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Abstract
Delta Execution is a preemptive and transparent Java thread migration mechanism for supporting load distribution and balancing in a parallel and distributed environment.  The design of Delta Execution allows the execution system to migrate threads of a Java application to different nodes of a cluster to execute them in parallel without adding any new migration instructions to the program.  Its high-level approach identifies and migrates only the machine independent part of a thread’s execution context, thus the implementation requires only manageable software effort and is very portable.
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1 
Introduction

Traditional UNIX-like systems such as Sprite [4] and MOSIX [1] support dynamic load-balancing in a cluster by implementing process migration at the kernel level.  Because the kernels have the best knowledge of all the activities and resources that are distributed around the cluster, they can perform resource management the most effectively.  However, as UNIX was not designed with the idea of process migration in mind, extending them to support migration usually require substantial software effort and the portability of the systems are also compromised [1].  On the contrary, Delta Execution aims at providing a high-level and portable implementation for Java thread migration that does not deal with any low-level issues.  The Delta Execution mechanism identifies and separates the machine independent states from the machine dependent states in the execution context of a running thread.  When a thread migrates, only the machine independent states are migrated in a strategic manner.  The manipulation of any machine dependent states is avoided by leaving them behind at the source node where execution that will involve these machine dependent states will still be performed at the source.  Active execution of the migrated thread will be observed as shuttling back and forth between the source and the destination node.  Because the migrated thread only incrementally advances its state of execution by delta every time the execution control switches between the two nodes, hence the name Delta Execution.  In summary, the characteristics of Delta Execution include:

· Transparent migration – the Delta Execution mechanism is implemented entirely at the virtual machine level which is transparent to a migrating thread; together with a redirection mechanism for forwarding location-dependent operations and a distributed shared-memory subsystem that supports location-independent memory access, migration transparency can be guaranteed.

· Responsive to changes in system load - migration granularity is per bytecode-instruction where a thread can be stopped at any time and be migrated once the execution of the current bytecode instruction is finished.  The system can swiftly response to any changes in system load across the cluster for performing load-balancing.

· Portable and manageable implementation –unlike traditional systems that implement migration at the kernel level, Delta Execution is implemented on top of the kernel which does not involve any low-level details of the operating system or the hardware. This approach provides better portability and the software effort required is more manageable.

· Compatible to existing Java applications – because the migration mechanism does not introduce any new migration-related instructions to a Java program, the implementation therefore offers maximum compatibility to the vast number of existing Java applications.

The rest of the paper is organized as follows.  Section 2 explains how thread migration is conducted.  Section 3 studies the mechanism of Delta Execution in details.  Section 4 analyses the migration latency of the Delta Execution mechanism.  Section 5 compares Delta Execution with other related work. Finally, section 6 concludes the paper.

2
Java Thread Migration

The Delta Execution mechanism is implemented as part of the JESSICA middle-ware [5] for Cluster Computing.  The JESSICA cluster offers a parallel execution environment for multi-threaded Java applications in the form of a distributed virtual machine.  The virtual machine is constituted of a number JESSICA daemons with one daemon process running on each node. Cluster nodes in JESSICA are classified as either console or worker as follows:

· Console Node – A node at which a Java application is initiated is known as the console, which will become the home of that application.  Threads running on the console can be migrated to other worker nodes so as to achieve parallel execution.  The console node is responsible for handling any system service requests made by a migrated thread that are location-dependent.

· Worker Nodes – When an application is instantiated on the console node, the role of other nodes in the JESSICA cluster is to support the console to execute the application to its completion, where they act as the slaves with respect to the console.  They stand by and serve any requests that are forwarded from the console, such as to accept a migrating thread and bind it to the local execution engine.

The primary task for performing thread migration is to capture the execution context of a migrating thread completely at the console node so that the context can be correctly reproduced at the destination worker node.  The set of execution states so reconstructed will be used to instantiate a newly created thread instance, which resumes execution at exactly the same place as where the migrating thread was frozen at the console.  Notice that the migrating thread does not pack up itself and move to the worker node during migration.  Instead, it is split into two cooperating entities, one running at the console, called the master; and the other running at the worker node, called the slave.  The slave thread acts as a migrated image to continue the execution of the original thread, while the master thread is responsible for performing any location-dependent operations on behalf of the slave.  This master-slave design provides a basis for supporting location transparency by redirection.
Observed that the life of an active Java thread begins with the calling of the java.lang.Thread.start() method or the equivalent if this thread is a sub-class of the java.lang.Thread.  The bytecode instructions of this method will be executed by the execution engine, which may further call other methods, and so on.  Finally, the thread terminates when this java.lang.Thread.start() method or the equivalent returns.  In other words, the execution states of a running thread can be represented by a method calling sequence and their respective execution context local to each method.

Here a structure called Java Method Frame (JMF) is defined to help representing the method-invocation sequence of an active thread.  The purpose of JMF is to express the context of a Java method under execution.  A JMF contains:

· a program counter PC pointing to the bytecode that is currently under execution;

· NPC, the location of next bytecode instruction to be executed;

· a stack pointer SP;

· the set of local variables of this method;

· the method execution stack;

· other miscellaneous information such as that  for Java Exception handling.

Notice that information containing in a JMF is architectural neutral.

A Simple Thread Migration Example
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Fig. 1: Factorial.java
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Fig. 2: Disassembled bytecode of the class Factorial
The above Factorial.java example, which recursively calculate the factorial of 10 (Fig. 1, line 06), illustrates how thread migration is carried out and how execution states are captured and transferred based on the JMF structure.  The compiled bytecode instructions are shown in Fig. 2.  The numbers following the line numbers in Fig. 2 represent the corresponding locations of the bytecode instructions to be stored in the program counter (PC).

Consider the console node triggers a migration when the Factorial program has executed a number of iterations, and suppose at this time f() has already recursed three times when the running thread is frozen at PC = 8 of method f() (Fig. 2, line 18).  After the current instruction at PC = 8, i.e. iload_0, has been completed, the execution context of the main thread can be represented pictorially as in Fig. 3.
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Fig. 3: Execution context of thread main after a number of iterations
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Suppose at this moment this main thread migrates, the above five JMFs which constitute the entire execution context of main, are packed and shipped to a worker node.  After the execution context arrives at the destination worker node, they are unpacked and reconstructed, and eventually bound to the execution context of a newly created slave thread.  When the slave thread resumes execution, it continues from the tail-JMF, and updates the value of PC to 9, i.e. iconst_1 (Fig. 2, line 19), according to the content of the NPC; the result is an integer constant 1 being pushed onto the tail-JMF’s method stack.  From this point onwards, the slave thread continues its execution correctly from the point where the master was previously stopped, just as if the thread migration had not taken place.  When the recursive method f() at this level (n = 7) returns, the JMF is popped and the context of the previous JMF (n = 8) is restored.  The method stack now should contain two integer elements: 8, and 5040, i.e. the value of n and the evaluated value of f(7) respectively.  At this point the execution engine will then multiplies the two elements on the method stack together as indicated by PC = 14 (Fig. 2, line 22), and the result f(8) is return to the upper level according to the next instruction ireturn (Fig. 2, line 23).  The slave continues to execute this way until all the JMFs are exhausted; by then it will have completed its task, and at the top of the thread’s runtime stack there will be the result 3628800, i.e. the factorial of 10.

3
Delta Execution

If a thread completes its execution without calling other method except the java.lang.Thread. start(), or the invocations of other methods are performed by directly executing one of the invokevirtual, invokespecial, invoke-static, or the invokeinterface bytecode instructions, then the scheme of using a sequence of JMFs as described in the last section can sufficiently capture and represent the state of this running thread at any point of its execution.  On the other hand, if this thread calls a native method or if the execution engine tries to execute a bytecode instruction that within itself will invoke another method, this will generate machine dependent states where a sequence of JMFs alone cannot sufficiently capture the entire execution context.  This can be illustrated by the following Bar and Foo class as shown in Fig. 4.  Their corresponding disassembled bytecode are shown in Fig. 5 and Fig. 6 respectively.

An Example that illustrates the Delta Execution Mechanism
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Fig. 4: Bar.java and Foo.java

Fig. 5: Disassembled bytecode of the class Bar

In this example, the static block in the class Bar defining the class initialization routine (Fig. 4, line 03), internally denoted as method “<clinit>” (Fig. 5, line 12), is to be executed once when the class is first loaded by the virtual machine.  According to this example, the static block will initialize the class variable count to 100 when Bar is loaded (Fig. 4, line 03).
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Fig. 6: Disassembled bytecode of the class Foo
When the Foo program is executed, the main thread of the virtual machine enters the main() method of the class Foo (Fig. 6, line 08) and executes the first instruction at PC = 0, i.e. new (Fig. 8, line 06). This instruction creates a new object instance of class Bar after a JMF for the Foo.main() method has been pushed onto the runtime thread stack.  At this point, the execution engine lookups and loads the class Bar, as it is given in the argument to the instruction (Fig. 8, line 06).  After the class is loaded, the execution engine invokes the class initialization routine, if there is any.  Finally, the execution engine obtains a free memory block to create a new Bar object.  The C/C++ code segment shown in Fig. 7 summarizes the above actions. It is a simplified implementation for the new bytecode instruction.

Fig. 7: Simplified implementation for the new bytecode instruction in C/C++

When the main thread invokes the “<clinit>” method at line 10 of the instruction_new function in Fig. 7, it will push another JMF onto the runtime thread stack to record the entering of a new method context.  If at this moment the console initiates a migration as the thread executes the first instruction at PC = 0, i.e. bipush (Fig. 5, line 13), the main thread will be frozen after the bipush instruction has been completed successfully. Consequently, the execution context of the thread can be represented by the sequence of JMFs as illustrated in Fig. 8.

Fig. 8: Execution context of thread main after entering the class initializer “<clinit>”
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When the slave thread resumes execution at the destination worker node, it continues within the method context of “<clinit>” at PC = 2, which stores the value 100 found from the top of the method stack to the class variable count and then returns (Fig. 5, line 14).  The JMF of this context is therefore popped from the runtime thread stack, and the method context of the Foo.main() is restored.  Now if we follow exactly the scheme as described in section 2, the execution engine will continue the execution within the method context of Foo.main() and execute the next instruction at PC = 3, i.e. inovkestatic (Fig. 6, line 07).  But this will lead to incorrect result, as the slave thread has “forgotten” to allocate memory for the new Bar object.

Note that if there is no migration, the control flow of the main thread should continue at line 13 of the instruction_new() implementation as shown in Fig. 7, after the “<clinit>” method returns; i.e. to set the needInitialize flag to false, to obtain a memory block from the memory manager, and to push the memory handle onto the method stack (Fig. 7, line 13 to line 19) before returning to the method context of Foo.main() at PC = 3, i.e. invokestatic (Fig. 6, line 07).  In other words, there is certain state information of the execution context that failed to be represented between the two JMFs, as shown in Fig. 9.
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Fig. 9: Revised execution context of thread main after entering the class initializer “<clinit>”

The missing information, including the return address at line 13 of the instruction_new() code in Fig. 7, is in fact stored in the runtime C-stack of the daemon process running at the console, which is implementation and hardware dependent. The C-stack here refers to the runtime execution stack of a UNIX process.  We called it a C-stack to differentiate from the runtime thread stack of the bytecode execution engine.

As the shaded block in Fig. 9 is machine dependent, it cannot be migrated directly. Here we propose an alternative approach to thread migration that is independent from the lower level implementation of the operating system.  Concluding from the two examples discussed above, we can categorize JMFs into two types:

· B Frame – The JMF that is pushed to the runtime thread stack as a result when a method is invoked from within another method.  The invocation is called from within bytecode by the execution of either invokevirtual, invokespecial, invokeinterface, or the  invokestatic instruction.  For example, in the Factorial.java example, the calling of method  f() at PC = 2 of Factorial.main() (Fig. 2, line 02) as well as the recursive invocation in f() itself  at PC = 11 (Fig. 2, line 21) will both push a B frame onto the stack.

· C Frame – The JMF that is pushed to the runtime thread stack when the implementation code of the execution engine or a native method invokes explicitly a method through the vmExecuteJavaMethod() function, such as the one at line 10 of the instruction_new() code in Fig. 7.  It is the machine dependent state introduced by the implementation code before pushing this C frame onto the thread stack that cannot be captured directly.

Consequently, for any thread execution context, the correct representation should be expressed as a sequence of B frames and C frames interleaving between each other, with a set of machine dependent states inserted before each C frame.  Note that every sequence must begin with a C frame, since any thread execution must be initiated by the virtual machine implementation itself (Fig. 10).
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Fig. 10: Revised thread execution context representation, shaded blocks are the sets of machine dependent states not captured by JMFs

Delta Execution

Our approach is to partition a thread execution context into chunks of JMFs, known as delta sets, (Ei (Fig. 11).  Each delta set begins with a C frame and followed by zero or more B frames.  Now, instead of shipping the whole execution context to the destination as done in the traditional way of thread migration, we ship them in an incremental manner, one delta set at a time.  


When the console node performs a migration operation, it marshals and ships the tail delta set in the execution context of the migrating thread.  The slave thread at the destination worker node will bind to this delta set and to continue execution until the JMFs in this set is exhausted.  After which the execution control will switch back to the master thread, to let it finish whatever machine dependent context whose states cannot be shipped to the destination, such as that from line 13 to line 19 in the instruction_new() implementation as shown in Fig. 7.  Immediately after the machine dependent execution is completed, control flow will switch back to the slave with the next delta set so as to continue execution at the worker node.  
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Fig. 11: Delta sets are sent to the slave thread one by one for execution

With this arrangement of Delta Execution, every time the worker node only incrementally advances the execution states of the migrating thread by delta.  Besides, we are able to isolate those non-migratable machine dependent contexts and to have them executed locally at the console, while machine independent contexts are migrated across machines and be executed remotely.

4 
Analysis of Migration Latency

To study the performance of the Delta Execution mechanism, a JESSICA prototype is implemented in a cluster of 12 SUN Ultra-1 workstations interconnected by a 155Mbps ATM switch.  The implementation is based on the KAFFE virtual machine [6] and the Treadmarks package [3] for distributed shared-memory support.  This section examines the migration latency.

Fig. 12 illustrates in details the interactions between the console and the worker node when a thread is migrated from the former to the latter.  It can be seen that the migration latency is the time between the migrating thread is first frozen by the console and when if is restarted later as a slave thread at the destination, i.e. T0 + T1.  Now T0 is the time taken to notify the destination node and to have the destination node prepare itself for the migration; the value of T0 is relatively constant.  T1 is the time taken to marshal a delta set at the console node, to send the marshaled data across the network, and eventually to be de-marshaled at the destination node.  The value of T1 is therefore proportional to the size of the transferring delta set. The migration latencies for different sizes of the delta sets are measured and the result is presented in Fig. 13.
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Fig. 12: Interactions between the console and the worker during migration
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Fig. 13: Graph of migration latency against size of the 1st transmitting delta set
According to the data collected, when the size of delta set is zero, the migration latency is about 24.55 milliseconds (T0).  T0 is the time taken to execute the java.lang.Object.clone() method at the slave as well as that for sending the four handshake messages between the master and the slave, as shown in Fig. 12.  A further break-down of this T0 value reveals that the time required to invoke the java.lang.Object.clone() method is about 17 milliseconds and that for a handshake message to be sent between the master and the slave is about 2 milliseconds.  Now consider the case when a thread is migrated just before it starts executing the first instruction; the delta set contains only one JMF and the corresponding method stack is empty. If there is no local variable defined in the method, the size of this minimal JMF is 208 bytes.  Hence, the minimum migration latency is about 28.12 milliseconds.

It can be seen that the minimum migration latency is dominated by the time for invoking the java.lang.Object.clone() method, which accounts for over 60% of the migration time.  It is relatively expensive for the virtual machine in JESSICA to invoke a method like the java.lang.Object.clone(), when compared to classical migrating mechanisms which execute in native machine code.  It is the intrinsic characteristic of JESSICA that a thread object cannot be duplicated by simply copying its memory content but a particular method has to be called to clone the object.  Although this cloning method is expensive, it is only to be invoked once for migrating a thread, there is no addition overhead in the later part of the Delta Execution process.  Besides, despite of this overhead we are still able to achieve good speedup by migrating threads to different nodes in the cluster for executing them in parallel, as demonstrated in [5].

5
Related Work

MOSIX [1] is one of the landmark systems that supports transparent process migration and follows the monolithic kernel approach.  NOW MOSIX uses the home model whereby user processes are created to run seemingly at the user’s home workstation.  Location transparency is maintained for migrated processes by redirecting any system calls that are location-dependent.  Both MOSIX and JESSICA follow the home model for process and thread migration.  In JESSICA threads appear to be still running at the console node even after migration. On the other hand, because Delta Execution is implemented at the middle-ware level, it enables the migration mechanism to focus only on the machine independent states in a thread execution context, and to leave the remaining machine dependent states untouched.  As a result, the implementation of Delta Execution does not involve any low-level details of the underlying operating system or the hardware.  Consequently, the implementation requires much less effort than that of MOSIX and is more manageable.

Arachne [2] is a portable user-level programming library that supports thread migration over a heterogeneous cluster.  However, migration is not transparent to application programmers as they have to include Arachne migration-related primitives into the code.  It is the programmer’s responsibility to decide when, where, and which to migrate.  In addition, it introduces new keywords to the C++ programming language to facilitate the implementation of thread migration.  Even though the primary objective of Arachne is to support efficient thread migration on a heterogeneous network, it lacks certain features such as thread synchronization that is fundamental to a thread package. Besides, migrated threads cannot share data.  The Delta Execution mechanism enables JESSICA to provide a more flexible, portable, efficient and useable thread package for application programmers than Arachne.  Firstly, migration is entirely transparent to programmers as there is no migration primitive that programmers have to insert into their code.  Secondly, JESSICA supports thread synchron-ization and inter-thread signaling even if the threads are residing on different machines.  Migrated threads can share object of any data types.  Thirdly, JESSICA is more portable as Delta Execution does not introduce any new keyword to the Java programming language.

Java/DSM [7] is a distributed Java Virtual Machine that runs on a cluster of heterogeneous computers. Parallel execution of a multi-threaded application is possible by having multiple threads running on multiple nodes in the cluster.  Both Java/DSM and JESSICA follow the same approach by implementing a distributed virtual machine at the middle-ware level. However, in Java/DSM load distribution is achieved by remote invocations of Java threads alone, while JESSICA supports also transparent thread migration by means of Delta Execution.   Besides, The current Java/DSM prototype focuses mainly on supporting object sharing in a heterogeneous environment, other issues such as migration transparency are not addressed.
6
Conclusion and Future Work

Delta Execution takes a novel approach in dealing with thread migration when compared to traditional approaches like MOSIX [1].  Instead of moving the whole execution context to the destination all at one time, the context is separated into machine dependent and machine independent parts, and only the machine independent states are transported in a regulated manner.  This design imposes no limitation on the type of threads that can migrate, regardless of whether they own location dependent resources or not.  The master-slave model makes the whole system easy to control and monitor.  Moreover, the design also prepares the ground for further development of thread migration in a heterogeneous environment as all the states migrated are hardware independent.  Hence, the Delta Execution approach provides maximum flexibility and portability for thread migration.  This advantage is a direct consequence of using the Java programming language, where the execution by means of a virtual machine provides an extra layer of abstraction.  The approach allows the implementation of Delta Execution to be carried out entirely at the user level, without having to deal with any operating system specific or hardware specific issues.  In addition, Delta Execution needs no insertion of new migration instructions into a Java program, thus enabling JESSICA to provide maximum compatibility to the vast number of existing Java applications.

As discussed in [5], experiments with the current implementation of Delta Execution in JESSICA shown that remote memory accesses made by migrated threads as well as distributed thread synchronization contribute considerable overhead to the execution time of applications.  Our future work will therefore focus on the minimization of these migration overheads.  
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		624		68635		68.635

		624		69777		69.777

		624		73546		73.546

		832		69834		69.834

		832		76741		76.741

		832		77554		77.554

		1248		74069		74.069

		1248		74176		74.176

		1456		120206		120.206

		1456		123517		123.517

		1664		123518		123.518

		1872		118644		118.644

		2080		121115		121.115

		2288		119664		119.664

		2704		122501		122.501

		3120		120665		120.665

		3120		127495		127.495

		3120		127994		127.994

		3952		120753		120.753






