
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds (2011)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.376

SPECIAL ISSUE PAPER

A finite state machine based on topology
coordinates for wrestling games
Edmond S. L. Ho∗ and Taku Komura

Institute of Perception, Action and Behaviour School of Informatics, University of Edinburgh Informatics Forum, 10 Crichton Street,
Edinburgh, UK

ABSTRACT

This paper proposes a new framework to simulate the real-time attack-and-defense interactions by two virtual wrestlers in 3D
computer games. The characters are controlled individually by two different players—one player controls the attacker and
the other controls the defender. A finite state machine of attacks and defenses based on topology coordinates is precomputed
and used to control the virtual wrestlers during the game play. As the states are represented by topology coordinates, which
is an abstract representation for the spatial relationship of the bodies, the players have much more degree of freedom to
control the virtual characters even during attacks and defenses. Experimental results show the methodology can simulate
realistic competitive interactions of wrestling in real time, which is difficult by previous methods. Copyright © 2010 John
Wiley & Sons, Ltd.

KEYWORDS

character animation; motion capture; interactive games

*Correspondence

E. S. L. Ho, Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton
Street, Edinburgh, UK. E-mail: S.L.Ho@sms.ed.ac.uk

1. INTRODUCTION

Wrestling is a major field in 3D computer games. The mo-
tions in wrestling involve close contacts between the charac-
ters such as squeezing and locking. Simulating such motions
is not easy as they involve a great amount of close contacts
and collision avoidance. In fact, in most of the wrestling
games, such motions are designed carefully in advance by
the animators and the game players have little control over
the characters once complex tangling motions start. This
is completely different from real wrestling—wrestlers have
lots of degrees of freedom to escape from the attackers, and
attackers need to carefully select their motions to lock the
defender. Such complex interactions of the wrestlers are
rarely simulated in the existing wrestling games.

In this paper, we make use of the topology coordi-
nates [1] in order to simulate such complex interactions
in real time. A finite state machine of attacks and defenses
based on topology coordinates is precomputed and used to
present the game players the next possible moves for at-
tacking/escaping from the opponent. The player who has
an opportunity to attack is shown the possible actions on
the list of icons. The characters can also be controlled kine-
matically by using inverse kinematics (IK).

Our interface provides large degrees of freedom to the
game players while minimizing the complexity of con-
trol, which can increase the attractiveness of wrestling
games.

2. RELATED WORK

We first briefly review the recent wrestling games and their
interfaces. Next, we review researches of two topics that
are related to character control in wrestling games—real-
time character control and close interactions of multiple
characters.

Wrestling games have been attracting millions of game
players around the world and has become one of the
major categories in computer games. In the old games,
[2,3] the attacks were limited to hits such as punches,
kicks, or chops. Therefore, the users could only repeatedly
press the buttons to give large damage to the opponent
character.

The recent advanced games [4] allow the characters
to conduct complex tangling attacks such as back drops,
rear-choke hold and full nelson attacks. In order to launch
such motions, the user is supposed to press the button at

Copyright © 2010 John Wiley & Sons, Ltd.

Finite state machine for wrestling games E. S. L. Ho and T. Komura

the correct pose and timing, or select the part to attack by a
pointing device.

Motions that involve tangling are usually just replayed
during run-time as real-time editing of such motions can
easily result in collision and penetration of the body seg-
ments. The attractiveness of the games will be greatly en-
hanced if the game players have access to the details of the
tangling motions during the game play.
Real-time character control: Here we review a number of
techniques which are useful for real-time control of the vir-
tual wrestlers. We first review techniques of IK which is
a basic technique to edit character motions, and then their
extensions to handle dynamics and tangling motions.

IK [5--9] is a basic technique that is often used for
real-time control of characters. Methods to control char-
acters of arbitrary morphology [10,11] have also been pro-
posed. IK methods can be divided into (1) CCD-based ap-
proaches, [12] (2) analytical approaches, [13] (3) particle-
based approaches, [10,11] (4) quadratic programming based
approaches [5,6,9], and (5) example-based approaches
[14,15].

Among these approaches, the quadratic programming
based approach has an advantage to simulate wrestling
motions as it can enclose constraints based on dynamics
[16--18] and topological relationships [1] into the solver.
Our approach is built on top of Ho and Komura, [1] which
propose to handle tangling motions by adding constraints
into an optimization-based IK solver.
Multiple Character Interactions: The simulation of inter-
actions between multiple characters has many applica-
tions such as computer games, virtual environments, and
films. Liu et al [19]. simulate the close dense interac-
tions of two characters by repetitively updating the mo-
tion of each character by spacetime constraints. Lee and
Lee [20] simulate the boxing match by using reinforce-
ment learning. Treuille et al [21]. also use reinforcement
learning to simulate the pedestrians avoiding each other.
Shum et al. [22] use min–max search to find the optimal
action in a competitive environment. They also propose a
real-time approach based on an automatically produced fi-
nite state machine [23]. These researches do not handle
very close interactions such as holding or wrestling. Ho
and Komura [24] generate wrestling motions by finding
the topological relationship of characters from the tem-
plate postures and use PD control to simulate movements
where the topological relationship is kept the same. If we
want to simulate a scene where the topological relation-
ship of characters changes in time, we cannot apply such
a method. A method to dynamically update the postures
and the topological relationships is required. Reference
25]Komura::TVCG2009 propose to evaluate the similarity
of character postures based on the topological relationships.
When equivalent postures are found, the postures are lin-
early interpolated at the level of generalized coordinates.
However, no method has enabled game players to interac-
tively change the topological relationship of virtual char-
acters in real time. We propose such an approach in this
paper.

3. OVERVIEW

We first prepare a finite state machine of two characters
wrestling that is based on topology coordinates. The ani-
mator first prepares a number of representative postures of
wrestling attacks by keyframing the characters by topology
coordinates. Using these postures, the system generates a
finite state machine of wrestling. Each node represents a
state of two characters tangled with each other and tran-
sition represents the change in the way the characters are
tangled, which results in either newly forming a tangle be-
tween the body components or desolving existing ones.

During runtime, the topology coordinates of the two vir-
tual wrestlers are computed based on their postures, and the
corresponding node in the finite state machine is found. The
players are then shown the list of possible attacks that they
can launch from the current posture. The user also has a
choice to control the characters directly by IK to get away
from the attacks and holds by the opponent player.

4. METHODOLOGY

We first briefly review the topology coordinates, [1] which
is the basic technique used to control the tangling motions.
Next, how we produce the finite state machine based on the
topology coordinates is explained. Finally, we explain how
the topology coordinates can be applied to the control of
virtual wrestlers in computer games.

4.1. Topology coordinates

Topology coordinates enable characters to tangle their bod-
ies with other characters without conducting global path
planning methods. The topology coordinates are composed
of three attributes, the writhe, center, and density. The first
attribute writhe counts how much the two curves are twist-
ing around each other. Writhe can be calculated by using
Gauss Linking Integral (GLI) [26] by integrating along the
two curves γ1 and γ2 as

GLI(γ1, γ2) = 1

4π

∫
γ1

∫
γ2

dγ1 × dγ2 · (γ1 − γ2)

‖γ1 − γ2‖3 (1)

where × and · are cross product and dot product opera-
tors, respectively. The GLI computes the average number
of crossings when viewing the tangle from all directions.

Curves can twist around each other in various ways. In
order to further specify the status of the two chains, we intro-
duce the other two attributes, center and density. Examples
of changing these attributes for a pair of strands are shown
in Figure 1. The center, which is composed of two scalar
parameters, explains the center location of the twisted area,
relative to each strand. The density, which is a single scalar
parameter, explains how much the twisted area is concen-
trated at one location along the strands. When the density
is zero, the twist is spread out all over the two strands.

Comp. Anim. Virtual Worlds (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

E. S. L. Ho and T. Komura Finite state machine for wrestling games

Figure 1. The three axes in topology space : writhe, center, and
density. The center, which specifies the central location of the
twist relative to each strand, is actually composed of two scalar
parameters, although it is represented by a single axis in this
figure. The density tells which strand is playing the major role to

compose the twist.

When the density value is either very large or very small,
we can say one strand is playing a major role to compose
the twist, as it is twisting around the other strand which is
kept relatively straight (Figure 1). When the density turns
from negative to positive, or vice versa, the strand playing
the major role switches.

4.2. Controlling characters by topology
coordinates

We represent the bone structure of the virtual wrestlers by
a set of line segments. Therefore, now we will mathemat-
ically define the topology coordinates of serial chains. Let
us assume we have two chains S1 and S2, each composed of
n1 and n2 line segments, connected by revolute, universal or
gimbal joints (Figure 2). In this case, we can compute the to-
tal writhe by summing the writhes by each pair of segments:

w = GLI(S1, S2) =
n1∑
i=1

n2∑
j=1

Ti,j (2)

where w represents the writhe, Ti,j is the writhe between
segment i on S1 and j on S2.

Let us define a n1 × n2 matrix T whose (i, j)th element
is Ti,j , and call this the writhe matrix. The writhe matrix
explains how much each pair of segments from S1 and S2

contribute to the total writhe value. Various twists of two se-
rial chains and the corresponding writhe matrices are shown
in Figure 3.

The topology coordinates can be updated by changing
the distribution of the elements in the writhe matrix using
basic operations such as rotation, translation, and scaling.
Rotating the elements results in changing the density. Trans-

Figure 2. Twisting a chain of line segments around each other.

lating the elements results in changing the center. Scaling
the whole matrix results in changing the writhe. Let us de-
fine these operations by R(M, d), Tr(M, c), and S(M, w),
respectively, where M is the input matrix and (d, c, w) are
topology coordinates, each of which representing the den-
sity, center and writhe, respectively.

Rather than directly manipulating the writhe matrix of
the characters, we first compute an ideal, desired writhe
matrix and try to minimize the difference of the character’s
writhe matrix and the desired writhe matrix. The desired
writhe matrix Td that corresponds to topology coordinates
(d, c, w) is computed by sequentially applying R(), Tr() and
S() to a matrix I, which is a n1 × n2 matrix who has values
evenly distributed at the (n2 + 1)/2th column if n2 is odd,
or at both the n2/2 and n2/2 + 1th column if it is even:

T = S

(
Tr

(
R

(
I, d − π

4

)
, c

)
, w

)
(3)

where

I =







0 · · · , 1
n1

, · · · , 0

...

0 · · · , 1
n1

, · · · , 0


 (n2 is odd)




0 · · · , 1
2n1

, 1
2n1

, · · · , 0

...

0 · · · , 1
2n1

, 1
2n1

, · · · , 0


 (n2 is even)

(4)

and π

4 is an offset to adjust the density d due to its definition
[1].

Once the desired writhe matrix Td is computed, the char-
acter is guided to the desired posture by updating the gen-
eralized coordinates so that the writhe matrix T of the char-
acter becomes similar to the desired writhe matrix Td . This
problem is solved by quadratic programming:

min
�q1,�q2,δ

‖�q1‖2 + ‖�q2‖2 + ‖δ‖2 s.t. (5)

�T = ∂T

∂q1
�q1 + ∂T

∂q2
�q2 (6)

|Ti,j + �Ti,j| ≤ σ(1 ≤ i ≤ n1, 1 ≤ j ≤ n2) (7)

T + �T − Td + δ = 0 (8)

r = J1�q1 + J2�q2 (9)

where (q1, q2) are the generalized coordinates of the two
chains, (�q1, �q2) are their updates to be made at this iter-
ation, �T is the update of the writhe matrix, σ is a threshold,
that is set to 0.2 in our experiments to avoid the segments
to approach too close to each other, δ is a vector of slack
parameters introduced to minimize the difference of the de-
sired writhe matrix and that of the controlled characters,
Equation (9) represents the other kinematical constraints
which can be linearized with respect to (�q1, �q2) when
the movement is small, such as the movements of any parts

Comp. Anim. Virtual Worlds (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Finite state machine for wrestling games E. S. L. Ho and T. Komura

Figure 3. Tangles with different density and center (upper), and the distribution of elements with large absolute values in the corre-
sponding writhe matrices (lower). The darkness represents the amplitude of the absolute value.

of the body in Cartesian coordinates or the center of mass.
J1, J2 are the Jacobians of this constraint, and r is the lin-
earized output of this constraint. The updated generalized
coordinates (q1 + �q1, q2 + �q2) correspond to the tar-
get topology coordinate at the next time step, (w + �w,
d + �d, c + �c). By solving Equation (5) at every time
step, we simulate the interactions of two virtual wrestlers.

4.3. Finite state machine for wrestling

In this subsection, we explain how a finite state machine of
two characters wrestling are produced from the keyframe
postures designed using the topology coordinates.

The animator first prepares postures of two characters
wrestling by updating the topology coordinates of the body

segments. Scroll-bars that let the user adjust the writhe,
center and density values are provided to generate differ-
ent configurations. A view of the interface for editing the
postures by the topology coordinates is shown in Figure 4.

Once the postures are designed, we start to produce the
FSM. First, the designed postures are added as new states
of the FSM. The topological status of the designed postures
are evaluated based on the concept of rational tangles [25].
The rational tangles between all the routes that connect the
end effectors are computed. Next, we find all the shortest
paths from the designed postures to the untangled states in
which the two characters simply stand next to each other.
The limbs are untangled one by one, and each of such states
are added into the state machine as well. Let us call these
states intermediate states. Many intermediate states might
be shared between different attacks.

Figure 4. An interface to edit the postures of the wrestling characters by the topology coordinates. The animator specifies the limbs
to be tangled and adjust their topology coordinates by the scroll bar at the right.

Comp. Anim. Virtual Worlds (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

E. S. L. Ho and T. Komura Finite state machine for wrestling games

Finally, the system creates the FSM by connecting the
nodes (postures) with similar topological states. Inspired by
the work in Reference [25], we connect the postures/states
if the absolute differences of the writhe between every pair
of routes are less than a threshold of 0.5. An example fi-
nite state machine of one character attacking another from
behind is shown in Figure 5.

The FSM mode starts only when the characters are close
enough and one of the player launches an attacking action.
When the characters are separate from each other in the be-
ginning, they are not in the state of the FSM. Both characters
freely move around according to the user input until either
of them reach a state the user can launch a new attack. As
shown in Figure 6, the possible choices are shown on the
screen and the user selects one of them by the mouse.

There are also states that the defender can start an
attack—if the player controlling the defender reacts faster
than the player controlling the attacker to launch such an
attack, the status of the fight can be switched. The user who
has selected an action earlier becomes the attacker.

4.4. Real-time control of wrestlers

In this subsection, we explain how to simulate the interac-
tions of two wrestling characters, each controlled by differ-
ent game players. We assume one character is attacking the
other character by moves that involve a lot of tangling.

Let us first give an overview of the computation of the
characters’ motions. The motion of each character is com-
puted sequentially by two different quadratic programming
problems. The attacker’s movement is guided by the topol-
ogy coordinates—once the attack is specified, the attacker
tries to tangle its body with the defender’s body according
to the target configuration. The attack can be switched in
the middle if the player thinks a different attack is more ef-
fective under the current configuration. The defender needs
to escape from the attacks by controlling the body segments

involved in the tangling process. The player uses a pointing
device to move a body segment and the posture of the de-
fender is computed by IK based on quadratic programming.

Now the method to control the attacker is explained. The
attacker’s motion is determined based on the defender’s cur-
rent posture and the target topology coordinates in the next
time step. Let us assume the configurations of the attacker
and defender are represented by q1 and q2, respectively.
Solving Equation (8) is not a good idea to compute the mo-
tion of the attacker, as the updates of the attacker’s move-
ments takes into account the movements of the defender
in the next time step. This makes the defender difficult to
escape from the attacker. Therefore, we solve the following
problem for computing the motion of the attacker:

min
�q1,δ

‖�q1‖2 + ‖δ‖2s.t. (10)

�T = ∂T

∂q1
�q1 (11)

|Ti,j + �Ti,j| ≤ σ(1 ≤ i ≤ n1, 1 ≤ j ≤ n2) (12)

T + �T − Td + δ = 0 (13)

r1 = J1�q1 (14)

where r1 represents the kinematic parameters of the at-
tacker.

This technique adds an effect of physiological delay for
launching a response motion with respect to the defender’s
movements, which increases the realism of the interaction.
It also adds an essence of a game play to the interaction
between the two virtual wrestlers as the attacker may not
be able to achieve the target topology coordinates if the
defender is controlled well.

Next, the defender’s movement is computed by solving
the following IK problem:

min
�q2

‖�q2‖2s.t. (15)

Figure 5. A finite state machine of two people wrestling when one character at the back of the other.

Comp. Anim. Virtual Worlds (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Finite state machine for wrestling games E. S. L. Ho and T. Komura

Figure 6. Once an intermediate state of the FSM is reached, the possible transitions are shown to the user.

�T = ∂T

∂q2
�q2 (16)

|Ti,j + �Ti,j| ≤ σ(1 ≤ i ≤ n1, 1 ≤ j ≤ n2) (17)

r2 = J2�q2 (18)

where r2 represents the kinematic parameters of the de-
fender, based on the input from the pointing device and any
other kinematic constraints. The GLI between every seg-
ment pairs are still considered to avoid penetrations.

The attacker’s motion is computed first by solving Equa-
tion (10) and the attacker’s posture is updated. Then, the

defender’s motion is computed by solving Equation (15).
Once both character’s motion is updated, the time counter
is increased.

The key point of controlling the defender is to move the
body such that it can efficiently escape from the attacks.
Such movements are those which can reduce the writhe
value by little motion. For example, when the attacker starts
to shift to a configuration of a rear-choke hold (Figure 7a),
which is an attack to squeeze the neck from behind, the most
efficient way to escape is to knee down at the last moment,
which requires little movement. On the other hand, if the
attacking player can predict such escaping moves of the
defender and switch to another move that can make use

Figure 7. Various wrestling interactions created by the proposed method.

Comp. Anim. Virtual Worlds (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

E. S. L. Ho and T. Komura Finite state machine for wrestling games

Figure 8. Without controlling the defender (in purple), the attacker (in yellow) can tangle with the defender easily by changing the
topology coordinates.

of such movements, the player can efficiently tangle the
attacker’s body to the defender.

Sometimes the attacker has difficulty to conduct the at-
tack due to the bad posture of the attacker. In order to deal
with such cases, we also allow the attacker to switch to a
control mode similar to the defender—specifying the mo-
tion by IK. In such case, the body is moved such that the
already tangled parts are kept tangled as it is. In order to
increase the DOF of the control, only the writhe constraint
is satisfied but not those of the center and density.

5. EXPERIMENTAL RESULTS

We have simulated a number of interactions between two
virtual wrestlers both controlled by game players. Those in-
clude rear-choke hold (Figure 7a), Full Nelson hold (Figure
7b) and a number of different squeezing motions from the
back. The virtual wrestlers start from separate postures and
the attacker approaches to the defender to tangle its body
with it.

In our demos, we used a human character model of
42 DOF. All DOFs are used when controlling the char-
acters. For the human character model, when one char-
acter is controlled, we can obtain an interactive rate of

40 frames/second when using a Pentium IV 3.2 GHz PC.
When two characters are simultaneously controlled, we can
still obtain a frame rate of 30 frames/second. We use ILOG
CPLEX 9.1 [27] as our quadratic programming solver.

The movement of the attacker is controlled by specifying
the topology coordinates. In the first animation, the attacker
performed an attack by tangling (i) it’s right arm with the
neck of the defender and (ii) it’s left arm with the left arm of
the defender. Without controlling the defender, this attack
can be performed easily by changing the topology coordi-
nates of the attacker as shown in Figure 8.

In the second example, the defender tries to escape from
the attacks shown in Figure 8. In our implementation, the
player can specify kinematic constraints on the defender
by dragging the body segments using a pointing device. In
Figure 9, the player dragged the left hand (colored in red)
of the defender. However, the defender fails to escape from
the attack as it was not controlled quick enough. In Figure
10, the defender escapes from the attack successfully by
moving the torso quickly and vigorously.

The attacker can also switch to another wrestling move
in the middle of the attack. In the third example, the de-
fender escapes from the attack by blocking the right arm of
the attacker in the early stage of the interaction. Then the
attacker switches to another wrestling move by tangling its

Figure 9. The defender (in purple) cannot escape from the attack if the player does not control it quick enough.

Figure 10. The defender (in purple) escapes from the attack.

Comp. Anim. Virtual Worlds (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Finite state machine for wrestling games E. S. L. Ho and T. Komura

Figure 11. The attacker (in yellow) switched the attack in the middle in order to lock the defender (in purple).

right arm with the right arm of the defender and its left arm
with the torso and neck of the defender. Finally the attacker
successfully locks with the defender. The screenshots of this
interaction are shown in Figure 11.

6. DISCUSSIONS AND FUTURE
WORK

The introduction of an FSM in the level of topology coor-
dinates is a new abstraction that increases the degrees of
freedom of the players while keeping the movements of the
characters manageable. In the previous wrestling games,
the movements of the characters are strictly fixed and the
FSM are prepared at the level of actions which results in
monotonic game plays. We further divide the FSM into the
level of topology coordinates which gives freedom to the
players switching to different attacks in the middle while
making use of the already tangled parts. Such an FSM can
be easily handled by topology coordinates and the transition
motion will vary according to the posture of the characters
and the motion of the defender whose body is controlled by
IK. This will make the game more attractive as the move-
ments of the characters differ from time to time. Note that
this can only be done by using topology coordinates as con-
trolling wrestling characters at the level of joint angles can
easily cause a lot of collisions and penetrations of the body
components.

By computing the movements of the two characters by
two independent quadratic programming problems, we can
increase the reality of the interactions and the essence of
the game play. Our experimental results show that the ap-
plication of topology coordinates greatly increases the at-

tractiveness of wrestling games from the following view
points:

(1) The players, especially the defender has great access
to the kinematics of the virtual wrestlers which in-
creases the variety of movements.

(2) Although the kinematics are controlled interactively,
the topology coordinates automatically guide the
characters to avoid collisions and penetrations.

The methodology is not limited to wrestling games—it
can be applied to other games that involve close interactions
such as dancing. For examples, we can produce an FSM of
two dancing characters and make use of it to let a real dancer
wearing a motion capture system to dance with a virtual
partner who reacts to the movements of the real dancer. The
FSM can be used to evaluate the current state of the dance
and predict the possible moves in the future.

In the future, we would like to conduct a user study to ex-
amine our user interface and seek for better ways to control
the characters.

REFERENCES

1. Ho ESL, Komura T. Character motion synthesis by
topology coordinates. Computer Graphics Forum 2009;
28(2): 299–308.

2. Nintendo Co. Ltd. Pro Wrestling, 1986.
3. Sculptured Software Inc. WWF Super WrestleMania,

1992.
4. THQ Inc. WWE: Smackdown vs Raw. Available at:

http://www.smackdownvsraw.com

Comp. Anim. Virtual Worlds (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

E. S. L. Ho and T. Komura Finite state machine for wrestling games

5. Whitney DE. Resolved motion rate control of manipula-
tors and human prostheses. IEEE Transactions on Man-

Machine Systems 1969; 10: 47–53.
6. Nakamura Y, Hanafusa H. Inverse kinematics solutions

with singularity robustness for robot manipulator con-
trol. Journal of Dynamic Systems, Measurement, and

Control 1986; 108: 163–171.
7. Phillips CB, Zhao J, Badler NI. Interactive real-time

articulated figure manipulation using multiple kine-
matic constraints. Computer Graphics 1990; 24(2):
245–250.

8. Zhao J, Badler NI. Inverse kinematics positioning using
nonlinear programming for highly articulated figures.
ACM Transactions on Graphics 1994; 13(4): 313–336.

9. Yamane K, Nakamura Y. Natural motion animation
through constraining and deconstraining at will. IEEE

Transactions on Visualization and Computer Graphics

2003; 9(3): 352–360.
10. Jakobsen T. Advanced character physics. In Game De-

velopers Conference Proceedings, 2001; 383–401.
11. Hecker C, Raabe B, Enslow RW, DeWeese J, Maynard J,

van Prooijen K. Real-time motion retargeting to highly
varied user-created morphologies. ACM Transactions on

Graphics 2008; 27(3): 1–11.
12. Kulpa R, Multon F, Arnaldi B. Morphology-independent

representation of motions for interactive human-like an-
imation. Computer Graphics Forum 2005; 24(3): 343–
351.

13. Lee J, Shin SY. A hierarchical approach to interactive
motion editing for human-like figures. Proceedings of

SIGGRAPH’99, 1999; 39–48.
14. Rose CF, Peter-pike I, Sloan J, Cohen MF. Artist-directed

inverse-kinematics using radial basis function interpola-
tion. Computer Graphics Forum 2001; 20: 239–250.

15. Kovar L, Gleicher M. Automated extraction and param-
eterization of motions in large data sets. ACM Transac-

tions on Graphics 2004; 23(3): 559–568.
16. Yamane K, Nakamura Y. Dynamics filter—concept and

implementation of on-line motion generator for human
figures. Proceedings of IEEE International Conference

on Robotics and Automation, 2000; 688–694.
17. Kagami S, Kanehiro F, Tamiya Y, Inaba M, Inoue H.

Autobalancer: an online dynamic balance compensation
scheme for humanoid robots. In Algorithmic and Com-

putational Robotics: Proceedings of the Fourth Work-

shop on Algorithmic Foundations of Robotics, DonaldK
BR, Lynch K, Rus D (eds), 2001; 329–340.

18. Shin HJ, Kovar L, Gleicher M. Physical touch-up of hu-
man motions. In Proceedings of the 11th Pacific Con-

ference on Computer Graphics and Applications, 2003;
194–203.

19. Liu CK, Hertzmann A, Popović Z. Composition of
complex optimal multi-character motions. ACM SIG-

GRAPH/Eurographics Symposium on Computer Anima-

tion, 2006; 215–222.
20. Lee J, Lee KH. Precomputing avatar behavior from

human motion data. Proceedings of 2004 ACM SIG-

GRAPH/Eurographics Symposium on Computer Anima-

tion, 2004; 79–87.
21. Treuille A, Lee Y, Popovic’ Z. Near-optimal character

animation with continuous control. ACM Transactions

on Graphics 2007; 26(3): 7:1–7:7.
22. Shum HPH, Komura T, Yamazaki S. Simulating com-

petitive interactions using singly captured motions. Pro-

ceedings of ACM Virtual Reality Software Technology

2007, 2007; 65–72.
23. Shum HPH, Komura T, Yamazaki S. Simulating in-

teractions of avatars in high dimensional state space.
ACM SIGGRAPH Symposium on Interactive 3D Graph-

ics (i3D) 2008, 2008; 131–138.
24. Ho ESL, Komura T. Wrestle alone: creating tangled mo-

tions of multiple avatars from individually captured mo-
tions. In Proceedings of Pacific Graphics 2007, 2007;
427–430.

25. Ho ESL, Komura T. Indexing and retrieving motions of
characters in close contact. IEEE Transactions on Visu-

alization and Computer Graphics 2009; 15(3): 481–492.
26. Pohl WF. The self-linking number of a closed space

curve. Journal of Mathematics and Mechanics 1968; 17:
975–985.

27. ILOG Inc. ILOG CPLEX 9.1 User’s and Reference Man-

ual, 2005.

AUTHORS’ BIOGRAPHIES

Edmond S. Ho received the BSc de-
gree (first-class honors) in Computer
Science in 2003 from the Hong Kong
Baptist University, and the MPhil de-
gree in 2006 from the City University
of Hong Kong. He is currently a PhD
student in the School of Informatics,
University of Edinburgh. His research
interests include physically based ani-

mation, and human motions analysis and synthesis.

Taku Komura is currently a Lecturer
in the School of Informatics at Univer-
sity of Edinburgh. He received his PhD
(2000), MSc (1997), and BSc (1995) in
Information Science from the Univer-
sity of Tokyo. His research interests in-
clude human motion analysis and syn-
thesis, physically based animation, and
real-time computer graphics.

Comp. Anim. Virtual Worlds (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

