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Abstract  The performance of a software Distributed
Shared Memory relies on an efficient memory
consistency model, and a suitable protocol for
implementing the model. This paper studies a new
concept of a migrating-home protocol for imple-
menting the scope consistency model. In this
protocol, the home, which is the location of the most
up-to-date copy of each memory page, can change
among processors. We implement this idea on a
cluster of UltraSPARC I model 140 workstations
with ATM network. The migrating-home protocol
outperforms the home-based approach and adapts
better to the memory access patterns for most
applications. It reduces communication overheads in
forwarding page updates among the processors.
Page faults can also be handled in a more efficient
way. These factors reduce a considerable amount of
data communicating within the cluster.

Keywords: Cluster Computing, Scope Consistency,
Migrating-Home Protocol

1 Introduction

Cluster or network of workstations is becoming
an appealing platform for cost-effective parallel
computing. But their usability and programm-
ability depend much on the programming
environment. One of the most popular parallel
programming paradigms is software Distributed
Shared Memory (DSM), which offers the
abstraction of a globally shared memory across
physically distributed memory machines.

In a DSM system, multiple copies of
memory pages reside in different machines. A
memory consistency model formally specifies
how the memory system will appear to the
programmer [1]. Memory consistency models
affect the efficiency of DSM. The first DSM
system, IVY, adopted sequential consistency
(SC) [2]. However, its performance was poor
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due to excessive data communication among
machines. Later systems, such as TreadMarks
[3], improves its efficiency by using the more
relaxed lazy release consistency (LRC) model
[4]. The Midway system [5], on the other hand,
employed entry consistency (EC) [6], which is
more efficient than LRC. Unfortunately, the
programming interface associated with EC is
not easy to use. Scope consistency (ScC) has
thus been proposed [7], aiming at achieving
good programmability and performance.

To implement ScC, two protocols, namely
the home-based and the homeless protocols, can
be employed [8]. For the home-based (or fixed-
home) protocol, a machine in the cluster is
designated to keep the most up-to-date copy of
every logical page in the system. Hence, when a
processor requests a page, it only needs to
communicate with the home. In comparison, to
serve a page fault under the homeless protocol,
a processor must send out requests to every
processor which has updated the page, collects
the updates from the processors, and applies the
updates in sequence to obtain the most updated
version of the page. Although both protocols
adopt the diffing technique to handle the false
sharing problem [3], research [9] shows that the
home-based protocol outperforms the homeless
one since the home-based protocol incurs less
communication in the network.

This paper discusses a migrating-home
protocol for implementing ScC. In this protocol,
the location storing the most up-to-date copy of
each page is changeable among the processors,
so that in most cases, the processor requiring
the page becomes the new home of that page.
Processors send out short migration notices to
notify others about the home change. This
allows our protocol to perform less diffing oper-
ations and fewer lengthy diffs are sent among
the machines. The protocol further reduces
communication overhead by concatenating mul-



tiple migration notices with the remaining diffs
as a single message for transmission. It can also
handle page faults more efficiently since more
page faults can be served locally without
communicating with other processors. All these
factors help to reduce the total amount of data
communicating within the cluster effectively.

We implement the migrating-home protocol
on the JUMP system, which runs on a cluster of
8 UltraSPARC I model 140 workstations with
ATM networking. Four benchmark applications
with different memory access patterns are
tested. The migrating-home protocol adapts to
the access patterns of most applications better
than the original home-based protocol. This is
shown by the testing results, in which the
migrating-home protocol speeds up the
execution time over the home-based approach
for most applications. The maximum reduction
in execution time is 67.5%. In addition, the
migrating-home protocol can save up to 97% of
the total amount of data sent within the cluster.

For the rest of the paper, Section 2
introduces the ScC model and the home-based
protocol for implementing the model. Section 3
describes our migrating-home protocol in
detail. Section 4 discusses the implementation
of JUMP, the testing environment and
benchmark applications. Section 5 addresses
the testing result by comparing JUMP and its
counterpart using the home-based protocol.
Section 6 summarizes our conclusions.

2 Scope Consistency (ScC) and
the Home-Based Protocol

In this section, we briefly describe the scope
consistency model [7] and the original home-
based protocol [8] used to implement scope
consistency to place the ground of our research.

The objective of scope consistency (ScC) is
to provide high performance like EC and good
programmability like LRC. This is achieved by
the use of the scope concept, which reduces the
amount of data updates sent among processors,
and fits naturally to the synchronization pro-
vided by the lock mechanism.

In ScC, a scope is a limited view of memory
with respect to which memory references are
performed. Updates made within a scope are
guaranteed to be visible only in the same scope.
For example, in Figure 1, all critical sections
guarded by the same lock comprise a scope. In

other words, the locks in a program determine
the scopes implicitly, making the scope concept
easy to understand. The acquire operation
opens a scope, while the release operation
closes the scope. From the above concepts, the
consistency rule of ScC is defined as follows:
When a processor Q opens a scope previously
closed by another processor P, P will
propagate the updates made within the same
scope to Q.

As an illustration, consider the example in
Figure 1 again. Under ScC, P0 does not propa-
gate the updates of x and y to P1 (while P0 does
under LRC), since the updates are not in the
same scope (Scope 2). Therefore, the reads of x
and y made by P1 may give results other than 1.

ScC is more efficient than LRC, since ScC
does not propagate the updates made in scopes
other than the one being opened, while LRC
propagates all the updates before the release.
Moreover, ScC provides good programmability,
since it retains the same programming interface
as LRC. It does not require explicit binding of
variables to locks as EC does. Thus we consider
ScC a promising memory model for DSM.

The original implementation of ScC is based
on the home-based protocol [8], with the diffing
technique to handle false sharing [3]. For each
page in the memory, the protocol assigns a
processor in which the most up-to-date copy
subsides. This processor is the home of the
page, fixed at the start of application execution.
All other processors will send the page updates
to the home at synchronization time. Upon a
page fault, they can get a clean copy of the page
by requesting the home processor. While in
homeless protocols, no processor is responsible
to keep the most updated copy of the page. To
serve a page fault, a processor requests all other
members in the cluster to send the updates made
by each of them, and then apply these updates

X = 1
Acquire(L1)
  y = 1
Release(L1)
Acquire(L2)
 z = 2
Release(L2)

P0

Scope 1

Scope 2

P1 acquires lock L2 from
P0, and P0 propagates
the update of z to P1 only.

Acquire(L2)
  Read x
  Read y
  Read z
Release(L2)

P1

Scope 2

Figure 1:  An example for ScC.



in sequence to create a clean copy of the page.
This introduces a high communication over-
head and complicates the implementation as
well . For example, timestamps are needed for
the diffs to identify the order of the updates.

To ill ustrate the home-based protocol, we
focus on a basic scenario of shared memory
access in Figure 2. Assume variable X0 is in
page x. Processor P0 tries to write to X0 and
generates a page fault. P0 then requests the
page from P2, the home of x. P2 replies with a
copy of the page. When P0 gets the page, it
makes a duplicate called a twin and performs
the write. Later, at the release of lock L, P0
compares the updated page with its twin and
sends out the page difference, known as the
diff, to P2. Finally, P2 receives the diff and
acknowledges P0 with a diff grant message.

3 The Migrating-Home Protocol

Although the home-based protocol described in
Section 2 is more eff icient than the homeless
one, the concept of a fixed home can hinder the
eff iciency of the protocol. In this section, we
study the migrating-home protocol, in which
the home is changeable among processors.
From here onwards, we refer to the home-based
protocol as the fixed-home protocol, as opposed
to the migrating-home protocol.

3.1 The Migrating-Home Concept

The fixed-home concept does not adapt well to
the access patterns of many applications. Its
inflexibilit y introduces a pair of diff and diff
grant messages communicating among process-
ors, as shown in the previous example in Figure
2. These messages can be saved if we grant the

home to P0 when P2 serves the page fault. As
P0 has the most updated copy of page x, the diff
and diff grant messages need not be sent, as
shown in Figure 3. This is the migrating-home
concept: When a processor asks for a page from
its current home processor, the requester can
become the new home. Figure 4(a) shows this
concept graphically. In the diagram, the circular
“ token” denotes the home of page x. It is moved
from P2 to P0 to indicate the change of home.

However, P1 may request page x after the
home change, as shown in Figure 3. It may get
an outdated copy if it requests the page from the
previous home P2. To avoid this, P0 needs to
send a migration notice to all the other nodes at
synchronization time, as shown in Figure 4(b).
This replaces the lengthy diffs, which can be the
same size as the page itself. Thus the migrating-
home protocol reduces the number of bytes sent
within the cluster. Moreover, as a DSM
application can access many pages, the
migration notices can be merged to form a
single message to reduce the communication
startup cost.

Figure 2: An Example for the Home-Based
Protocol.
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Figure 4: The Migrating-Home Concept: (a)
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Figure 3: An Example Illustrating the
Migrating-Home Concept
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3.2 Solution for False Sharing

To deal with false sharing, the migrating-home
protocol also uses the diffing technique, with
additional rules to maintain memory consist-
ency. When two processors ask the home for
the same page before synchronization, the first
becomes the new home, as shown in Figure
5(a). The late requester will receive a copy of
the page from the previous home and also the
new home location (Figure 5(b)). Therefore, it
can send the diff to the new home. Under ScC,
the copy obtained by the late requester is clean
if the two processors do not access the same
variable. Also, the communication overhead of
the diff can be reduced by concatenating it with
the migration notices before sending when they
have the same destination.

Table 1:  Table showing the Major Events and
Actions in the Migrating-Home Protocol.

Event Action
Page fault Send a request to the home of page
Request for
page x from
processor P
received

1) If I am home of x, grant a copy of
x to P. If (set of processors getting
a copy of x = set of processors that
have sent diff for x), then migrate
the home to P, and I become the
previous home of x. Record the ID
of processor P otherwise.

2) If I am the previous home of page
x, then grant a copy of x to P, and
tell P about the new home. Record
the ID of processor P.

3) If not 1) or 2), reject request, tell P
to ask  the new home.

Lock
release

For every page x:
1) If I am home of x, send migration

notice to every other processor.
2) Otherwise, send the diff of x to its

home.
Diff of page
x received

I am the home of x, thus, send back
the diff grant message.

Migration
notice of
page x
received

1) If I am home of x, reply sender
with the processors that have
received a copy of x from me.
Cancel the previous home flag.

2) Otherwise, note the home change.
Getting the
page x

1)  If home not granted, make a twin
of x before writing the page

2)  Otherwise, just write on the page.

Table 1 shows the algorithm discussed
above in tabular form. For further illustration,
we give an example as shown in Figure 6. P0

first writes to variable X0, causing a page fault
for x. It requests P2 for the page. P2 sends P0 a
copy of x and grants P0 the new home of x.
Then, before P0 releases lock L0, P1 writes to
X1, which is in page x, too. In this false sharing
situation, P1 asks P2 for the page and gets the
copy, in which X1 is still clean. However, P2
cannot grant P1 as the home of page x, since P2
is no longer the home. Instead, P2 informs P1
that P0 is the new home of the page, so that P1
can send the diff to P0 at the release of lock L1.

At the release of L0, P0 sends a migration
notice to all processors. P2 replies by notifying
P0 the processors that have got a copy from P2.
P0 then decides whether it allows home change
when it receives a fault on that page later. If
some processors have not sent the diff, such as
P1 in this example, home migration cannot take
place.

Moreover, after P2 replies the migration notice
from P0, P2 will reject any page fault request of

Figure 5:  Handling the False Sharing Problem.
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x from other processors, because P2 has no way
to inform the new home P0 again. In such case,
P2 will reply the requester the new home of the
page. This rarely happens, since all the
processors usually should have received the
migration notice. Thus they should have known
the new home location.

4 Implementation and Testing

We have implemented the migrating-home pro-
tocol by modifying the JIAJIA DSM system [9]
to form the JUMP (JIAJIA Using Migrating-
Home Protocol) system. JIAJIA is a user-level
runtime library built on UNIX. It implements
ScC using the home-based protocol, and it
handles false sharing by the diffing technique.

We run JUMP on a cluster of 8 UltraSPARC
I model 140 machines connected by a 16-port
FORE ATM ASX1000 switch. The port band-
width can achieve 155Mbps. Each workstation
has 64MB of main memory with 8KB page
size, running Sun OS 5.6.

To test the performance of JUMP, we write
four benchmark applications in C, as described
in Table 2. We execute each program with
various problem sizes on 2, 4 and 8 nodes. We
also run the programs on the original JIAJIA
implementation using the same environment.

5 Results and Analyses

This section analyzes the performance of the
migrating-home protocol on the JUMP system
in terms of execution time, network data traffic
and the number of page faults generated.

5.1 Execution Time Analysis

The decrease in execution time in JUMP as
compared with JIAJIA is application-dependent
as shown in Figure 7. Overall, JUMP performs

much better over JIAJIA on most applications.
For ME, JIAJIA runs 10.8-35.5% faster for
problem sizes with n ≤ 2M. When n = 4M,
JUMP runs the program in less than half the
time needed by JIAJIA. JUMP even beats
JIAJIA by running up to 67.5% faster on LU.

In RX, JUMP outperforms JIAJIA steadily
by no more than 9.8%. The result is similar for
MM, in which JUMP is at most 9.0% faster.
The only exception is when JUMP executes
MM with small matrices (n = 64 or 128) using 8
processors, at which JUMP suffers a small
performance degradation of 5% or less.

5.2 Communication Analysis

Table 3 summarizes the number of messages (#
Msgs) sent for each application under JUMP
and JIAJIA, together with the total number of
bytes communicated during the execution
(MBytes) for the 8-processor case. Except for
ME, JUMP sends a larger number of messages
than JIAJIA for most of the data points. How-
ever, these messages are short ones, as JUMP
sends fewer bytes than JIAJIA. Also, for LU
and RX, the difference in the number of
messages sent between JUMP and JIAJIA is
large for small problem sizes. However, this gap
becomes closer or even disappears for larger
problems. This is because we take advantage of
the short migration notices by concatenating
them together, as discussed in Section 3.2.

A third point observed is that the migrating-
home protocol in JUMP sends fewer bytes than
the fixed-home protocol in JIAJIA, especially
on large problem sizes. For example, JUMP
sends 42-66% fewer bytes than JIAJIA for the
ME application. JUMP even achieves a 97%
save for LU on large problem size (n = 1024).
This reduced amount of data communication
accounts for the performance improvement
achieved by JUMP.

Table 2:  Description of the Four Testing Applications

Name Arg. Problem Description
MM n, p Matrix Multiplication of two n × n matrices using p processors
LU n, p LU Factorization on an n×n matrix using p processors
ME n, p Merge Sort on n integers using p processors (merge p sorted lists)
RX n, p Radix Sort on n integers using p processors



Figure 7: Performance Improvement of the Testing Applications
(Note that the bar chart, which shows the execution time, is in log scale.)

Table 3:  Comparison of Communication and Page Fault Statistics between JUMP and JIAJIA (p = 8)

Appl. Size JUMP JIAJIA
Name (n) # Msgs MBytes PF1 PF2 PF3 Total # Msgs MBytes PF1 PF2 PF3 Total
MM 64 696 0.746 12 45 77 134 471 0.715 8 49 73 130

128 1288 0.681 64 0 91 155 455 0.993 8 56 77 141
256 1897 2.838 228 0 392 620 1236 4.031 32 196 358 586
512 3829 11.216 912 0 1568 2480 3402 17.349 128 784 1428 2340

1024 11557 44.731 3648 0 6272 9920 11208 69.315 512 3136 5712 9360
ME 512K 1503 5.073 800 0 608 1408 1645 12.017 128 672 560 1360

1M 2719 10.134 1600 0 1216 2816 3213 24.035 256 1344 1120 2720
2M 5151 20.256 3200 0 2432 5632 6349 48.066 512 2688 2240 5440
4M 10015 40.500 6400 0 4864 11264 17944 118.473 1024 4165 7185 12374

RX 512K 6986 22.350 2123 0 2680 4803 5680 33.641 325 1896 2279 4500
1M 10733 39.010 3952 0 4684 8636 9809 62.911 578 3469 4033 8080
2M 18294 72.479 7593 0 8710 16303 18283 122.147 1081 6598 7626 15305
4M 33610 139.656 14878 0 16790 31668 35336 240.622 2109 12866 14813 29788

LU 64 3665 4.571 2081 0 540 2621 2639 4.267 289 1792 427 2508
128 7307 9.352 8257 0 1106 9363 5237 12.506 1089 7168 875 9132
256 14822 20.021 32769 0 2371 35140 12680 56.263 4113 28656 1889 34658
512 29932 41.345 130945 0 4899 135844 40868 351.686 16353 114592 3903 134848

1024 59921 83.993 523905 0 9956 533861 196488 2597.700 65601 458304 7931 531836

5.3 Page Fault Analysis

The number of page faults is also useful in
explaining the performance improvement of

JUMP. In software DSM, there are 3 types of
page faults as described below:

• PF1: Page faults that can be served by the
local processor, which is the home of the



page. They arise due to violation of access
permission.

• PF2: Page faults that can be served by the
local processor which is not the home of
the page, but has cached a clean copy of
that page to serve the fault.

• PF3: Page faults that have to be served by
the remote processor.

Among the three types of page faults,
serving PF3 is time consuming, as it involves a
pair of messages sending between two process-
ors to serve the page fault. However, serving a
PF2 type fault can be more time-consuming
than PF3 in some cases. This is because the
page may be in the disk cache, and it costs a
long time to bring the page from the disk back
to the physical memory. Moreover, since the
home is not local, the processor making the
page fault must send a diff to the home of the
page at synchronization time. The diff and the
diff grant messages increases the cost of PF2
faults. To improve the performance of DSM,
minimizing the number of PF2 faults is equally
important as that for PF3 faults.

Table 3 shows the number of each type of
page faults occurred in the testing applications
under JUMP and JIAJIA. Applications under
JUMP produce 6-7% more page faults than
JIAJIA. However, JUMP can convert most of
the PF2 faults in JIAJIA to PF1 faults. As the
number of PF2 faults in JIAJIA accounts for
33-86% of the total number of page faults for
the benchmark applications, JUMP reduces the
need to send lengthy diffs significantly. Thus it
improves the overall timing performance.

6 Conclusion

The protocol used in implementing a memory
consistency model is as important as the model
itself. It has a vital effect on the overall DSM
performance. The JIAJIA system uses a fixed-
home protocol to implement scope consistency.
Although it is more eff icient than TreadMark’s
homeless protocol, the concept of a fixed home
for each memory page does not adapt well to
the access patterns of applications. This paper
discussed the new idea of a migrating-home
protocol. In the protocol, the home of each page
can be migrated to another processor when it
accesses the page. We show that the migrating-

home protocol reduces the number of bytes sent
in the cluster. It also saves time in serving page
faults by sending less diffs. The migrating-home
protocol therefore improves the execution time
of DSM applications substantially.
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