the 3D objects, a worker thread will be created and migrated to each of

the remote node and start computing the pixels. We have also implemented an application-

level load balancing scheme in the ray-tracer where each thread has to access a globally

shared job queue to obtain the next line of pixels to trace. With such a scheme installed, all

the participating processors will complete the computation at about the same time. The

following code segment shows how the global job queue is implemented.

.

Fig 7.12: Implementation of getJob() in class RayTracer, notice that the value of job

is initialized to the height of the image

Fig 7.13: Main-loop of WorkerThread to compute pixels in the image

00 class RayTracer {
01 int job; // the global job queue
02
03 public synchronized int getJob() {
04 return --job;
05 }
06
07 RayTracer(int w, int h, ...) {
08 // job is initialized to the height of the image
09 job = h;
10 //
11 ...
12 }

00 class WorkerThread extends Thread {
01 public void run() {
02 int line; // line is the next scanline to trace
03 while((line = rayTracer.getJob()) >= 0) {
04 for (int i = 0; i < w; i++)
05 // to calculate the pixel value at coordinates (i, line)
06 rayTracer.rayTrace(i, line);
07 }
08 }

96

The getJob() method (Fig 7.12, line 03) returns the next line that the worker thread needs

to work on. The value of job is initialized to be the height of the image (Fig 7.12, line 09), so

that when the getJob() method is called by a worker thread the first time, the bottom line

of pixels will be traced. After that, the lines are traced from the bottom towards the top, with

the value of the job variable decremented by one every time the getJob() method is

invoked. The getJob() method has to be defined as synchronized (Fig 7.12, line 03)

because multiple worker threads may execute the getJob() method at the same time (Fig

7.13, line 03) to obtain the line number to work on. The synchronized keyword

guarantees that at any time only one thread can enter the body of the method, any other

threads trying to execute the method will have to wait until the current thread have left the

method body. This arrangement can therefore prevent any race condition to occur during the

update of the job variable and help to ensure the value to be consistent.

The synchronization mechanism of the getJob() method described above is supported by

the Cooperative Semaphore that maintains the same thread synchronization semantics even

after a thread is migrated to a remote node. Because this recursive ray-tracing program relies

on the Cooperative Semaphore to implement the global job queue mechanism, operations

provided by Cooperative Semaphore will be performed frequently as all the worker threads

will execute the getJob() method for each line of pixels to compute, the program therefore

serves as a good indicator on how significant distributed thread synchronization can affect the

performance of JESSICA. Besides, as the 3D scene is stored in the DSM, the program can

also demonstrate the performance of the DSM when the 3D scene is accessed as read-only.

The recursive ray-tracing program was tested on 1, 2, 4, 8 and 12 processors with 1, 2, 4, 8

and 12 worker threads created respectively. The 3D scene is a snowman composed of 2 light

sources, 4 triangles, 5 spheres, and a 2D plane. In each case the program was asked to

generate an image of dimension 480x640. The result is presented as follows:

97

Fig 7.14: A snowman image produced by the recursive ray-tracer (480x640 pixels)

Fig 7.15: Total execution time against no. of processors

Recursive Ray-Tracing on SNOWMAN1.DAT (480X640)

0
200

400
600

800
1000

1200
1400

1600
1800

2000

1 2 4 8 12
No. of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

98

Fig 7.16: Speedup/efficiency against no. of processors

Fig 7.17: Percentage of execution time break down against no. of processors

From Fig 7.16 it can be found that the efficiency is less than optimal and it decreases

moderately as more processors are used, the efficiency drops from 69% when using 2

processors to 47% when using 12 processors. This is because as indicated in Fig 7.17, the

percentage of Cooperative Semaphore overhead contributes a significant amount to the total

execution time. From the data collected it is found that altogether there were about 32,000 of

Cooperative Semaphore acquire and release operations performed, and each one took on

average 50 milliseconds to complete. When more processors are used, it is more likely that

they are trying to acquire the Cooperative Semaphore at the same time when executing the

Recursive Ray-Tracing on SNOWMAN1.DAT (480x640)

0.00 3.21 3.38 3.11 2.750.00

39.36
43.46

49.67
59.06

100.00 57.44 53.16 47.22 38.19

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

1 2 4 8 12
No. of Processors

E
xe

c
T

im
e

B
re

ak
 D

o
w

n

DSM Cooperative Semaphore Computation

Recursive Ray-Tracing on SNOWMAN1.DAT (480x640)

1.00 0.69 0.57 0.50 0.470

2

4

6

8

10

12

14

1 2 4 8 12

No. of Processors

S
p

ee
d

u
p

/E
ff

ic
ie

n
cy

Speedup

Efficiency

Ideal Speedup

99

getJob() method, so more likely that they will be put to wait. By the same token, the

console node is also likely to receiving more Cooperative Semaphore requests at a given time

when more processors are used, therefore the response time for replying remote nodes will

also increase. This is verified by the time to perform an acquire operation: the time increases

from 27 milliseconds when using 2 processors to 84 milliseconds when using 12 processors.

Therefore we conclude that the overhead of Cooperative Semaphore operations increases as

more processors are used. On the other hand, the percentages of DSM overhead stay

relatively constant when different number of processors are used. This is mainly because the

3D scene information are only accessed as read-only by all the threads. Hence once the data

are cached locally, the access overhead does not change significantly when more processors

are used.

7.4.3 Red-Black Successive Over-Relaxation on a Grid

The Red-Black Successive Over Relaxation (R/B-SOR) on a grid is another standard parallel

application found in the literature. It is included as a programming example in the

TreadMarks DSM package and we have adapted it as a multi-threaded Java Application. The

application is used for solving partial differential equations. A huge matrix is created with the

perimeter elements being initialized to be the boundary conditions of a given mathematical

problem, each of the interior elements of the matrix is then computed as the average of its top,

bottom, left, and right neighbors. The interior elements are repeatedly computed in the

described manner until the computed values are sufficient close to the values computed in the

last iteration. When the interior elements are successfully set to their neighbors’ average, they

satisfy a simple approximation to the 2D LaPlace equation:

though an interpretation of the above equation is beyond the scope of this chapter.

In the R/B-SOR implementation, the huge matrix is divided into two sub-matrices, the Red

matrix and the Black matrix. At any time the elements are read from one sub-matrix and the

computed averages are written to the other. After finishing all the elements in the sub-matrix,

their roles are swapped and the process is repeated. The R/B-SOR program creates multiple

threads to compute the matrix elements in parallel. The Red and Black matrices are divided

into roughly equal size bands of rows, with each band assigned to a different threads. The

threads are synchronized using barrier every time before the Red and the Black matrices swap

0
2

2

2

2

=
∂
∂+

∂
∂

y

f

x

f
 (Eq. 2)

100

their roles. The following code segment shows the implementation of barrier synchronization

between threads and the main execution loop of each worker thread.

Fig 7.18: Implementation of barrier synchronization between threads

00 class SorWorkerThread extends Thread {
01 static int no_of_threads = 0;
02 static Object barrierObj;
03 static int barrierCount;
04
05 static {
06 barrierObj = new Object();
07 barrierCount = -1;
08 }
09
10 public void barrier() {
11 try {
12 synchronized(barrierObj) {
13 if (barrierCount == -1)
14 barrierCount = no_of_threads;
15 if (--barrierCount > 0)
16 barrierObj.wait();
17 else {
18 barrierCount = -1;
19 barrierObj.notifyAll();
20 }
21 }
22 }
23 }

101

Fig 7.19: The main execution loop of a worker thread

The purpose of barrierCount variable in (Fig 7.18, line 03) is to remember the number of

threads that have not yet entered the barrier. Therefore when its value is decremented to zero,

the current thread is the last thread to enter the barrier and hence all the waiting threads can be

awaken (Fig 7.18, line 19). On the other hand, if the current thread is the first thread that

enters the barrier, the barrierCount variable is set to be number of worker threads in the

system (Fig 7.18, line 14). The value of no_of_threads remembers how many worker

threads there are in the system. Its value is incremented by one whenever a new worker

thread is created and decremented by one when a worker thread terminates.

According to the code shown in Fig 7.19, the main loop of each thread repeatedly retrieves

values from one matrix, computes the average, and writes the result back to another matrix.

Since matrices are complex data type, their space is allocated from the DSM instead of the

local method stack. Hence the execution will impose a significant amount of loading onto the

DSM system, and the application is therefore a good candidate for studying how the DSM

00 private void sor_first_row_odd(int first_row, int end) {
01 int i, j, k;
02 for (i = 0; i < iterations; i++) {
03 for (j = first_row; j <= end; j++) {
04 for (k = 0; k < N; k++) {
05 black[j][k] = (red[j-1][k] + red[j+1][k] + red[j][k]
06 + red[j][k+1])/(float) 4.0;
07 }
08 if ((j += 1) > end)
09 break;
10 for (k = 1; k <= N; k++) {
11 black[j][k] = (red[j-1][k] + red[j+1][k] + red[j][k-1]
12 + red[j][k])/(float) 4.0;
13 }
14 }
15 barrier();
16 for (j = first_row; j <= end; j++) {
17 for (k = 1; k <= N; k++) {
18 red[j][k] = (black[j-1][k] + black[j+1][k] +
19 black[j][k-1] + black[j][k])/(float) 4.0;
20 }
21 if ((j += 1) > end)
22 break;
23 for (k = 0; k < N; k++) {
24 red[j][k] = (black[j-1][k] + black[j+1][k] +
25 black[j][k] + black[j][k+1])/(float) 4.0;
26 }
27 }
28 barrier();
29 }
30 }

102

overhead contributes to the parallel execution performance of JESSICA. Another point to

note is that for simplicity, our implementation only iterates for a given number of times (Fig

7.19, line 02), instead of keep iterating until the newly computed average is sufficiently close

to the last iteration by a given epsilon. Since a barrier-synchronization is executed before the

Red and the Black matrix swap their role (Fig 7.19, line 15 and line 28), barrier

synchronization is therefore performed twice per iteration. As a result, total number of barrier

synchronization performed is equal to two times the number of iterations. The number is

independent from the number of threads deployed and the matrix size.

The R/B-SOR program was again tested on 1, 2, 4, 8 and 12 processors with 1, 2, 4, 8 and 12

worker threads created respectively. The size of the matrix we used was 1024x1024 and the

perimeter elements were initialized to alternate zeros and ones. We have performed 10

iterations for each run and the result is presented as follows:

Fig 7.20: Total execution time against no. of processors

Red/Black Successive-Over Relaxation on a 1024x1024
Matrix in 10 Interations

0

100

200

300

400

500

600

1 2 4 8 12
No. of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

103

Fig 7.21: Speedup/efficiency against no. of processors

Fig 7.22: Percentage of execution time break down against no. of processors

The graph of Fig 7.21 shows that the application can gain moderate speedup when running

with 4 or more processors. When using two processors only, the speed gained by overlapping

the computation is offset by the extra overhead incurred due to remote memory access. The

efficiency stays at around 53% and improves slightly when the number of processors is

progressively increased from 2 to 12. This can be due to the fact that the amount of data

shared, i.e. the sizes of the Red and the Black matrices, remain the same when executed by

any number of processors, therefore the DSM overheads constitute roughly the same

percentage of execution time (Fig 7.22). Since the barrier synchronization is implemented

using the synchronized keyword, the wait(), and the notifyAll() methods,

Red/Black Successive-Over Relaxation on a 1024x1024
Matrix in 10 Iterations

1.00 0.52 0.53 0.54 0.540

2

4

6

8

10

12

14

1 2 4 8 12
No. of Processors

S
p

ee
d

u
p

/E
ff

ic
ie

n
cy

Speedup

Efficiency

Ideal Speedup

Red/Black Successive-Over Relaxation on a 1024x1024
Matrix in 10 Interations

0.00
34.29 35.91 37.26 36.35

0.00

0.32 0.96 2.59 4.18

100.00 65.39 63.13 60.14 59.46

0%

20%

40%

60%

80%

100%

1 2 4 8 12
No. of Processors

E
xe

c
T

im
e

B
re

ak
 D

o
w

n

DSM Cooperative Semaphore Computation

104

which are in turn implemented using Cooperative Semaphore, overheads from Cooperative

Semaphore thus also appears in the graph of Execution Time Break Down (Fig 7.22). As

explained in the previous paragraphs, the number of barrier synchronization is equal to twice

the number of iterations, therefore there are only 20 barrier-synchronization performed during

the execution of the program. The total time taken to perform the 20 barriers only constitute a

relatively small percentage to the total execution time. Finally, we conclude that when the

running threads are sharing a huge amount of data, the overhead due to the DSM can be

significant (about 36% in our example), though the relative percentage decreases as more

processors are used (Fig 7.22).

7.5 Conclusions

From the experiments conducted we can conclude that considerable speedup is possible by

migrating threads to other machines in a cluster transparently and let them execute in parallel.

In addition, the system remains to be responsive since the migration latency is sufficiently

small. On the other hand, experiments in section 7.2 also show that the additional overhead

that is a direct consequence of migration is significant. The DSM memory access penalty is

about 9 times more than that of local access and the distributed thread synchronization also

takes at least 75 times longer to complete when compared to local thread synchronization.

The relatively high cost of migration overhead is demonstrated in the recursive ray-tracing

and the R/B-SOR experiments, where their efficiency of parallelism ranges from about 70%

to 50% when number of processors used are gradually changed from 2 to 12. Therefore, in

order to benefit from the parallel execution capability of JESSICA, applications should be

implemented in a way such that the performance gained by being able to overlap computation

in multiple processors can out-weight the extra overheads incurred due to distributed object

accesses and distributed thread synchronization. Here we provide a number of techniques that

can improve the parallel execution performance of an application.

7.5.1 Reduce the Number of Distributed Object Accesses

To reduce the penalty due to accessing data in the DSM, we should try to avoid using object

or class variables when defining variables that are of simple data type, we should try to use

local variables whenever possible. In addition, If an object/class variable is going to be

accessed for repeated number of times, we should use a local variable to cache its value so

that further reading will be provided by the local variable. This is demonstrated in Fig 7.23.

105

Fig 7.23: Class Bar that can minimize the number of distributed object accesses when

migrated

In this example, method foo() is supposed to accumulate the values in the object variable

array and stored the result in another object variable sum. In each iteration of the for loop

(Fig 7.23, line 09), the method will check if the index i has reached the end of the array yet.

As the length of the array is first cached in a local variable n (Fig 7.23, line 07), the checking

of the condition at line 09 can be completed much faster then the case when using the

array.length variable directly. By the same token, when an object/class variable is

being updated for repeated number of times, it will be more efficient if we store the updates in

a local variable and save the final value in the object/class variable when all the updates are

completed. This is also demonstrated in the Bar example: instead of adding the array

elements directly into the sum variable every time the for loop iterates, the result is stored in

a local temp_sum variable first (Fig 7.23, line 10). The final value is only written to the sum

variable when the for loop exit (Fig 7.23, line 12). Finally, the last point to note is about

indirect object accesses, that is ‘reference of a reference’ like objectA.objectB.varC.

To access the content of varC, the virtual machine has to first load the reference of

objectA into the stack, from which it will then obtain the reference of objectB by a

GETFIELD instruction. With the reference of objectB on the top of the stack,

consequently a GETFIELD is executed again to obtain the content of varC. GETFIELD is

an expensive operation because it accesses the DSM to obtain the content of an object

variable. The situation is worse if there are multiple levels of indirect object references. To

reduce the overhead, the last reference that is able to access the targeted object variable

should be cached first. In our example, we can define a local variable like ref_varC and

initialize it with the value objectA.objectB. With this arrangement any further access to

00 class Bar {
01 int sum;
02 int array[];
03
04 public void foo() {
05 int temp_sum = 0;
06 int myArray[] = this.array;
07 int n = myArray.length;
08
09 for (int i = 0; i < n; i++) {
10 temp_sum += myArray[i];
11 }
12 this.sum = temp_sum;
13 }

106

varC can make use of the reference stored in ref_varC directly and performance can be

improved. This idea is also demonstrated in the Bar example in Fig 7.23, the local myArray

variable is used to cached the reference to the object’s array (Fig 7.23, line 06), so that its

elements can be immediately accessed in the for loop (Fig 7.23, line 10).

7.5.2 Reduce the Amount of Distributed Thread Synchronization

Since distributed thread synchronization is expensive, we should try to avoid it as much as

possible. One of the possible ways is to enlarge the granularity of parallelism so that threads

synchronize less often and more computation can be done between synchronization. This is

because a too small granularity will cause the overhead of distributed thread synchronization

to dominate the overall execution time. On the other hand, having the granularity too large

will affect load balancing. When granularity is too large there may be time when some

processors have already completed their tasks while others are still working. These idle

processors will reduce the overall efficiency. In our recursive ray-tracing experiment, setting

the granularity to be a line of pixels is a good starting point to tune the performance. We have

also tried to set the granularity to be one pixel and found that the execution speed is slowed

down dramatically, the more processors are used, and the more slow down we get. This is

because when more processors are used, the overhead of distributed thread synchronization

also increases, as discussed in section 7.4.2. In general, there is no perfect solution to tackle

the granularity problem, usually careful tuning is required to find the optimal size.

107

Chapter 8

Conclusions and Future Work

8.1 To Migrate Or Not To Migrate

JESSICA takes a novel approach in dealing with thread migration when compared to

traditional approaches like Millipede [18] and MOSIX [2]. Instead of moving the whole

execution context to the destination all at one time, the context is separated into machine

dependent and machine independent parts, and only the machine independent states are

transported in a regulated manner. This design imposes no limitation on the type of thread

that can migrate, whether they own location-dependent resources or not. Moreover, the

design also prepares substantial ground for further development of thread migration in a

heterogeneous environment as all the states migrated are hardware independent. Hence, the

JESSICA approach provides maximum flexibility, portability, and transparency for thread

migration. This JESSICA advantage is a direct consequence of using the Java Programming

Language, its virtual machine approach provides an extra layer of abstraction. The approach

allows the implementation of JESSICA to be carried out entirely at the user level, without

having to deal with any operating system specific or hardware specific issues. On the other

hand, in the traditional cases like Millipede and MOSIX, their operating systems are usually

customized in order to support migration. For JESSICA, the basic requirement is to maintain

the same interface and execution semantics that are visible to Java applications as defined by

the Java Virtual Machine Specification [36]. On account of this unique advantage, we

strongly believe implementing thread migration in JESSICA is highly feasible and beneficial.

It is verified by our functional prototype that has demonstrated improved performance and

considerable speedup for multi-threaded applications.

8.2 The Home Model

JESSICA follows the home model to support the required SSI transparency, any location-

dependent operations are redirected back to the console node. Although this approach offers

simplicity and modularity for implementing the transparency, some performance is sacrificed.

It is because the current implementation of message redirections is built on top of the signal

handling and the socket I/O mechanisms provided by the underlying UNIX operating system.

To perform a location-dependent operation, it will involve the invocations of multiple system

108

calls like <setjmp()>, <longjmp()>, <select()>, <read()>, and <write()>,

these system calls as well as the UNIX signal handling overhead are by no means lightweight

as they cause many context-switchings between the kernel and the JESSICA process. In

addition, it can overload the console node when the migrated threads try to send too many

redirection requests back to the console at the same time. This is shown in our recursive ray-

tracing experiment in section 7.4.2 in which threads are tightly synchronized, the time to

perform distributed thread synchronization increases sharply when more migrated threads are

introduced into the system. However, this is the tradeoff we have opted when implementing

JESSICA. We are willing to tolerate some decrease in performance in order to achieve a high

degree of transparency, better modularity and simplicity.

8.3 An Effective DSM Subsystem

From our implementation experience with JESSICA, an efficient and reliable distributed

shared memory (DSM) system is one of the most important components that can determine

the success of the JESSICA approach. With the help of a DSM, we are able to move threads

around the cluster freely without worrying if any object references will become invalid for the

DSM will transparently handle the migration of memory pages when a migrated thread tries

to access any remote objects. This can simplify the implementation of JESSICA

substantially. However, DSM overhead can account for about 35% of the total execution time

and the DSM access penalty can be about 9 times higher than that for local memory access.

Therefore, an effective DSM subsystem is indispensable.

In the JESSICA implementation, we are using a commercial package called Treadmarks [1]

for DSM support. The package is based on the release consistency model. In this model, any

updates made to the shared memory are considered possible to produce race conditions and

therefore they have to be protected by using the semaphore acquire and release operations

provided by the DSM subsystem. When it is deployed in JESSICA, every DSM update

performed by the application has to be protected by the semaphore operations because the

runtime system cannot anticipate when and where the next memory location that the running

application is going to access. As a result, many semaphore operations, sometimes redundant,

are being executed and they will account for the significant portion that DSM overhead is

contributing to the execution time. Another setback is the amount of DSM semaphore

operations being executed will sometimes exceed the DSM subsystem limit. For example, if

a thread running on one of the computers is making more DSM updates than other threads

running on other computers, as in the case when the thread is following a different execution

flow or if its computer is simply more powerful, the faster thread will cause the DSM

109

subsystem to generate many update messages that are sent to the other computers so as to

maintain the DSM consistency. The DSM messages so generated can reach a size that

exceeds the maximum message size or the amount of messages exceeds the DSM limit, this

will lead to the malfunction of the DSM subsystem. In the end, the overall reliability of the

system is compromised. Nevertheless, Treadmarks is a commercial package that and we do

not have any access to its source code, there is little control in this respect.

The ideal DSM subsystem should be able to maintain consistency by itself without too much

attention from the JESSICA runtime. It should also be able to determine the optimal strategy

for data replications and update propagation. It would be the most favorable if hardware

DSM can be available as part of the built-in feature in a processor similar to that of the virtual

memory, this would greatly facilitate the implementation of systems like JESSICA that

supports Single-System-Image.

8.4 User level Thread System

The internal thread system in the JESSICA prototype is implemented at the user level, and is

based on the <setjmp()>/<longjmp()> system calls of the UNIX operating system.

There are both advantages and disadvantages with this user-level approach when compared to

that using kernel thread. On one hand, special care has to be taken in order to keep the

JESSICA process alive with user level threads. This is because if a user level thread is

blocked by a blocking system call such as the network I/O <read()>, the whole JESSICA

process will also be blocked, and this will prevent other ready threads from being scheduled

to run. In order to keep the process alive, extra checking has to be done to see if a thread will

block before it tries to execute any blockable system calls. For example, when a thread tries

to read from a socket, the system has to first execute the <select()> system call to see if

data is ready at the socket. If the system finds the socket not ready, it will schedule out the

current thread and let other ready threads to run. When data arrives at the socket later, a

SIGIO signal will be generated and this will cause the system to move the de-scheduled

thread back to the ready queue. As a result, the required checking and signal handling will

introduce extra overhead into the JESSICA runtime system. On the other hand, user level

threads offer better portability and makes JESSICA runnable on systems where kernel thread

is not available. Moreover, the context-switching overhead of user level threads is about an

order of magnitude smaller than that of kernel threads [33].

110

8.5 Transparent I/O Redirection

Because I/O operations are location-dependent, they are redirected back to the console when a

migrated thread tries to perform such operations in order to maintain the SSI transparency as

discussed in section 6.5. The interfaces to file and network I/O are provided by the java.io

and the java.net class libraries respectively. SUN provides the Java implementation of

these two class libraries where applications that need file or network I/O support can link to

them directly. Methods in the two libraries will eventually invoke the corresponding native

methods provided by a JVM to perform the real work. In other words, a JVM is free to

implement the native methods that perform the low-level file and network I/O operations, as

long as the interfaces exporting to the SUN’s java.io and java.net class libraries are

not changed.

Notice that when a thread is migrated, any subsequent I/O operations will be forwarded back

to the console in order to maintain the migration transparency. However, because of the

significant message redirection overhead incurred between the master and the slave thread as

discussed in Chapter 7, remote I/O operations can be a source of inefficiency especially if the

migrated thread performs remote I/O operations frequently with very short messages.

A possible solution to reduce this inefficiency is for the migrated thread to cache the bytes to

be written in a buffer temporarily. A write redirection request will not be sent to the console

until the buffer is full, or after a certain amount of time has passed so that the data will not be

cached forever at the worker node. At this time all the data that is cached in the buffer will be

shipped together to the console by a single operation. This technique is similar to the

buffering of I/O data in the UNIX kernel.

111

8.6 Conclusions

Our implementation experience with the JESSICA prototype and the experiment results we

obtained have shown that establishing an SSI illusion to support transparent Java thread

migration in a cluster environment is not only feasible but also beneficial.

The design of the Java Programming Language does not in particular impose any limitation

that would hinder the design and implementation of JESSICA. On the other hand, it is the

characteristics of the language; namely, the bytecode execution, the pointer-less semantics,

the simple model of inter-thread signaling and synchronization and any additional system

services are offered as modular class libraries, that have simplified the implementation of

JESSICA. Consequently, we are able to arrive at a design that does not introduce any

changes to the Java Programming Language and still be able to support thread migration and

to achieve the required SSI transparency. The only element that needs to be changed in order

to facilitate thread migration is the implementation of the java.io and the java.net

package so that it is possible to implement I/O redirection more efficiently.

The idea of execution by means of a virtual machine also provides the simplicity for

implementing the system as a user-level process on top of the operating system. As a result,

the implementation does not require dealing with any lower-level implementation of the

operating system as it can be tedious. On the other hand, running on top of the operating

system as a user process makes the JESSICA runtime system less efficient since JESSICA

has to rely on system calls in order to provide the required system services to applications

such as thread scheduling and I/O operations. The ideal case is to be able to by-pass the

operating system or to implement JESSICA as the sole operating system running on the

hardware. Following the microkernel approach there can be a JESSICA kernel running on

each node in the cluster and it is only responsible for performing thread scheduling and

message redirections between the kernels. The Global Object Space is supported by DSM

servers running at the user level across the cluster. Similarly, addition system services such

as file I/O and graphical window system are also supported by user level servers.

The DSM subsystem that the JESSICA prototype is using does not support dynamic addition

or removal of nodes to and from the cluster. Consequently, the Global Object Space cannot

expand when more nodes are attached to the cluster or contract when some nodes in the

cluster fail. To support a dynamically reconfigurable JESSICA cluster, future DSM systems

should allow dynamic addition/removal of participating nodes.

112

We believe our work has laid a concrete foundation for future research in the JESSICA

direction. It is a step forward towards the ultimate goal of Global Computing, where in the

future every computer will be connected by the Internet, the physical boundaries between

computers are blurred and they can organize themselves together to function as single,

gigantic, super-servers with dedicated functionality.

The JESSICA idea was originally sparked by the story of the RSA-129 Challenge. We would

therefore like to present the incidence here as a compliment:

“The RSA-129 challenge was made by Gardner in 1977, where Rivest, Shimar, and

Adleman, the inventors of the RSA cryptosystem [31] offered 100 US Dollars to

anyone who can decode a given encrypted message. A 129-digit RSA key, randomly

picked by Rivest encoded the secret message. At that time Rivest estimated the

decryption process would take a dedicated supercomputer to run for 40 quadrillion

years! However, it turned out that it took merely 8 months to crack the message. In

1994, 17 years after the announcement of the challenge, Atkins, an electrical

engineering student at MIT, with the help from about 600 volunteers from more than

20 countries around the world, solved the problem using more than 1,600 machines.

The computers they used ranged from PC compatibles to a 16,000-processor MasPar

supercomputer. The sieving step in the process took approximately 5,000 MIPS

years, but was done in just 8 months by distributing the computation over the 1,600

computers involved. A MIPS year is the work done by a million-instructions-per-

second machine running for a solid year. The successful crackers later donated the

100-dollar reward to the Free Software Foundation [32, 4].”

This story has not only revealed how powerful a network of computers can become when they

work together in a coordinated manner, but it has also proved the goal of Global Computing is

a certainty.

To conclude, the RSA-129 Challenge as well as our proposed JESSICA system, have both

fulfilled the famous credo of the SUN Microsystems Inc [35], which says – “The Network is

the ComputerTM”.

Recently it has been brought to our attention that the Microsoft’s Millennium project [40] has

also developed a prototype called Borg [27]. Borg is a distributed Java virtual machine that

makes a cluster of computers appears as a single large computer for Java application. The

Borg prototype is very similar to our JESSICA as they both follow the SSI approach.

113

Although we are not able to obtain any further information on the Borg prototype from

Microsoft, our JESSICA belief is further reinforced by the news.

8.7 Executive Summary

This thesis presents our proposed JESSICA system which can turn a cluster of computers into

an instant supercomputer. JESSICA runs as a middle-ware on top of the operating system

that in turn runs on each computer. It encapsulates the cluster as a single system with

multiple processors, one single and contiguous memory space and other unified resources.

JESSICA provides a Global Thread Space that hides the physical boundaries between

machines; threads can freely move around the cluster to bind to less-loaded processors for

execution. Thread migration is supported by our novel technique called Delta Execution

where a thread can be preempted at the end of any bytecode instructions and be migrated to

any other node in the cluster. The machine dependent and the machine independent execution

states of the migrating thread are identified and isolated. Only the machine independent states

called Delta Sets are migrated and executed on a remote node, all the machine dependent

executions are still performed back at the home node. As a result, no machine dependent state

information is transported across machines and hence we are able to arrive at a clean and

portable implementation. The implementation does not need to consider any low-level

information that is hardware specific, consequently, it can be done entirely in the high-level

C/C++ language.

In addition, our Master/Slave Design for migrated thread further facilitates the provision of

transparent thread migration. In practice, a thread does not actually move to another machine

when migrating, but a new thread is created anew at the destination machine to act as the

migrated image; that is, the slave of the original migrating thread. The original thread at the

home node is transformed into a master where it performs any location-dependent operations

on behalf of its migrated slave and redirects any messages to and from its slave. Moreover,

the master/slave design enables the correct implementation of Cooperative Semaphore, which

guards against any inconsistent accesses to critical sections where multiple threads are

possible to update the same shared data at the same time. Since the Cooperative Semaphore

maintains the same semaphore semantics even after threads are migrated, threads can

synchronize themselves in a distributed fashion even if they are running on different nodes of

the cluster. Consequently, transparent thread migration can be achieved because other threads

in the system can never be aware of the fact that a thread has been moved to run on another

node, as all the interactions between the threads are still performed at the home node.

114

Furthermore, with the help of a distributed memory system (DSM), allocated objects remain

to be accessible by threads independent of their physical locations. This is necessary because

a fundamental characteristic of multi-thread programming is that threads do share data

between them. The DSM supports a Global Object Space where threads can share objects

even after they have migrated to different nodes on the cluster. In conclusion, it is the Global

Object Space, the Cooperative Semaphore, the Master/Slave Design for message redirections

and the Delta Execution mechanism together that hide the physical boundaries between

machines and make the Global Thread Space realizable.

With the Global Thread Space established, JESSICA offers a parallel execution environment

for multi-threaded Java applications. The mapping between threads to processors can be

automatic because JESSICA supports the Serial-Program-Parallel-Subsystem (SPPS)

computing paradigm. Application programmers do not need to worry about the number of

processors available but instead they can create as many threads as needed. The system can

automatically migrate threads to any idle processors and maximize the parallelism.

As JESSICA is compatible to the standard Java Virtual Machine, the vast number of existing

Java applications can run on the system immediately and gain speedup. Furthermore,

application programmers can now use the shared memory model with thread support for

developing parallel applications, which is considered simpler and less tedious to use than the

message-passing model. As a result, it is possible for JESSICA to turn the Java Programming

Language into the most favorable language for parallel application development in the future.

To prove our concepts, we have implemented a JESSICA prototype that runs on a cluster of

12 SUN Ultra 1 machines interconnected by a 155Mbps ATM switch. Experiments show that

Delta Execution is able to provide fast Java thread migration between machines. The

minimum migration latency is about 28 milliseconds. The shuttling mechanism that allows

machine dependent operations to be performed back at the source node is also proved to be

reliable and effective. In addition, the Master/Slave design for message redirections and the

Cooperative Semaphore can guarantee the correct interactions between threads when a

number of them have migrated to other nodes; together with the Global Object Space

supported by the DSM, they can successfully uphold the SSI and migration transparency

requirement in JESSICA. Consequently, the JESSICA prototype offers a functional

execution environment for parallel execution of multi-threaded applications. We have

devised several applications that stress on the performance of various migration-related

components of the system. Experiments show we are able to obtain considerable speedup in

all of them. For the integration application that requires minimal communication and

115

coordination between threads, we are able to obtain close-to-optimal efficiency of over 93%

when running on 12 nodes. For the recursive ray-tracing application whose threads are tightly

synchronized, the efficiency ranges from 69% to 47% when running from 2 to 12 nodes.

Finally, for the Red/Black Successive-Over-Relaxation application that shares huge amount

of data between threads, the efficiency stays relatively constant at around 54% when different

number of nodes are used.

8.8 Future Work

The following are possible areas of research that we have identified for the future

development of JESSICA.

8.8.1 Heterogeneous Migration

Extending the system to support heterogeneous migration can be the next immediate step for

the JESSICA development. The design and implementation of the current prototype has

already made way for heterogeneous migration as the implementation of Delta Execution only

requires the shipping of machine independent execution context across machines. In addition,

all the interactions and messages redirected between the computers in the cluster are

implemented on top of the TCP/IP protocol, there is no assumption made on any specific

hardware architecture. What is missing here in the current version for supporting

heterogeneous migration is a heterogeneous DSM subsystem which allows threads to share

objects residing on different hardware. Although the current release of the Treadmarks DSM

package we are using is a homogeneous one, the next version is planned to support

heterogeneous DSM on machines with the same byte-ordering. When a heterogeneous DSM

package like the next planned release of Treadmarks is available, we should be able to

proceed with heterogeneous migration in JESSICA.

8.8.2 Thread Migration with JIT Execution Support

The current version of JESSICA only supports thread migration when the Bytecode

Execution Engine (BEE) is executing under the interpreter mode. Under this mode the BEE

interprets each bytecode instruction and updates the execution context of the current thread.

This allows the execution context of a thread to be readily extractable at any time and the

states are represented in a machine independent manner to facilitate thread migration. A

problem with this design is that the execution speed is compromised. The execution speed

can be much faster when the BEE is executing under the Just-in-Time (JIT) mode where

bytecode are first complied into native machine instructions before executing. However, this

would imply the execution states of a thread is now encoded in machine dependent values,

116

and makes thread migration difficult. A possible solution to this problem is checkpointing. A

challenge in this approach is how to insert checkpoints into the Just-in-Time-compiled native

code so that the execution states at each checkpoint can map to an equivalent execution states

when executing under the interpreter mode, the states can then be represented in a machine

independent manner.

8.8.3 A Java Shell

The current version of JESSICA resembles the standard Java Virtual Machine that only

supports the execution of one Java application at a time. To achieve optimal resource

utilization in the cluster, the JESSCIA system should allow multiple applications to execute at

the same time, like a multi-computer. Hence, a Java shell utility with similar functionality

provided by common UNIX shells is necessary for initiating applications in the JESSICA

cluster. A research challenge for this is how to define and implement a protection domain for

each of the Java applications that is co-existing in the JESSICA runtime system. Threads

belonging to different application instances should not interfere with one another. In addition,

the objects created by threads in one application instance should not be accessible by threads

running within other application instances. The system should be able to detect and prevent

any illegal accesses that are made across the protection domains.

8.8.4 A Distributed Java OS in the Micro-kernel Approach

As we have discussed in the background study in chapter 2, the micro-kernel approach is

more flexible and effective for implementing process and thread migration. JESSICA can be

implemented at the micro-kernel level as a distributed Java OS, whose performance can then

be improved when compared to the current implementation as it executes as user processes on

top of the standard UNIX operating system. Experiments show the major overhead in the

current implementation comes from the DSM subsystem and the synchronization of

distributed threads, both of them rely heavily on sending messages between computers to

perform their tasks. Therefore when following the distributed operating system approach

where there is a micro-kernel running on each node, the communications performed between

the nodes can be carried out at the kernel level. In addition, the DSM subsystem can be

implemented in the form of an external pager as in the case of Mach NORMA [7], which

offers transparency, flexibility and modularity. The Flux OS Toolkit [13] can be a good

starting point for this approach.

117

References

[1] Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.

Zwaenepoel, ‘TreadMarks: Shared Memory Computing on Networks of Workstations’, IEEE

Computer, Vol. 29, No. 2, pp. 18-28, Feb 1996.

[2] Barak, O. Laden, Y. Yarom, ‘The NOW MOSIX and its Preemptive Process Migration

Scheme’, Institute of Computer Science, The Hebrew University, Israel.

[3] Chan, Lee, Kramer, ‘The Java Class Libraries’, 2nd edition, Addison Wesley, 1998.

[4] D. Atkins, ‘Factor RSA-129’, http://www.mit.edu:8001/people/warlord/RSA129-

announce.txt.

[5] D. Lea, ‘Concurrent Programming In Java: Design Principles and Patterns’, Addison

Wesley, 1997.

[6] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, S. Zhou, ‘Process Migration,

Technical Report’, TOG Research Institute, Oct 1996.

[7] D.S. Milojicic et al., ‘Task Migration on Top of the Mach Microkernel’, In 3rd USENIX

Mach Symposium, pp. 273-289, Santa Fe, Apr 1993.

[8] D.I. Bevan, ‘Distributed Garbage Collection using Reference Counting,’ PARLE Parallel

Architectures and Language Europe, pp. 176-187, Springer-Verlag LNCS 259, June 1987.

[9] Dimitrov and Rego, ‘Arachne: A Portable Threads System Supporting Migrant Threads on

Heterogeneous Network Farms’, IEEE Transactions on Parallel and Distributed Systems Vol.

9, No. 5, pp 459-469, May 1998.

[10] E. Jul, H. Levy, N. Hutchinson, and A. Black, ‘Fine Grained Mobility in the Emerald

system’, ACM Transcations on Computer Systems, 6(1):109-133, Feb 1988.

[11] E. Sahin, ‘RayWizard’, Department of Computer Science, Simon Fraser University,

http://www.cs.sfu.ca/~esahin/personal/java/RayWizard.

[12] F. Douglis, J. Ousterhout, ‘Transparent Process Migration: Design Alternatives and the

Sprite Implementation’, Software Practice and Experience, vol. 21(8), Aug 1991.

[13] Ford, G. Back, G. Benson, J. Lepreau, A. Lin, O. Shivers, ‘The Flux OSKit: A Substrate

for Kernel and Language Research’, Proceedings of the 16th ACM Symposium on Operating

Systems Principles, Oct 1997.

[14] G.F. Pfister, ‘In Search of Clusters: the Coming Battle in Lowly Parallel Computing’,

Prentice Hall PTR, 1995.

[15] General Magic, ‘Introduction to the Odyssey API’,

http://www.genmagic.com/agents/odysseyIntro.ps.

118

[16] Gosling, B. Joy, G Steele, ‘The Java Programming Language Specification’, Addison

Wesley, 1996.

[17] Grimshaw, W. Wulf, and the Legion Team, ‘The Legion Vision of a Worldwide Virtual

Computer’, Communications of the ACM, 40(1), Jan 1997.

[18] Itzkovitz, A. Schuster, and L. Shalev, ‘Thread Migration and its Applications in

Distributed Shared Memory Systems’, The Journal of Systems and Software, vol 42(1), pp.

71--87, Jul 1998.

[19] J. White, ‘Telescript Technology: An Introduction to the Language, General Magic

White Paper’, General Magic, 1995.

[20] Javasoft, ‘Java Interface Definition Language’,

http://java.sun.com/products/jdk/1.2/docs/guide/idl/index.html.

[21] Javasoft, ‘Java Object Serialization’,

http://java.sun.com/products/jdk/1.1/docs/guide/serialization/index.html.

[22] Javasoft, ‘Java Remote Method Invocation - Distributed Computing for Java, a White

Paper’, http://java.sun.com/marketing/collateral/javarmi.html.

[23] M. Deshpande et al., ‘Application of a Distributed Network in Computational Fluid

Dynamic Simulation’, Supercomputing Application High Performance Computing, 8, (1), 64-

67 (1994).

[24] M. Lee, A. Tam, and C.L. Wang, ‘Directed Point: An Efficient Communication

Subsystem for Cluster Computing’, The International Conference on Parallel and Distributed

Computing Systems (IASTED), Oct 1998.

[25] M. Livny. ‘The Condor Distributed Processing System’, Dr. Dobbs Journal, pp. 40-58,

Feb 1995.

[26] M.M. Theimer, K.A. Lantz, and D.R. Cheriton, ‘Preemptable Remote Execution

Facilities for the V-System’, In Proc. 10th ACM Symp. On Operating System Principles, Dec

1985.

[27] Microsoft Research, ‘Borg, a Prototype for the Millennium Project’,

http://research.microsoft.com/sn/Millennium/Borg.html.

[28] P. Smith, N. Hutchison, ‘Heterogeneous Process Migration: The Tui System’, Technical

Report, 96-04 (Revised), University of British Columbia, Mar 1997.

[29] R. Fatoohi and S. Weeratunga, ‘Performance Evaluation of Three Distributed Computing

Environments for Scientific Applications’, Supercomputing ‘94, pp.400-408.

[30] R.E. Ewing et al.,’Distributed Computation of Wave Propagation Models Using PVM’,

IEEE Parallel Distributed Technology, 2, (1), 26-31 (1994).

[31] RSA Data Security Inc., ‘High-Speed RSA Implementation’, TR 201,

ftp://ftp.rsa.com/pub/ps/201.ps.

119

[32] S. Levy, Wisecrackers, ‘Wired Magazine’, 4.03, Mar 1996,

http://www.wired.com/wired/archive/4.03/crackers_pr.html.

[33] S. Tanebaum, ‘Distributed Operating System’, Prentice Hall, 1995.

[34] S.J. Mullender, G. van Rossum, R. van Rensse, and H. van Staveren, ‘Amoeba - a

Distributed Operating System for the 1990s’, IEEE Computer, 23(5):44-53, May 1990.

[35] Sun Microsystems Inc., ‘A Timeline of Sun’s History’,

http://www.sun.com/corporateoverview/who/html_history.html.

[36] T. Lindholm, F. Yellin, ‘The Java Virtual Machine Specification’, Addison Wesley,

1996.

[37] Transvirtual Technologies Inc, ‘Kaffe Open VM’, http://www.transvirtual.com.

[38] W. Gropp, E. Lusk, and A. Skjellum, ‘Using MPI’, MIT Press, 1994.

[39] W. Yu, A. Cox, ‘Java/DSM: A Platform for Heterogeneous Computing’, Department of

Computer Science, Rice University.

[40] W.J. Bolosky, R.P. Draves, R.P. Fitzgerald, C.W. Fraser, M.B. Jones, T.B. Knoblock,

R.Rashid, ‘Operating System Directions for the Next Millennium’, Microsoft Research,

http://research.microsoft.com/research/os/Millennium/mgoals.html.

[41] W.T.C. Kramer et al., ‘Clustered Workstations and Their Potential Role as High Speed

Compute Processors’, RNS-94-003, NASA Ames Research Centre, 1994.

[42] Y.A. Khalidi, J.M. Bernabeu, V. Matena, K. Shiriff, M. Thadani, ‘Solaris MC: A Multi-

Computer OS’, Proceedings of the USENIX 1996 Annual Technical Conference, pp. 191-

294.

[43] K. Hwang, H. Jin, E. Chow, C.L. Wang, and Z. Xu; ‘Designing SSI Clusters with

Hierarchical Checkpointing and Single I/O Space,’ IEEE Concurrency Magazine, Vol. 7, No.

1, pp. 60-69, Jan-Mar., 1999.

[44] Zukowski, ‘Prepare Yourself for What’s New and Different in the Forthcoming JDK 1.2

Release’, Javaworld, Nov 1998, http://www.javaworld.com/javaworld/jw-11-1998/jw-11-

jdk12.html.

120

