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Figure 1: We present NFR, an end-to-end deep-learning approach for automatic rigging and retargeting of 3D models of human
faces in the wild. Top: Given an unrigged facial mesh with an unknown expression and identity in an arbitrary triangulation
(yellow), NFR can transfer the expression to unrigged facial meshes with arbitrary triangulations (cyan). Bottom: NFR provides
an interpretable latent space for user-friendly editing of the retargeted meshes.

ABSTRACT
We propose an end-to-end deep-learning approach for automatic
rigging and retargeting of 3Dmodels of human faces in thewild. Our
approach, called Neural Face Rigging (NFR), holds three key prop-
erties: (i) NFR’s expression space maintains human-interpretable
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editing parameters for artistic controls; (ii) NFR is readily appli-
cable to arbitrary facial meshes with different connectivity and
expressions; (iii) NFR can encode and produce fine-grained details
of complex expressions performed by arbitrary subjects. To the
best of our knowledge, NFR is the first approach to provide realistic
and controllable deformations of in-the-wild facial meshes, without
the manual creation of blendshapes or correspondence. We design
a deformation autoencoder and train it through a multi-dataset
training scheme, which benefits from the unique advantages of two
data sources: a linear 3DMM with interpretable control parameters
as in FACS and 4D captures of real faces with fine-grained details.
Through various experiments, we show NFR’s ability to automat-
ically produce realistic and accurate facial deformations across a
wide range of existing datasets and noisy facial scans in-the-wild,
while providing artist-controlled, editable parameters.
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1 INTRODUCTION
This paper is concernedwith leveraging deep learning for automatic
rigging and retargeting of 3D meshes of human faces in the wild,
supporting both raw noisy scans of real faces, as well as clean,
artist-authored meshes, while exposing interpretable expression
parameters which an artist can use to intuitively bring any facial
mesh to a desired expression.

Faces are a critical component of any human-centric tasks, with
facial movements being of significant interest in many fields of
computer science including graphics, computer vision, and HCI.
Many computational representations of 3D human faces have been
proposed, with early formulations such as Facial Action Coding
System (FACS) [Ekman and Friesen 1978] and PCA-based learned
linear 3D Morphable Models (3DMM) [Blanz and Vetter 1999]. How-
ever, these rigged models can only operate on faces with known
geometry and triangulation (where a consistent correspondence
is provided), and cannot be automatically extended to novel face
models with arbitrary triangulations.

Thus, the goal of this paper is to provide a method to understand
and control real-world facial data with the following properties:

• The deformation can be controlled via interpretable parame-
ters, enabling users to intuitively control expressions.

• The method should be applicable to arbitrary human faces
of unknown subjects and expressions. It should generalize
to arbitrary triangulations, and be robust to both noise and
missing areas on the 3D face.

• The method should produce highly-accurate expressions. It
should accurately encode and decode the fine-grained details
of nonlinear deformations on real human faces.

We address these challenges by developing an autoencoder for
facial expressions. Specifically, we design an encoder to transform
a given face mesh into a latent code representing its expression. We
then employ recent advancements in deep learning of 3D deforma-
tions [Aigerman et al. 2022] to construct a decoder that takes an
expression code and alters the face to the desired expression. To
ensure the capture of all facial features and expression nuances, we
create an encoder that combines image encoding of input face ren-
derings with a state-of-the-art mesh encoder [Sharp et al. 2022]. Our
encoder features two branches—one for input expression and one
for facial identity—and incorporates a training setup that separates
identity from expression.

Lastly, we aim to learn the interpretable latent space, i.e., that each
entry in the code can be interpreted as a parameter corresponding to
a specific, meaningful localized activation on the human face. This
goal faces a significant challenge posed by the lack of data: existing
datasets comprise real human scans which are not directly coupled
with expression parameters, hencewe need to devise an architecture
and a training scheme that will disentangle interpretable parameters
from human scans with unknown expressions.

Specifically, we use two different complementary datasets to
achieve our goal: 1) Multiface [Wuu et al. 2022] which is rich in
natural and identity-specific deformations, but lacks interpretable
expressions; 2) ICT FaceKit [Li et al. 2020], which has interpretable
parameters as in FACS, however, the expressions are synthetic and
less realistic. We then use these two datasets in a training scheme
of our expression autoencoder. We train the system such that for
the ICT dataset the latent code matches the ICT deformations pa-
rameters, while for the Multiface dataset, the rich and expressive
details of the faces are reconstructed. This joint training empirically
leads to a latent space that directly matches the FACS parameters,
while further representing the rich deformations in the Multiface
dataset. Our framework thus couples the interpretable FACS pa-
rameters with the capability to produce realistic deformations as in
the Multiface dataset.

We show through experiments that our framework is able to
perform various tasks, such as deformation transfer from unknown
faces to other faces, as well as user editing of facial expressions. We
show our network carries its abilities across various models, from
artist-authored artistic meshes up to noisy, partial face scans in the
wild. Our system significantly improves the efficiency of the human
facial animation pipeline, by-passing heavy data pre-processing
such as facial alignment, remeshing, and manual rigging.

2 RELATEDWORKS
In this section, we review techniques about facial deformation
models and deformation transfer.

2.1 Facial Deformation Models
Anatomy-inspired models. Facial Action Coding System (FACS)

[Ekman and Friesen 1978] defines facial movements as the com-
bination of muscle activations, or Action Units (AUs). Variants of
FACS have been adopted in graphics and animation for their in-
tuitive artistic controls, typically implemented with blendshape
deformers [Lewis et al. 2014]. Such FACS models can be viewed as
3D Morphable Models (3DMM) [Blanz and Vetter 1999] with hand-
crafted basis using the domain knowledge of the human anatomy.
This in turn means FACS-based 3DMMs require manual sculpting
of many shapes. The inverse rig problem (a.k.a. retargeting in the
context of facial animation) which solves the optimal 3DMM pa-
rameters fitting to target shapes is also not trivial for conventional
FACS-based models [Cetinaslan and Orvalho 2020a,b; Lewis and
Anjyo 2010; Seol et al. 2011].

Several recent studies learn compact and sparse neural represen-
tations from FACS models. Bailey et al. [2020] replaces film-quality
animation rigs with a learned deep model. Vesdapunt et al. [2020]
propose a person-specific joint-based neural skinning model with
highly compact and sparse latent space. Choi et al. [2022] design
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an intuitive interface for controlling character expressions through
curves drawn on the face along facial muscle structures. Although
these models preserve intuitive deformation controls, they are
subject-specific, i.e., building these models for a new character
requires starting from scratch. Our goal is to maintain the intuition
of FACS but learn subject-specific rigging and retargeting from data
with minimal manual labor.

Data-driven models. To avoid the ad-hoc manual sculpting of
3DMM basis, learning linear 3DMMs from face scans is a popular
choice [Blanz and Vetter 1999; Brunton et al. 2014; Choe and Ko
2006; Choe et al. 2001; Huber et al. 2016; Li et al. 2017; Paysan et al.
2009; Tewari et al. 2017; Wu et al. 2016]. The readers are referred
to [Egger et al. 2020] for a thorough survey of 3DMM related meth-
ods. Limited by the linear nature, these models struggle to produce
highly variant and complex facial expressions. Additionally, the
PCA bases fail to provide interpretable and sparse controllers.

Mesh-based neural networks are proposed to learn more expres-
sive facial representations than linear 3DMMs. Monti et al. [2017]
propose a unified framework to operate on 3D mesh local geome-
tries. Ranjan et al. [2018] apply spectral convolutions on 3D meshes
and uses hierarchical sampling to capture local and global features.
Verma et al. [2018] enable the model to dynamically learn the cor-
respondence between the data during training. Gong et al. [2019]
propose spiral convolution to retrieve information on triangle mesh
neighborhood. Bouritsas et al. [2019] follow a similar approach to
directly processing vertex offsets and achieves better results on
face representation than 3DMM. Song et al. [2020] propose to learn
the facial model in the differential subspace. Zhou et al. [2020]
generalize the 3D mesh autoencoder to train on tetrahedra and
non-manifold meshes. Because these methods depend on specific
mesh templates, they fail to apply to meshes with different repre-
sentations.

Several recent works target triangulation agnosticism. Chandran
et al. [2022b] utilize a transformer architecture and positional en-
coding to align input meshes to a canonical space. While supporting
different triangulations, correspondence is required if users want
to apply their model to unseen facial meshes. Yang et al. [2022]
propose a physically-based implicit model to control soft bodies
like human faces, which supports different mesh resolutions of the
same identity.

In summary, meshes from one face dataset/model cannot be
repurposed for other datasets/models without going through in-
tensive processing steps using non-rigid registration guided by
manual landmarks to take the dense correspondence [Li et al. 2020].
Our method removes this burden by training on multiple datasets
with different representations, enabling application to diverse facial
meshes.

2.2 Deformation Transfer
Deformation Transfer is a retargeting technique that directly works
on meshes. Sumner and Popović [2004] transfer the animation by
mapping the deformation gradients from the source to the target.
Li et al. [2010] propose to build a target blendshape model by com-
bining existing rigging prior and a few target example expressions.
These methods require dense correspondence of the source-target
pair.

Neural Deformation Transfer. The investigation of object defor-
mation through neural networks [Gao et al. 2018] have been ex-
tensively explored. A comprehensive overview can be found in the
survey by [Roberts et al. 2021]. Tan et al. [2018] establish a mesh
VAE for learning deformation spaces of a specifically given mesh.
Gao et al. [2018] establish automatic deformation transfer between
two mesh datasets, which does not require explicit correspondence
between the pair of meshes. However, these methods assume the
input mesh structures are consistent: Mesh VAEs cannot aggregate
information from multiple datasets where the connectivities of the
meshes are different. Retraining is required for transferring the
deformation between new mesh pairs.

Certain facial models [Chandran et al. 2020, 2022a; Jiang et al.
2019] disentangle identity and expression spaces, simplifying defor-
mation transfer within the identity space. Still, these models do not
accommodate mesh templates divergent from the training set, pre-
cluding transfer to or from custom meshes. Moser et al. [2021] sug-
gest transferring animations between rendered videos and 3D char-
acters via an image-to-image model, but this approach is character-
specific and sacrifices deformation interpretability with PCA bases.
Notably, none of these methods addresses the primary objective
of this paper: integrating the neural deformation space with inter-
pretable parameters to facilitate fine-grained human control over
deformation while accommodating in-the-wild facial meshes.

3 METHOD
In this section, we first give an overview of the NFR framework.
Then we explain how to leverage existing face datasets and 3DMMs
to train a network that is both interpretable and generalizable to
meshes with various shapes and triangulations.

3.1 Architecture
In essence, the architecture of NFR can be described as that of an
autoencoder (Fig. 2). Specifically, given a neutral identity mesh
𝑀𝑖 to be deformed to an expression, and an expression mesh 𝑀𝑒

representing the desired expressions, the expression encoder first
maps𝑀𝑒 ’s deformation into a FACS-like latent expression code 𝑧𝑒 .
Similarly, the identity encoder maps 𝑀𝑖 into an identity code 𝑧𝑖 .
Based on 𝑧𝑒 and 𝑧𝑖 , the decoder deforms𝑀𝑖 to𝑀∗

𝑒 to approximate
the expression mesh as best as possible 𝑀∗

𝑒 ≈ 𝑀𝑒 . The trained
deformation decoder thus acts as a high-fidelity facial rig applicable
to any facial mesh, with human-friendly controls (its FACS-like
latent space). The end-to-end pipeline allows NFR to automatically
transfer facial expressions to different identities while maintaining
interpretability. To accomplish this, we leverage the recent advances
in triangulation-agnostic neural geometry learning. Namely, we use
a combination of image CNN’s applied to renderings, along with
DiffusionNet (DN) [Sharp et al. 2022] to build encoders to extract 3D
shape features, and use Neural Jacobian Fields (NJF) [Aigerman et al.
2022] as a decoder to produce deformations of the facial meshes.

Identity Encoder. We first feed a front-view rendering of 𝑀𝑖

through𝐶𝑁𝑁 , a plain 2D CNN, to receive a code 𝑐𝑖 ∈ R128. This 𝑐𝑖
is then fed into 𝐷𝑁𝑖 , a DiffusionNet-based encoder. DiffusionNet
is applied on Per-vertex features, which is the local shape features
of𝑀𝑖 , namely the concatenation of the vertex coordinates 𝑣𝑖 and
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Figure 2: Overview. Given an unrigged facial mesh with an unknown expression and identity in an arbitrary triangulation
(yellow) and another unrigged neutral facial mesh with the target identity in an arbitrary triangulation (cyan), NFR extracts an
expression code 𝑧𝑒 from the first mesh, and an identity code 𝑧𝑖 in the second mesh, and transfer the expression to the target
identity with non-linear deformations as in real human faces. A part of 𝑧𝑒 , denoted as 𝑧𝐹𝐴𝐶𝑆 , follows the interpretable rigging
parameters, allowing NFR to behave as an artist-friendly auto-rigger and retargeter.

vertex normals 𝑛𝑖 . Intuitively, combining the 2D CNN and the Per-
vertex features enables 𝐷𝑁𝑖 to capture subtle facial features. 𝐷𝑁𝑖

receives the neutral identity as inputs, and outputs an identity la-
tent code 𝑧𝑖 ∈ R100, which is the weighted means of the per-vertex
output.

Expression Encoder. Similarly, for the expression encoder, the
rendering of𝑀𝑒 is fed into𝐶𝑁𝑁 to produce a code 𝑐𝑒 ∈ R128, which
is concantenated with the Per-vertex features, (𝑣𝑒 , 𝑛𝑒 ) to be fed to a
DiffusionNet-based encoder 𝐷𝑁𝑒 . In contrast to 𝐷𝑁𝑖 , 𝐷𝑁𝑒 receives
a face mesh with an expression, and outputs a predicted expression
code 𝑧𝑒 ∈ R128 whose elements are trained to be control parameters
that are interpretable. During training, the first 53 dimensions of 𝑧𝑒
are regularized to mimic the ARKit-compatible FACS. We denote
them as 𝑧𝐹𝐴𝐶𝑆 . The remaining part of 𝑧𝑒 , denoted as 𝑧𝑒𝑥𝑡 , is learned
from the data. This explicit decoupling is critical for NFR to learn
realistic expressions from real scans while maintaining maximum
interpretability for editing.

Decoder. We adopt NJF as the decoder, where the core is a multi-
layer perception (MLP). The MLP takes Per-triangle features, i.e.
triangle centers 𝑓 𝑐

𝑖
and normals 𝑓 𝑛

𝑖
of the identity mesh 𝑀𝑖 , the

expression code 𝑧𝑒 , the identity code 𝑧𝑖 and the shape code of the
identity mesh 𝑐𝑖 as the input, and outputs the deformation Jacobian
𝑔∗ ∈ R3×3 for each triangle.

3.2 Datasets
The crux of our approach lies in the simultaneous training of
both actual facial expressions from scanned faces and computer-
generated expressions created through the manipulation of para-
metric controls on rigged meshes. As a result of this strategy, our
neural method is capable of generating highly realistic expressions
for these parameterized controls. Hence, we leverage two types of
data: synthetic data and real scans.

Synthetic data. ICT FaceKit (ICT) [Li et al. 2020] is a linear 3DMM
for facial expressions. It has 153 control parameters: a 100-dimensional
PCA-based identity space, and a 53-dimensional FACS-inspired
hand-crafted expression rig. This FACS model is compatible with
the Apple ARKit blendshape model 1 which allows us to collect data
with plausible AU activations with ARKit face tracking. These AUs
have pre-defined semantics, e.g, the first parameter, which is called
’browInnerUp_L’, corresponds to lifting the left inner eyebrow. We
adopt a template of ICT that has 3,694 vertices and 7,007 triangles
after the mesh standardization (Sec. 3.3).

We generate two synthetic datasets with ICT FaceKit

• ICT-Random-AU. We sample eight random identities and
5,819 random AUs per identity. ICT-Random-AU thus con-
tains 41,322 samples. We select the first six identities as the
training set, one as validation, and one as testing.

1https://developer.apple.com/documentation/arkit/arfaceanchor/blendshapelocation
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• ICT-Real-AU. We sample 22 random identities from ICT and
1,630 frames from ARKit face tracking of our own perfor-
mances to capture plausible AU activations. We perform an
8:1:1 split on the frames. ICT-Real-AU thus contains 32,600
training frames, 3260 validation frames, and 3260 test frames.

Real Scans. Multiface [Wuu et al. 2022] is a large facial dataset
with fine-grained details from 4D scans. It contains 13 different
identities. Each subject is captured by a multi-camera setup at 30
FPS while reading a script designed to cover over a hundred facial
expressions. We use the same train/test split as in [Wuu et al. 2022]
while omitting expressions that are too close to the neutral face
from the training set. The training split contains 28,991 meshes
and the testing split contains 13,610 meshes. Each mesh has 5,385
vertices and 10,581 faces after applying the mesh standardization.

3.3 Data Augmentation and Standardization
Augmentation. In-the-wild facial meshes vary in many ways:

some have no necks, some have no back of the head, and some have
bad geometry regions and holes. We conduct two types of data
augmentation to adjust to these scenarios. (i) randomly shift the
input off the center and scale independently along the 𝑥,𝑦, and 𝑧
axis, and applymasks that remove parts of the face. (ii) randomly cut
holes on the input mesh to provide geometrical variance. We will
show in Sec.4.7 this data augmentation is crucial for generalizing
to in-the-wild inputs.

Standardization. Facial datasets have different ways of modeling
the internal structures of human faces, most notably eye sockets and
the oral cavity. E.g. ICT has realistic eye sockets, whereasMultiface
covers up eye openings with meshes. Therefore, we cut out the eye
and mouth internals from mesh templates to standardize.

3.4 Multi-dataset training
We introduce a multi-dataset training scheme to aggregate infor-
mation from the synthetic data and real scans. We first train on
data generated from ICT FaceKit to initialize our model to imitate a
linear 3DMM, then we further train on a mix of real scans from the
Multiface dataset and synthetic data.

Decoder Training. Throughout the training, we use the same loss
on the decoder, which contains a vertex 𝐿2 loss: 𝐿𝑣 = | |𝑣𝑒 − 𝑣𝑒∗ | |2,
a Jacobian loss 𝐿𝑔 = | |𝑔 − 𝑔∗ | |2 and a normal vector loss 𝐿𝑛 =

| |𝑛𝑒 − 𝑛∗𝑒 | |2. Here 𝑔 is the ground truth deformation Jacobian from
𝑀𝑖 to 𝑀𝑒 . 𝑣∗𝑒 , 𝑛∗𝑒 , 𝑔∗ are the vertex positions, vertex normals, and
deformation Jacobians of the output deformed mesh 𝑀∗

𝑒 . Given
the weights of three loss terms 𝜆𝑣 , 𝜆𝑔 and 𝜆𝑛 , the total loss of the
decoder is defined as:

𝐿𝑑𝑒𝑐 = 𝜆𝑣𝐿𝑣 + 𝜆𝑔𝐿𝑔 + 𝜆𝑛𝐿𝑛 . (1)

Training on ICT FaceKit. Wefirst train themodel with the two ICT
datasets and explicitly supervise 𝑧𝐹𝐴𝐶𝑆 with an 𝐿2 loss to reproduce
the same expression code as ICT. The remaining latent expression
code, 𝑧𝑒𝑥𝑡 , is forced to be zero. We warm up the decoder by feeding
the ground truth 𝑧𝑒 to the MLP. The model is thus initialized to
imitate a linear 3DMM. We define the output expression code as

𝑧∗𝑒 = [𝑧∗
𝐹𝐴𝐶𝑆

, 𝑧∗𝑒𝑥𝑡 ]. The encoder loss is defined as:

𝐿𝑒𝑛𝑐 = | |𝑧𝐹𝐴𝐶𝑆 − 𝑧∗𝐹𝐴𝐶𝑆 | |
2 + ||𝑧∗𝑒𝑥𝑡 | |2 . (2)

The total loss is a weighted sum of 𝐿𝑒𝑛𝑐 and 𝐿𝑑𝑒𝑐 : 𝐿 = 𝜆𝑒𝐿𝑒𝑛𝑐 +𝐿𝑑𝑒𝑐 .

Training onMultiface and ICT FaceKit. Second, we trainwithMul-
tiface to strengthen the network’s ability to represent fine-grained
expressions that out-performs linear 3DMM. The challenge is that
Multiface does not have ground truth latent expression parameters.
To maintain an interpretable latent space, we rely on the fact that
NFR is correctly initialized to form a FACS-like latent space. We
keep a part of the batch from ICT-Real-AU with direct latent super-
vision to maintain this interpretability. ICT-Random-AU is not used
here since this randomly generated dataset may contain unrealistic
expressions. On Multiface we simply regularize the latent space if
the parameters go out of the range [0, 1] to follow the convention
of FACS AUs:

𝐿𝑟 (𝑥) =


−𝑥, 𝑥 < 0
0, 0 ≤ 𝑥 ≤ 1

𝑥 − 1. 𝑥 > 1
(3)

The loss of the encoder at this stage becomes:

𝐿𝑒𝑛𝑐 =

{
| |𝑧𝐹𝐴𝐶𝑆 − 𝑧∗𝐹𝐴𝐶𝑆 | |

2 + ||𝑧∗𝑒𝑥𝑡 | |2, ICT-Real-AU

𝐿𝑟 (𝑧∗𝑒 ). Multiface
(4)

After these two stages of training, ourmodel can retarget realistic
expressions to in-the-wild meshes and preserves an interpretable
latent expression space for manipulation.

4 EXPERIMENTS
In this section, a series of experiments are conducted to showcase
the capabilities of NFR. Sec. 4.1 evaluates the encoder’s effectiveness
by comparing inverse-rigging outcomes for ICT-Real-AU against
Seol [Seol et al. 2011]. Sec. 4.2 benchmarks the expression qual-
ity of NFR against template-specific mesh reconstruction methods.
Sec. 4.3 confirms the triangulation-agnostic property through in-
verse rigging experiments on ICT-Real-AU with a different mesh
template. Sec. 4.4 demonstrates NFR’s practicality by retargeting
expressions to in-the-wild meshes of varying connectivity and reso-
lutions. Sec. 4.5 further illustrates the model’s practicality, plotting
the activations of each position in 𝑧𝐹𝐴𝐶𝑆 to reveal a semantically
related latent expression space. The ease of use is demonstrated
through two sequences of editing processes applied to in-the-wild
expressions. Sec. 4.6 qualitatively exhibits that sampling in the
learned expression space produces plausible expressions, surpass-
ing a basic 3DMM. Lastly, Sec. 4.7 presents various ablation studies
to substantiate the key design choices of the model and training
scheme. The readers are referred to the supplementary video for
the details.

We use the per-vertex Euclidean distance as the error metric and
additionally report the 90% percentile value to emphasize the bad
cases.

4.1 Inverse Rigging
Inverse rigging is a task to find optimal rigging parameters fitting
the resulting deformation to a given geometry. Our encoder behaves
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Table 1: Inverse Rigging on ICT-Real-AU . Our encoder, eval-
uated both via ICT rig and NFR, outperform Seol [Seol et al.
2011] by a large margin.

Method Mean (mm) Median (mm) 90% (mm)

Seol [Seol et al. 2011] 0.688 ± 0.979 0.369 1.640
Ours (ICT rig) 0.378 ± 0.467 0.225 0.860
Ours (NFR) 0.443 ± 0.454 0.307 0.920

Figure 3: Inverse Rigging. Top: The inputMultiface expres-
sions. Bottom: Applying the latent 𝑧𝑒,𝐹𝐴𝐶𝑆 to the ICT rig. All
deformations on the eyebrows, eyes, and mouth are solved
correctly.

as a triangulation-agnostic inverse rig predictor extracting FACS
AUs from a facial mesh with unknown, entangled AU activations.

Table. 1 compares the inverse rigging results of our method
against Seol [Seol et al. 2011], an iterative optimization-basedmethod
that relies on the ground truth rigging model. Here, Ours (ICT rig)
represents the deformation from ICT’s linear 3DMM driven by our
inverse-rigged parameters. Ours (NFR) represents the deformation
output of our decoder. In this complex setting where many AUs
are activated simultaneously, our method outperforms Seol by a
large margin, where the performance of Ours (ICT rig) validates
the effectiveness of the expression encoder, and that of Ours (NFR)
indicates that the rigging space of our model is close to the ICT rig.

In Fig. 3 we apply 𝑧𝐹𝐴𝐶𝑆 of Multiface on the ICT rig. Though
limited by the expression ability of the linear rig, the expressions
on the ICT rig are still semantically close to that of Multiface. This
validates the inverse rigging ability of NFR on in-the-wild expres-
sions. Note that while Ours (NFR) performs slightly worse on the
synthetic dataset ICT-Real-AU than Ours (ICT rig), NFR’s major ad-
vantage is to work on in-the-wild data with arbitrary triangulation
and high-frequency details.

4.2 Expression Quality
In this section, we assess the ability of our model to generate pre-
cise geometric details. The expression encoder is employed to map

Table 2: Quantitative reconstruction results on Multiface.
NFR outperforms COMA, Neural3DMM, and SpiralNet++ on
all metrics by a large margin. See Fig. 4 and Fig. 5 for a quali-
tative comparison.

Method Mean (mm) Median (mm) 90% (mm)

COMA 2.324 ± 1.724 1.858 4.380
Neural3DMM 1.254 ± 1.092 0.951 2.406
SpiralNet++ 1.256 ± 1.105 0.944 2.438
NFR (Multiface) 1.005 ± 0.824 0.772 1.895
NFR 0.879 ± 0.727 0.678 1.651

target deformations into an interpretable expression space, sub-
sequently reconstructing the input deformation through the de-
coder. Our model is compared to three template-specific competi-
tors: COMA [Ranjan et al. 2018], N3DMM [Bouritsas et al. 2019],
and SpiralNet++ [Gong et al. 2019]. All models are trained on the
same Multiface training split, with our model also receiving train-
ing on synthetic ICT datasets. NFR is designed to maintain an
interpretable latent space and handle meshes in a triangulation-
agnostic manner, whereas competitor models are constrained by
a single mesh template, limiting their capacity to learn from di-
verse datasets and resulting in less interpretability. latent spaces. A
baseline method, NFR (Multiface), trained solely on the Multiface
dataset, demonstrates the advantages of multi-dataset training.

Table. 2 reveals that NFR significantly outperforms its com-
petitors, achieving a 32.3% reduction in the 90% percentile value
compared to the best-performing competitor. Training on multiple
datasets establishes a sparse and semantic latent space and enhances
expression reconstruction. In Fig. 4, we visualize the per-vertex
Euclidean error onMultiface samples and provide a magnified com-
parison in Fig. 5. NFR exhibits fewer coarse surface artifacts than
other baselines and more effectively preserves the shape around
facial features such as the eyes, nose, and mouth.

4.3 Triangulation Invariance
Our model is composed of multiple triangulation-agnostic compo-
nents: The 𝐶𝑁𝑁 takes fixed-size rendered images as inputs; 𝐷𝑁𝑒

and 𝐷𝑁𝑖 are agnostic to the mesh templates [Sharp et al. 2022]; the
MLP has shared parameters across all the input triangles. Thus, our
model naturally supports meshes with different resolutions and
connectivity. To quantitatively evaluate this property, we apply our
model on ICT-Real-AU with a high-resolution mesh template and
different identities. The template has 10,089 vertices and 19,758
triangles. Table. 3 quantitatively validate that NFR has minimal
performance degradation on different triangulations, despite the
fact that it is only trained on the original mesh template with less
than half of vertices and triangles. Sec. 4.4 shows qualitatively that
our model can transfer expression to in-the-wild meshes, even raw
scans with a significant amount of noise.

4.4 Retargeting in the Wild
Given the target mesh of an arbitrary subject with unknown expres-
sions, retargeting is a task to interpret the target facial expression
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Figure 4: Qualitative reconstruction results onMultiface. We
color the meshes by their per-vertex Euclidean error. We
compare COMA, SpiralNet++, N3DMM, and NFR. The color
map clearly shows that NFR outperforms the competing
approaches.

Table 3: Triangulation Invariance. We compare the inverse-
rigging performance of NFR on the trained mesh template
(Original) and a retriangulated version (High-resolution) of
ICT-Real-AU. NFR performs equally well on both datasets,
even though it is not trained with the retriangulated tem-
plate.

Method Templates Mean (mm) Median (mm) 90% (mm)

Ours (ICT rig) Original 0.378 ± 0.467 0.225 0.860
High-resolution 0.343 ± 0.416 0.212 0.774

Ours (NFR) Original 0.443 ± 0.454 0.307 0.920
High-resolution 0.444 ± 0.436 0.312 0.930

and transfer it to another subject. Note that this task is more chal-
lenging than a typical deformation transfer task where the neutral
target mesh is known.

Figure 5: Zoomed-in comparison onMultiface. NFR not only
gets rid of the coarse surface artifacts of the other baselines
but also preserves the shape better around the eyes, nose,
and mouth. Left is the ground truth.

In Fig. ??, we test the generalizability of our model’s retarget-
ing with various identities, expressions, triangulations, and mesh
quality from different face models and datasets. The retargeted
results to various neutral face meshes successfully capture our
high-level perception of the target expressions with natural defor-
mations, though the ground-truth AUs of the target expressions
are unknown. We retarget an ARKit face tracking sequence and a
Multiface speaking sequence to these in-the-wild meshes. Please
refer to the supplementary video for details.

4.5 Human-Friendly Editing
NFR behaves as a user-friendly rig to edit the expressions with
the latent code activation intensities. Fig. ?? shows the series of
such controllable manual edits, starting off from the latent code
inferred by the inverse rigging, then increasing/decreasing the
latent activations corresponding to FACS AUs. We show all the 53
FACS-like control codes of our latent space in Fig. ??. Note that
each activation follows the semantics of the pre-defined FACS.

4.6 Non-Linear Deformations
Along with the interpretable latent code learned from ICT FaceKit,
our model also captures natural, non-linear deformations from
Multiface. We show this in Fig. ?? where many AUs are activated
simultaneously. Linear 3DMMs struggle with such complex activa-
tions as they simply add more offsets on top of offsets, resulting
in implausible deformations. A usual workaround is to activate
manually-sculpted corrective shapes of activation combinations to
introduce non-linearity [Lewis et al. 2014]. Our model maintains
natural, non-linear deformations without such ad-hoc sculpting.

4.7 Ablations
We perform a series of ablation studies to demonstrate the effec-
tiveness of our key designs.

Multi-dataset Training Scheme. The training scheme is the core
of our method for realistic expression generation and interpretable
editing. Fig. ?? demonstrates the effectiveness of our user-friendly
editing. In contrast, in Fig. ??we show the activation of the first five
individual AUs, without training on the ICT datasets. The deformed
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Table 4: Ablation showing the importance of real data (Mul-
tiface). We evaluate onMultiface test set with and without
training onMultiface real scans.

Method Mean (mm) Median (mm) 90% (mm)

With Multiface 0.879 ± 0.727 0.678 1.651
Without Multiface 1.470 ± 1.319 1.088 2.860

Table 5: Ablation study on the network structures. Without
the CNN features, the model struggles to deal with the ran-
dom shift and scale introduced in data augmentation. When
replacing the DN layers with PN, the model fails to solve for
the correct expression codes.

Dataset Method Mean (mm) Median (mm) 90% (mm)

ICT-Real-AU
Ours (w/o CNN) 1.034 ± 0.985 0.748 2.053
Ours (PN) 0.710 ± 0.756 0.483 1.502
Ours (DN) 0.443 ± 0.454 0.307 0.920

Multiface
Ours (w/o CNN) 1.559 ± 1.278 1.184 3.011
Ours (PN) 1.408 ± 1.207 1.050 2.758
Ours (DN) 0.879 ± 0.727 0.678 1.651

vertices are highly entangled. Without the direct supervision of
ICT AUs, making adjustments by tweaking the expression codes is
impractical. We then show quantitatively in Table. 4 that our model
has poor quality on the reconstructed expressions without training
on the real world Multiface data.

Data Augmentation. We show in Fig. ?? NFR with/without data
augmentation to retarget meshes from two different datasets: Face-
Warehouse [Cao et al. 2013] and Triplegangers. Without training
on the augmented datasets in Sec 3.3, the model fails to apply the
correct deformations to these in-the-wild meshes.

Extended latent space. We expand the latent expression space to
be 128-dimensional, where the first 53-dimensional vector, denoted
as 𝑧𝐹𝐴𝐶𝑆 is supervised by the ICT expression codes. The remaining
𝑧𝑒𝑥𝑡 is learned from data. Fig. ?? compares individual activations of
𝑧𝐹𝐴𝐶𝑆 between NFR and a similar model without 𝑧𝑒𝑥𝑡 . Both models
supervise 𝑧𝐹𝐴𝐶𝑆 to follow the ICT rig. Since Multiface contains
deformation patterns that are not covered by the ICT rig space,
the model without 𝑧𝑒𝑥𝑡 adapts some AUs, e.g. ‘eyeLookUp_L’, to
capture these new patterns (e.g. neck deformation). With the ad-
ditional expression space of 𝑧𝑒𝑥𝑡 , NFR can capture the Multiface
deformations and maintain maximum interpretability.

Network Structures. The 𝐶𝑁𝑁 serves to generalize NFR to the
translation and scale introduced in data augmentation for better in-
the-wild applicability. DN𝑒 and DN𝑖 are crucial for solving the cor-
rect expression codes and transferring them to in-the-wild meshes.
Table. 5 compares a model without the CNN features and another
one that replaces the two DNs by PointNets (PN) [Qi et al. 2017].
The performance drops significantly.

5 CONCLUSIONS
We have presented Neural Face Rigging, a novel learning approach
to instantly rig and retarget 3D facial meshes in the wild with any
reasonable shape variations and triangulation. The key technical

contribution is themulti-stage training combining the advantages of
different face datasets to learn interpretable and editable latent code
over high-fidelity facial deformations. While our model is unique
in its generalization to mesh triangulation, it learns better facial
deformation than other methods that require fixed triangulation.

Limitations and Future Work. Although our model provides a
triangulation-agnostic facial rigging and retargeting pipeline, users
still need a standardization step by removing internal structures
around the eyes and mouth. Segmenting the facial regions could
automate the process.

We chose to learn an ARKit-compatible FACS rig for its popular-
ity and accessibility. In theory, NFR could learn any other arbitrary
rig parameterizations such asMetaHuman, though this is not tested
because of the limited access to such data.

With an interpretable, controllable latent space and triangula-
tion invariance, our model can serve as a backbone for various
facial animation tasks such as talking face generation. Including
the appearance model for photo-realistic expression generation is
also worth exploring.

Human faces are sensitive subjects. We must take precautions
deploying our model, with in-depth studies on the bias to different
human attributes, e.g. age, gender, and ethnicity. We hope this work
can contribute to the community by minimizing such bias with
its ability to combine multiple face datasets and perform instant
rigging on in-the-wild meshes.
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A IMPLEMENTATION DETAILS
We render the front views of 𝑆 and𝑇 by Pytorch3D [Ravi et al. 2020]
with a fixed point light and a gray Lambert shading. The model is
not sensitive to these settings as long as the whole face is shown in
the image.

The rendered 256×256 RGBD images feed into 𝐶𝑁𝑁 which has
four 2D convolution layers followed by a fully-connected layer to
output 𝑐𝑆 and 𝑐𝑇 . DN𝑒 and DN𝑖 have four and two diffusion layers,
respectively. 𝑀𝐿𝑃𝑑𝑒𝑐 contains eight linear layers of 256 hidden
dimensions, with ReLU activations in between.

We train the model with 𝜆𝑣 = 10, 𝜆𝑔 = 1, 𝜆𝑛 = 1 and 𝜆𝑒 = 0.1.
During the first training stage, we warm up the MLP by providing
the ground truth 𝑧𝐹𝐴𝐶𝑆 in the first 100 epochs. And then train
another 200 epochs with 𝑧∗

𝐹𝐴𝐶𝑆
from the expression encoder. In

the second stage, we train on both ICT-Real-AU and Multiface until
convergence. We set the initial learning rate as 1e-4 and decrease it
by a factor of 0.75 for every 100 epochs.

B DATA AUGMENTATION
Here we visualize the output meshes after data augmentation:

(a) (b) (c) (d)

Figure 6: Data augmentation scheme. (a) and (c) show shift,
scale, and applying a front-facial mask. (b)and (d) show holes
cutting. (a), (b) are identities from the ICT and (c), (d) are
from Multiface.

C STANDARDIZATION
We give two examples of the data standardization treatment. Fig.
7 illustrates the process for an in-the-wild raw scan, while Fig. 8
shows the pipeline for an artist-created mesh.

Figure 7: Left: Raw Scan. Right: Raw Scan after standardiza-
tion. For an in-the-wild mesh with connected eyes, nose, and
mouth, we need to cut those areas to have the correct global
solving of the deformation transfer process.

Figure 8: Left: The original MetaHuman mesh. Right: The
same mesh after standardization. We remove the inner
mouth socket tomake it consistent with othermeshes during
training.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Facial Deformation Models
	2.2 Deformation Transfer

	3 Method
	3.1 Architecture
	3.2 Datasets
	3.3 Data Augmentation and Standardization
	3.4 Multi-dataset training

	4 Experiments
	4.1 Inverse Rigging
	4.2 Expression Quality
	4.3 Triangulation Invariance
	4.4 Retargeting in the Wild
	4.5 Human-Friendly Editing
	4.6 Non-Linear Deformations
	4.7 Ablations

	5 Conclusions
	Acknowledgments
	References
	A Implementation Details
	B Data Augmentation
	C Standardization

