A Migrating-Home Protocol for I mplementing Scope
Consistency Model on a Cluster of Workstations

Benny Wang-L eung Cheung, Cho-Li Wang and Kai Hwang
Department of Computer Science and Information Systems
The University of Hong Kong
Pokfulam Road, Hong Kong

Abstract The performance of a software Distributed
Shared Memory relies on an efficient memory
consistency model, and a suitable protocol for
implementing the model. This paper studies a new
concept of a migrating-home protocol for imple-
menting the scope consistency model. In this
protocol, the home, which is the location of the most
up-to-date copy of each memory page, can change
among processors. We implement this idea on a
cluster of UltraSPARC | model 140 workstations
with ATM network. The migrating-home protocol
outperforms the home-based approach and adapts
better to the memory access patterns for most
applications. It reduces communication overheadsin
forwarding page updates among the processors.
Page faults can also be handled in a more efficient
way. These factors reduce a considerable amount of
data communicating within the cluster.

Keywords. Cluster Computing, Scope Consistency,
Migrating-Home Protocol

1 Introduction

Cluster or network of workstations is becoming
an appealing platform for cost-effective parallel
computing. But their usability and programm-
ability depend much on the programming
environment. One of the most popular parallel
programming paradigms is software Distributed
Shared Memory (DSM), which offers the
abstraction of a globally shared memory across
physically distributed memory machines.

In a DSM system, multiple copies of
memory pages reside in different machines. A
memory consistency model formally specifies
how the memory system will appear to the
programmer [1]. Memory consistency models
affect the efficiency of DSM. The first DSM
system, VY, adopted sequential consistency
(SC) [2]. However, its performance was poor

The research was supported by the Hong Kong
RGC grant HKU 7032/98E and HKU CRGC grant
335/065/0042.

due to excessive data communication among
machines. Later systems, such as TreadMarks
[3], improves its efficiency by using the more
relaxed lazy release consistency (LRC) model
[4]. The Midway system [5], on the other hand,
employed entry consistency (EC) [6], which is
more efficient than LRC. Unfortunately, the
programming interface associated with EC is
not easy to use. Scope consistency (ScC) has
thus been proposed [7], aiming at achieving
good programmability and performance.

To implement ScC, two protocols, namely
the home-based and the homel ess protocols, can
be employed [8]. For the home-based (or fixed-
home) protocol, a machine in the cluster is
designated to keep the most up-to-date copy of
every logical page in the system. Hence, when a
processor requests a page, it only needs to
communicate with the home. In comparison, to
serve a page fault under the homeless protocaol,
a processor must send out requests to every
processor which has updated the page, collects
the updates from the processors, and applies the
updates in sequence to obtain the most updated
version of the page. Although both protocols
adopt the diffing technique to handle the false
sharing problem [3], research [9] shows that the
home-based protocol outperforms the homeless
one since the home-based protocol incurs less
communication in the network.

This paper discusses a migrating-home
protocol for implementing ScC. In this protocol,
the location storing the most up-to-date copy of
each page is changeable among the processors,
so that in most cases, the processor requiring
the page becomes the new home of that page.
Processors send out short migration notices to
notify others about the home change. This
alows our protocol to perform less diffing oper-
ations and fewer lengthy diffs are sent among
the machines. The protocol further reduces
communication overhead by concatenating mul-

tiple migration notices with the remaining diffs
as a single message for transmission. It can also
handle page faults more efficiently since more
page faults can be served locally without
communicating with other processors. All these
factors help to reduce the total amount of data
communicating within the cluster effectively.

We implement the migrating-home protocol
on the JUMP system, which runs on a cluster of
8 UltraSPARC | model 140 workstations with
ATM networking. Four benchmark applications
with different memory access patterns are
tested. The migrating-home protocol adapts to
the access patterns of most applications better
than the original home-based protocol. This is
shown by the testing results, in which the
migrating-home protocol speeds up the
execution time over the home-based approach
for most applications. The maximum reduction
in execution time is 67.5%. In addition, the
migrating-home protocol can save up to 97% of
the total amount of data sent within the cluster.

For the rest of the paper, Section 2
introduces the ScC model and the home-based
protocol for implementing the model. Section 3
describes our migrating-home protocol in
detail. Section 4 discusses the implementation
of JUMP, the testing environment and
benchmark applications. Section 5 addresses
the testing result by comparing JUMP and its
counterpart using the home-based protocol.
Section 6 summarizes our conclusions.

2 Scope Consistency (ScC) and
the Home-Based Protocol

In this section, we briefly describe the scope
consistency model [7] and the original home-
based protocol [8] used to implement scope
consistency to place the ground of our research.

The objective of scope consistency (ScC) is
to provide high performance like EC and good
programmability like LRC. Thisis achieved by
the use of the scope concept, which reduces the
amount of data updates sent among processors,
and fits naturally to the synchronization pro-
vided by the lock mechanism.

In ScC, a scopeis alimited view of memory
with respect to which memory references are
performed. Updates made within a scope are
guaranteed to be visible only in the same scope.
For example, in Figure 1, all critical sections
guarded by the same lock comprise a scope. In

other words, the locks in a program determine
the scopes implicitly, making the scope concept
easy to understand. The acquire operation
opens a scope, while the release operation
closes the scope. From the above concepts, the
consistency rule of ScC is defined as follows:
When a processor Q opens a scope previously
closed by another processor P, P will
propagate the updates made within the same
scopeto Q.

As an illustration, consider the example in
Figure 1 again. Under ScC, PO does not propa-
gate the updates of x and y to P1 (while PO does
under LRC), since the updates are not in the
same scope (Scope 2). Therefore, the reads of x
and y made by P1 may give results other than 1.

PO Pl
X=1
Acquire(L1)
Scope 1 I: y=1
Release(L1) Scope 2
Acquire(L2)
Scope 2 I: z=2 l
Release(L2) «---- Acquire(L2)
. Read x
P1 acquireslock L2 from Read y
PO, and PO propagates Read z
the update of zto P1 only. Release(L2)

Figure 1: Anexamplefor ScC.

ScC is more efficient than LRC, since ScC
does not propagate the updates made in scopes
other than the one being opened, while LRC
propagates al the updates before the release.
Moreover, ScC provides good programmability,
since it retains the same programming interface
as LRC. It does not require explicit binding of
variables to locks as EC does. Thus we consider
ScC apromising memory model for DSM.

The original implementation of ScC is based
on the home-based protocol [8], with the diffing
technique to handle false sharing [3]. For each
page in the memory, the protocol assigns a
processor in which the most up-to-date copy
subsides. This processor is the home of the
page, fixed at the start of application execution.
All other processors will send the page updates
to the home at synchronization time. Upon a
page fault, they can get a clean copy of the page
by requesting the home processor. While in
homeless protocols, no processor is responsible
to keep the most updated copy of the page. To
serve a page fault, a processor requests all other
members in the cluster to send the updates made
by each of them, and then apply these updates

in sequence to crede a ¢ean copy of the page.
This introduces a high communication over-
head and complicaes the implementation as
well. For example, timestamps are nealed for
the diffs to identify the order of the updates.
To illustrate the home-based protocol, we
focus on a basic scenario of shared memory
accessin Figure 2. Asaume variable X0 is in
page x. Processor PO tries to write to X0 and
generates a page fault. PO then requests the
page from P2, the home of x. P2 replies with a
copy of the page. When PO gets the page, it
makes a dugdicae cdled a twin and performs
the write. Later, at the relesse of lock L, PO
compares the updated page with its twin and
sends out the page difference, known as the
diff, to P2. Finally, P2 recaves the diff and
acknowledge®0 with adiff grant message.

PO P1 P2 (Home)
Time |- Acquire(L)
| \Write X0 Page Fault(x)
Page x
Make _,—‘—/—
Twin | |- Release(L) |~ Acquire(L)
- Apply
Diff Diff
Diff Grant — Write X0 —_ Page

ke Faul(g

_'
Twin | [~Release(L)

[~ Diff —] Apply
Diff

Diff Grant

Figure 2: An Example for the Home-Based
Protocol.

3 TheMigrating-Home Protocol

Although the home-based protocol described in
Sedion 2 is more dficient than the homeless
one, the concept of afixed hane can hinder the
efficiency of the protocol. In this ®dion, we
study the migrating-home protocol, in which
the home is changeéble among proceswors.
From here onwards, we refer to the home-based
protocol as the fixed-home protocol, as oppased
to the migrating-home protocol.

3.1 TheMigrating-Home Concept

The fixed-home concept does not adapt well to
the accss patterns of many applicaions. Its
inflexibility introduces a pair of diff and dff
grant messages communicating among process
ors, as hown in the previous example in Figure
2. These messages can be saved if we grant the

home to PO when P2 serves the page fault. As
PO has the most updated copy of page x, the diff
and dff grant messages neal nd be sent, as
shown in Figure 3. This is the migrating-home
concept: When a processor asks for a page from
its current home processor, the requester can
become the new home. Figure 4(a) shows this
concept graphicdly. In the diagram, the drcular
“token” denotes the home of page x. It is moved
from P2 to PO to indicate the change of home.

PO P1
— Acquire(L) .
[Write X0 —| PageFault(x) Time

— O o

age x and home
migrated to PO!

— Acquire(L)

Page Fault(x) __— Write X0

Page x and home
migrated to P1!

P2 (Home)

— Release(L)

— Release(L)

Figure 3: An Example lllustrating the
Migrating-Home Concept

PO P1 P2 d

- 2. Migrate home with a copy of x
a copy of page x

“token” indicating home of x

(a) 1. Request for x

(b) Migration Notice
of xis
PO

Figure 4: The Migrating-Home Concept: (a)
Home Migration, (b) At Lock Release

However, P1 may request page x after the
home dhange, as shown in Figure 3. It may get
an oudated copy if it requests the page from the
previous home P2. To avoid this, PO needs to
send a migration notice to al the other nodes at
synchronization time, as iown in Figure 4(b).
Thisreplaces the lengthy diffs, which can be the
same size & the page itself. Thus the migrating-
home protocol reduces the number of bytes sent
within the duster. Moreover, as a DSM
applicdion can acces many pages, the
migration ndices can be merged to form a
single message to reduce the cmmunicaion
startup cost.

3.2 Solution for False Sharing

To dea with false sharing, the migrating-home
protocol also uses the diffing technique, with
additional rules to maintain memory consist-
ency. When two processors ask the home for
the same page before synchronization, the first
becomes the new home, as shown in Figure
5(a). The late requester will receive a copy of
the page from the previous home and aso the
new home location (Figure 5(b)). Therefore, it
can send the diff to the new home. Under ScC,
the copy obtained by the late requester is clean
if the two processors do not access the same
variable. Also, the communication overhead of
the diff can be reduced by concatenating it with
the migration notices before sending when they
have the same destination.

Table 1: Table showing the Major Events and
Actions in the Migrating-Home Protocol.

Event Action
Page fault Send arequest to the home of page
Request for [1) If | am home of x, grant a copy of
page x from x to P. If (set of processors getting
processor P acopy of x = set of processors that
received have sent diff for x), then migrate
the home to P, and | become the
previous home of x. Record the ID
of processor P otherwise.
2) If | am the previous home of page
X, then grant a copy of x to P, and
tell P about the new home. Record
the ID of processor P.
3) If not 1) or 2), reject request, tell P
to ask the new home.
Lock For every page x:
release 1) If | am home of x, send migration
notice to every other processor.
2) Otherwise, send the diff of x to its
home.
Diff of page || am the home of x, thus, send back
xreceived |thediff grant message.
Migration 1) If 1 am home of x, reply sender
notice of with the processors that have
page x received a copy of x from me.
received Cancel the previous home flag.
2) Otherwise, note the home change.
Gettingthe |1) If home not granted, make a twin
page x of x before writing the page
2) Otherwise, just write on the page.
Table 1 shows the algorithm discussed

above in tabular form. For further illustration,
we give an example as shown in Figure 6. PO

first writes to variable X0, causing a page fault
for x. It requests P2 for the page. P2 sends PO a
copy of x and grants PO the new home of x.
Then, before PO releases lock LO, P1 writes to
X1, which isin page x, too. In this false sharing
situation, P1 asks P2 for the page and gets the
copy, in which X1 is dtill clean. However, P2
cannot grant P1 as the home of page x, since P2
is no longer the home. Instead, P2 informs P1
that PO is the new home of the page, so that P1
can send the diff to PO at the release of lock L1.

At the release of LO, PO sends a migration
notice to all processors. P2 replies by notifying
PO the processors that have got a copy from P2.
PO then decides whether it allows home change
when it receives a fault on that page later. If
some processors have not sent the diff, such as
P1 in this example, home migration cannot take
place.

() 1. Request for x

PO P1 P2 d

- 2. Migrate home with a copy of x
a copy of page x

“token” indicating home of x
(b) 3. Request for x

PO

4. Sendsa copy
of x only, and tells P1 the new home

Figure 5: Handling the False Sharing Problem.

PO P1
—Acquire(LO)
Time [—Write X0 Page Fault (x)

—
<——‘®‘|_7I/' Page

Page x sent.
New home = PO,
Previous home = P2
Page x sent, but NO
home migration

—Release
~] .
(LO) migration notices

Tells PO that P1
has a copy of x

P2 (Org Home)

—Release(L1)

Figure 6: The Migrating-Home Protocol with
False Sharing Support

Moreover, after P2 replies the migration notice
from PO, P2 will rgject any page fault request of

x from other processors, because P2 has no way
to inform the new home PO again. In such case,
P2 will reply the requester the new home of the
page. This rarely happens, since al the
processors usually should have received the
migration notice. Thus they should have known
the new home location.

4 Implementation and Testing

We have implemented the migrating-home pro-
tocol by modifying the JJIAJIA DSM system [9]
to form the JUMP (JAJA Using Migrating-
Home Protocol) system. JIAJIA is a user-level
runtime library built on UNIX. It implements
ScC using the home-based protocol, and it
handles fal se sharing by the diffing technique.

We run JUMP on acluster of 8 UltraSPARC
I model 140 machines connected by a 16-port
FORE ATM ASX1000 switch. The port band-
width can achieve 155Mbps. Each workstation
has 64MB of main memory with 8KB page
Size, running Sun OS 5.6.

To test the performance of JUMP, we write
four benchmark applications in C, as described
in Table 2. We execute each program with
various problem sizes on 2, 4 and 8 nodes. We
aso run the programs on the original JAJA
implementation using the same environment.

5 Resultsand Analyses

This section analyzes the performance of the
migrating-home protocol on the JUMP system
in terms of execution time, network data traffic
and the number of page faults generated.

5.1 Execution TimeAnalysis
The decrease in execution time in JUMP as

compared with JJAJIA is application-dependent
as shown in Figure 7. Overall, JUMP performs

much better over JJAJIA on most applications.
For ME, JAJA runs 10.8-35.5% faster for
problem sizes with n < 2M. When n = 4M,
JUMP runs the program in less than half the
time needed by JAJA. JUMP even beats
JAJA by running up to 67.5% faster on LU.

In RX, JUMP outperforms JAJA steadily
by no more than 9.8%. The result is similar for
MM, in which JUMP is at most 9.0% faster.
The only exception is when JUMP executes
MM with small matrices (n = 64 or 128) using 8
processors, a which JUMP suffers a small
performance degradation of 5% or less.

5.2 Communication Analysis

Table 3 summarizes the number of messages (#
Msgs) sent for each application under JUMP
and JAJIA, together with the total number of
bytes communicated during the execution
(MBytes) for the 8-processor case. Except for
ME, JUMP sends a larger number of messages
than JIAJIA for most of the data points. How-
ever, these messages are short ones, as JUMP
sends fewer bytes than JIAJIA. Also, for LU
and RX, the difference in the number of
messages sent between JUMP and JIAJIA is
large for small problem sizes. However, this gap
becomes closer or even disappears for larger
problems. This is because we take advantage of
the short migration notices by concatenating
them together, as discussed in Section 3.2.

A third point observed is that the migrating-
home protocol in JUMP sends fewer bytes than
the fixed-home protocol in JAJIA, especially
on large problem sizes. For example, JUMP
sends 42-66% fewer bytes than JIAJIA for the
ME application. JUMP even achieves a 97%
save for LU on large problem size (n = 1024).
This reduced amount of data communication
accounts for the performance improvement
achieved by JUMP.

Table 2: Description of the Four Testing Applications

Name | Arg.

Problem Description

MM | n,p [Matrix Multiplication of two n x n matrices using p processors

LU | n,p |LU Factorization on an nxn matrix using p processors
ME | n,p | Merge Sort on nintegers using p processors (merge p sorted lists)
RX | n,p [Radix Sort on nintegersusing p processors

{a) Matrix Multiplication -- Timing {b) LU Factorization -- Timing

1000 10.0 1000 - 700
A+ 60.0
. fl=) - . ﬁ N
£ 100 0% 81o0 A (1007
® . ¥ A |1 400 =
’ 258 Z G
® "E w A |1 o0 2
E 1n o0& £ g ~ '
e E F | 200E
25 "é 110n
1 3 R t t -5.0 1 t t t AE g
n= G4 128 256 512 1024 n= 64 128 256 212 1024
ic) Merge Sort -- Timing {d) Radix Sort -- Timing
1000 BO.0 100 7 10.0
s0.0 a0
[X] =] =
2100 00T B g0l
! = tand =
i w0 4105 i &
E 10 w08 E 1P T E
= T E F] E
100] 20
1 t t t 0.o 1 4 } t t .o
n= 512K 1M M ahd n= 512K 1hd 2 ahd
Tin g = Time wsing n procs, p processors under JUWP .
T'(n,o0 = TiME USiNg N Procs, p processors under JAJLA, /==T(n,2) Tin4) ';' Tin,g)
I) = [T, p-Ten] £ T) 3¢ 100% e Imiptn,2) =S Imptn &)~ Ime(n,8)

Figure 7: Performance Improvement of the Testing Applications
(Note that the bar chart, which shows the execution time, isin log scale.)

Table 3: Comparison of Communication and Page Fault Statistics between JUMP and JJAJIA (p = 8)

Appl. | Sze JUMP JIAJIA
Name| (n) [#Msgs| MBytes| PF1 [PF2| PF3 | Total |#Msgs| MBytes | PF1 | PF2 | PF3 | Total
MM | 64 696| 0.746 12| 45| 77 134 471] 0715 8 49| 73] 130
128 | 1288| 0.681 64| o] 91 155 455| 0.993 8 56| 77| 14
256 | 1897 2.838| 228] O 392 620 1236 4031 32| 196] 358] 586
512 | 3829| 11.216] 912| o0 1568 2480 3402| 17.349| 128 784| 1428| 2340
1024 | 11557 44.731| 3648| o0 6272 9920| 11208 69.315| 512| 3136| 5712 9360
ME [512k | 1503 5073 800] o 608 1408| 1645| 12.017| 128 672 560 1360
M | 2719| 10134 1600 o0f 1216| 2816| 3213| 24.035| 256 1344| 1120 2720
2M | 5151| 20.256] 3200 Of 2432| 5632 6349| 48.066| 512| 2688 2240 5440
4aMm | 10015 40.500| 6400 Of 4864| 11264| 17944| 118473| 1024| 4165| 7185| 12374
RX [512K | 6986| 22.350(2123 0] 2680 4803 5680| 33.641| 325 1896| 2279| 4500
1M | 10733| 39.010| 3952 oOf 4684| 8636| 9809 62911| 578 3469 4033| 8080
2M | 18294| 72.479] 7593 0 8710 16303| 18283| 122.147| 1081 6598| 7626| 15305
4M | 33610|139.656| 14878| 0[16790| 31668| 35336| 240.622| 2109| 12866 14813| 29788
LU | 64 | 3665 4571 2081 0| 540| 2621 2639 4.267| 289 1792 427 2508
128 | 7307| 9.352| 8257| o 1106] 9363| 5237| 12506 1089| 7168 875 9132
256 | 14822| 20.021| 32769| 0| 2371| 35140| 12680 56.263| 4113| 28656| 1889 34658
512 | 29932 41.345|130945| 0| 4899| 135844 40868| 351.686| 16353 | 114592| 3903| 134848
1024 | 59921 83.993]|523905| 0| 9956 | 533861 | 196488 | 2597.700| 65601 | 458304 | 7931 531836
53 PageFault Analysis JUMP. In software DSM, there are 3 types of
page faults as described below:
The number of page faults is also useful in » PF1: Page faults that can be served by the

explaining the performance improvement of local processor, which is the home of the

page. They arise due to violation d access
permission.

» PF2: Page faults that can be served by the
locd processor which is not the home of
the page, bu has caded a dean copy of
that page to serve the fault.

» PF3: Page faults that have to be served by
the remote processor.

Among the three types of page faults,
serving PF3 is time consuming, as it involves a
pair of messages snding between two process
ors to serve the page fault. However, serving a
PF2 type fault can be more time-consuming
than PR3 in some caes. This is becaise the
page may be in the disk cade, and it costs a
long time to bring the page from the disk badk
to the physicd memory. Moreover, since the
home is not locd, the processor making the
page fault must send a diff to the home of the
page & synchronization time. The diff and the
diff grant messages increases the st of PF2
faults. To improve the performance of DSM,
minimizing the number of PF2 faultsis equally
important as that fdPF3 faults.

Table 3 shows the number of ead type of
page faults occurred in the testing applications
under JUMP and JIAJIA. Applicaions under
JUMP prodwce 6-7% more page faults than
JAJA. However, JUMP can convert most of
the PF2 faults in JJAJIA to PF1 faults. As the
number of PF2 faults in JAJA acourts for
33-86% of the total number of page faults for
the benchmark applications, JUMP reduces the
ned to send lengthy diffs sgnificantly. Thus it
improves the overall timing performance.

6 Conclusion

The protocol used in implementing a memory
consistency modd is as important as the model
itself. It has a vital effed on the overal DSM
performance. The JIAJIA system uses a fixed-
home protocol to implement scope ansistency.
Althouwgh it is more dficient than TreadMark’s
homelessprotocol, the concept of afixed hane
for eady memory page does not adapt well to
the acces patterns of applications. This paper
discused the new idea of a migrating-home
protocol. In the protocol, the home of ead page
can be migrated to ancther processor when it
acceses the page. We show that the migrating-

home protocol reduces the number of bytes sent
in the duster. It also saves time in serving page
faults by sending lessdiffs. The migrating-home
protocol therefore improves the exeaution time
of DSM applications substantially.

References

[1] S. V. Adve and K. Gharadchorloo. Shared
Memory Consistency Models. A Tutorial.
IEEE Computer29(12): 66-76, Dec. 1996.

[2] L. Lamport. How to Make aMulti processor
Computer that Corredly Exeautes Multi-
process Programs. IEEE Transactions on
ComputersC-28(9):690-691, Sept. 1979.

[3] C. Amza, A. L. Cox, S. Dwarkadas, P.
Keleher, H. Lu, R. Rgjamony, W. Yu, W.
Zwaanepodl. TreadMarks: Shared Memory
Computing on Networks of Workstations.
IEEE Computer29(2):18-28, Feb. 1996.

[4] B. N. Bershad and M. J. Zekauskas.
Midway: Shared Memory Parallel Program-
ming with Entry Consistency for Distri-
buted Memory Multiprocessors. Technicd
Report CMU-CS91-170, Carnegie Mellon
University, Sept. 1991.

[5] B. N. Bershad, M. J. Zekauskas and W. A.
Sawdon. The Midway Distributed Shared
Memory System. Proc. of the 38th IEEE
Int'l Computer Conf.p.528-537, Feb. 1993.

[6] P. Keleher, A. L. Cox and W. Zwaenepodl.
Lazy Relesse Consistency for Software
Distributed Shared Memory. Proc. of the
19%h Annud Int'l Symp. on Computer
Architecture p.13-21, May 1992.

[7] L. Iftode, J. P. Singh and K. Li. Scope
Consistency: A Bridge between Release
Consistency and Entry Consistency. Proc.
of the 8th ACM Annud Symp. on Parall el
Algorithms and Architecturedan. 1996.

[8] Y. Zhou, L. Iftode and K. Li. Performance
Evauation d the Two Home-Based Lazy
Release Consistency Protocols for Shared
Virtual Memory Systems. Proc. of the 2nd
Symposium on Operating §ystems Design
and Implementatiom.75-88, 1996.

[9] W. Hu,W. Shi, Z. Tang and M. Li. A Lock-
based Cacde Coherence Protocol for Scope
Consistency. Journal of Computer Science
and Technologyl13(2), 1998.

