
A Review of System
Development Systems
T. H. Tse* and L. Pong*

The requirements for a system development system are defined and used as guidelines to review
slx such systems: SAMM, SREM, SADT, ADS/SODA, PSL/PSA and Systematics. It is found that cur
rent system development systems emphasise only validation and user verification. They can perform
relatively little on automatic. file optimisation, process optimisation and maintenance.

Keywords and phrases: requirements specifications, software development, software engineer
ing, systems design, systems development.

CR Categories: 4.19, 4.22, 4.6 [0.2, 0.2.1, K.6.1, K.6.3].

1. INTRODUCTION
In the early days of stored program computers, the

cost of software made up a mere 15 per cent of the total
cost of information systems. But software costs has been es
calating ever since and is currently estimated at about 90
per cent of the total, as shown in Figure 1 taken from
Boehm (1976). It is more alarming to note that more than
two-thirds of the money is spent on the maintenance of
existing software and only one-third on new developments.

The high cost of software in information systems can
be attributed to the following:
(a) Since the days of E NIAC and EDVAC, computer

hardware has evolved from the first generation of
vacuum tubes to the fourth generation of very large
integration. Software development methodologies
also went through a similar evolution. The first gen
eration was simply a consolidation of conventional
techniques previously used for manual systems. New
techniques were developed in the second generation
specifically for computer systems. In the third gener
ation, some parts of the development were auto·
mated. Finally, in the fourth generation, we see fully
automated system development systems.
Unfortunately, as Couger (1973) pointed out, the
software evolution has been lagging behind the hard·
ware evolution by one full generation. Most systems
are still being developed using second and third gener·
ation techniques. ~

(b) Because of the belated use of computer aids, infor
mation system development in practice has been a
manual process. Hence the adverse effect of manual
systems also apply, such as the escalation of man
power cost and control problems of large projects.

(c) In the absence of comprehensive computer aids,
errors made during the analysis stage cannot easily be
identified. The effect is multiplied when the system
is implemented together with the error. One study
by IBM (Fagan, 1974) has revealed that the cost of
correcting an error after implementation is almost a

Copyright © 1982, Australian Computer Society Inc.

hundred times that of correcting the same error
during the analysis stage.
In view of the above cost escalation, research workers

have been pursuing the concept of automated "system
development systems", or sds for short.

A few surveys have been published in the line of
system development systems, but the emphasis is often on
one aspect of it, namely requirements analysis. The most
notable examgles are Teichroew (1970), Burns et a/.
(1974), Ramamoorthy & So (1977) and Jones (1979).
Little has been reviewed on the full aspects of system de
velopment systems.

This paper attempts to:
(a) Set out the comprehensive goals for a system devel

opment system, and
(b) Give a review and evaluation of six most fully de

veloped system devel.opment systems.

2. GOALS
In this section we will identify the goals for a system

development system, so that a framework of criteria can be
established before we evaluate the current practices in sds.

2.1 Validation
For a large complex system, the requirements specifi

cation may be very large. It is impractical to leave all cor
rectness checking as a manual process. Further, every time
the requirements are changed, the correctness of the speci-

PERCENT
OF

COST

100,_-------------------------------,

HARDHARE

SOFTWARE
MAINTENANCE

General permission to republish, but not for profit, all or part of
this material is granted, provided that ACJ 's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by 1970 1985
permission of the Australian Computer Society. Figure 1. Hardware-software cost trends.

*The authors are with the Centre of Computer Studies and Applications, University of Hong Kong, Pokfulam Road, Hong Kong. Manuscript
received May 7982.

The Australian Computer journal, Vol. 74, No.3, August 1982 99

System Development Systems

fication will need to be confirmed again. One function of
the sds is therefore to validate the specification. We can
separate the validation function into the following areas:

2. 7. 7 Completeness
Waters (1979) has given a list of 77 "facts" that

should be incorporated into a specification. The system
development system should be able to accept these facts
as parameters, -and verify that the vital parameters at
present at the appropriate places.

One common feature used to conceal the incomplete
ness of the requirements specification is the generous Use of
memos or comments, whereby the user can put in anything
in natural language. But such memos cannot be analysed by
the sds or compiled into program codes.

2. 7.2 Continuity
In the flow of information, we must make sure that:
data items must have been input from a source or de
rived from other data items,
data items input or derived must be traceable to some
use or destination,
data item·s must not be defined in cycles,
data items that are used in a subsystem must not call
for data items outside the subsystem implicitly.
Precedence analysis is required to check the contin-

uity of data flow. It was first introduced by Langefors
(1963) and further developed by others such as Waters
(1976 and 1977).

2. 7.3 Consistency
The need to check the logical consistency of a

requirements specification has long been known since the
second generation of information systems methodology,
and has been incorporated into numerous student texts.
(See, for example, Fergus, 1969.) In essence the sds should
pin-point the following:

Inconsistencies between different parts of the speci
fication;
Parts of the requirement that have been referred to
but not specified;
Where control checks have been built in, any discrep
ancy between the control figures and the actual speci
fication.

2. 7.4 Redundancy
The sds must be so designed that:
there will be no need to duplicate the requirement in
different parts of the specification, e.g. common
areas in different modules;
if duplicated information has been presented by mis
take, it should be brought to the attention of the user
for scrutiny and possible correction.

2.2 User Verification
One criterion for a good requirements specification is

that the user must be able to review the specification and
verify whether it really represents his needs. This can be
achieved in several ways.

2.2. 7 Use of Natural Language
This would enhance the understanding of the speci

fication. There are, unfortunately, few systems which can
accept natural language as input. Further, natural lang
uages may be subject to different interpretations.

100

2.2.2 Generation of Documentation
To avoid problems in compilation, pseudo-codes are

used as input to the sds. Since pseudo-codes are compact
and difficult to read, it would be useful for the sds to gen
erate narrative documentation to ease the understanding
of the specification. Ambiguities, however, may still appear
in the narratives thus generated, so that the user will have
to trace back to the original pseudo-codes.

2.2.3 Graphic Aid
It has been generally agreed that graphic presentation

of complex material is much more comprehensible than
its narrative counterpart. The reasons can be summarised as
follows:

Graphics are in two dimensions while narratives are in
one dimension. The former gives an additional degree
of freedom in presentation.
The person reading graphics can do so selectively,
depending on the level of details he wants. If he reads
a narrative, he has to do so linearly.
There is a limit in the number of concepts one can
reasonably hold in short term memory in the human
brain. (This number is believed to be 7 ± 2 by Miller,
1956). The person reading graphics can start off
generally and go into d~tails after some degree of
familiarisation. If he reads narrative, he has to start
off with details and abstract the skeleton concepts
afterwards.
In addition, graphic input usually provides a bounded

rationality which is useful for such validation aspects as
completeness, continuity and consistency.

An ideal requirements specification would therefore
be documented in graphics, which is then machine pro~
cessed. Failing that, if a requirements specification is in
pseudo-codes, it must be converted into graphic output for
verification and correction.

2.2.4 Prototype System
The user may not be able to completely specify his

requirements at an early stage without having a 14feel" for
the outcome of the system. The sds should therefore allow
the user to partially specify his needs, compile it into a pro
totype system, and feed it back to the user. Given the pro
totype output, the user can then refine his requirements
through modifications and/or provision of additional
details. Jones (1979), for example, compares prototype
systems favourably with other defect detection methods, as
shown in Table 1.

2.3 File Design and Optimisation
During the physical design phase, the systems analyst

has to design files to suit the given hardware environment

Table 1. Comparison of defect detection methods
(from Jones, 1979)

Design Machine Correct·
Review Testing ness

Proofs

Omitted Functions Good Fair Poor
Added Functions Good Poor Poor
Structural Problems Good Fair Poor
Al.gorithm Problems Fair Fair Good
Human·factor Problems Fair Poor Poor

Models
or Pro-
to types

Good
Fair
Fair
Good
Good

The Australian Computer journal, Vol. 14, No.3, August 1982

System Development Systems

and processing requirements. He is faced with an over-abun
dance of choices, which grow exponentially with the com
plexity of the system and hence become unmanageable to
the human mind. As a result, he often bases his choices on
simple Hrules of thumb", also known as "experience". The
solution given by these simple rules are workable but
usually far from optimal, so that systems designed are more
expensive to operate than necessary. Some authors (e.g.
Waters, 1972) even come to the conclusion that such simple
rules of thumb are so ineffective that we might as well dis
regard them.

The system development system, in order to produce
better file design, should include file optimisation modules.
There are three approaches available.

2.3. 7 Simulation Models
Simulation techniques were mainly used in the

earlier models for the evaluation of file organisations.
Examples are Senko eta/. (1968) and Cardenas (1973).
Since each model assumed a specific file organisation, it was
impossible to obtain an overall optimum unless multiple
models were run and compared.

2.3.2 Analytic Models
The problem of physical file design can be expressed

in mathematical programming terms as follows.
Given constraints such as hardware configuration and

probabilistic details of data, we want to determine the
factors such as file structure, access method, overflow
mechanism, etc., so that the cost of data retrieval -and file
maintenance is minimised, wherd,the cost is a function of
response time and storage space. ,

1

We note, however, that th~ problem has the follow
ing characteristics:
(a) For a given set of factors, the cost can be determined

analytically, but it is a non-linear function of the
factors.

(b) For realistic situations,· the number of factors is large.
Severance and Duhne (1976), for example, list the
following factors for the selection of a hashing algor
ithm alone:

identifier transformation
overflow technique
overflow area
initial loading order
bucket size
loading factor

(c) Further, each one of the factors allow a large num
ber of discrete choices. Martin (1977), for example,
lists the following choices for identifier transforma
tion:

mid-square method
dividing
shifting
folding
digit analysis
radix conversion
Lin's method
polynomial division

For each discrete choice, we can define a separate
variable with 0, 1 values.
The minimisation problem therefore becomes one in

non-linear integer programming with a large number of
zero-one variables.

Yao and Merter (1975) simplify the problem by con-

The Australian Computer journal, Vol. 14, No.3, August 1982

centrating only on the average characteristics of file organ
isations, based on a single analytic model designed by Yao
(1977). The number of variables then becomes manageable.
Using this as a first approximation, the number of subse
quent choices will be limited. The detailed structures of the
file can then be worked out by simulation.

One drawback of this method is that the first
approximation can only give a crude result, so that we may
be making a fine adjustment based on a wrong decision.

Other techniques in file optimisation include the
approximation of an integer programming model by a con
tinuous model, and the method of branch and bound tore
duce the number of searches to a manageable size.

2.3.3 Heuristic
We have already seen that over-simplified rules of

thumb are not satisfactory. But some researchers (such as
Severance and Duhne, 1976, and Severance and Car!is,
1977) have derived heuristic rules from mathematical
models. Such rules are more realistic and can be imple
mented into the sds for a near-optimal file design.

2.4 Process Design and Optimisation
One of the primary functions, of an sds is to <~com

pile" the requirements specifications into program codes.
It is all too easy to generate program codes by brute force.
So an sds must be able to optimise the processing. (This is
known to some· authors as the logical design as distinct
from the physical design covered in the previous section of
the paper.) '

Processing requirements can be divided into two cate
gories: transportation of data items, i.e. input and output;
and derivation of data items, i.e. computations. In infor
mation systems, however, the number of derivations is
small compared with transportations. Hence for purposes of
optimisation, we can concentrate on the transportation
aspect.

Transportation volume can be reduced as follows
(Alter, 1979, and Severance and Lohman, 1976):
(a) Vertical aggregation of processes:

Two sequential processes having a file as an inter
mediate buffer may be combined to reduce input/
output volume.

(b) Horizontal aggregation of processes:
Processes reading the same file may be combined to
reduce the input volume.

(c) Aggregation offiles:
Files generated by the same process may be combin
ed to reduce the output volume.

(d) Use of differential files:
Data items having different frequencies of access are
candidates for separation into two files.
A more general treatment can be made using general

net theory (Genrich eta!., 1980). The information system
is expressed as a bipartite graph known as a net, having two
types of nodes called states (corresponding to our files)
and transitions (our processes). A topology is defined, and
hence the concepts of open sets (our process being an
extreme example) and closed sets (our files). Morphisms
can then be defined between nets. The aggregations and
separations of files and processes are specific cases of net
morphisms.

Given the very large number of possibilities of net
morphisms, the sds is faced with the task of selecting the
optimal one. It is even more difficult in this case to apply

707

System Development Systems

the mathematical programming models discussed in the
previous section. Alter (1979} proposes the use of an iter
ation 1method. The optimisation problem is divided into
two phases: file optimisation and process optimisation.

An initial solution is input to the first phase to enable
a search for an optimal file design. This design is input to
the second phase in search for an optimal process design.
The latter then goes back to the first phase for an improve
ment of the files. The iteration process is repeated until any
more improvement becomes insignificant. Within each
phase, we can either make use of mathematical program
ming, or build a smaller iterative loop. Alter, for example,
suggests the latter, making use of the steepest ascent
method.

2.5 Maintenance
Modifications to an information system are fre

quently necessary due to changes in the environment,
technology or user needs. If the information system was
created by an sds, there are three approaches to handle
its maintenance:
(a) Change the requirements manually and re-input the

entire specification to the sds. A new information
system is thus generated.

(b) The sds accepts amendments to specifications of
requirements. A requirements analysis phase pro
duces feedback on the significance of the changes.
After user verificatiOn, the sds produces a new
requirements specification for input to the design
and optimisation phase. A new information system
is thus generated.

(c) The sds accepts amendments to specifications of
requirements and produces feedback on its signifi
cance, as per (b) above. But instead of producing a
new system, only the affected parts of the informa
tion system are changed.
The following considerations must be made when we

decide on the approach to be adapted by an sds:
There should be a record of the modifications made
to an information system, for the purposes of audit
and control. Method (a) does not provide this facil
ity.
Method (b) appears simple and neat for the user, but
as Teichroew (1971} has pointed out, "the cost ...
would be prohibitive if every change in a Problem
Statement required a complete re-run of the whole
system".
Further, a re-run of the optimisation phase, as pro
posed in (b), may result in drastic changes in the file
organisation methods of the system. Thus the old and
new file structures may become incompatible.
In depth studies are still required before method (c)
can be implemented. Also this method may actually
produce a sub-optimal solution since only part of the
sds is re-run.
In practice method (b) is more suitable for major

changes and method {c) for minor amendments.
Another aspect to consider for maintenance is the

portability of the information system. The sds preferably
should be a pre-compiler that accepts as input a require
ments specification and generates as output one or more
programs in a high level language. This alleviates the need
to run the sds again when there is a change in the hard
ware configuration.

102

A further advantage is that programmers can change
the output program directly if there is a bug in the sds, or
if some additional requirement is out of the scope of the
sds. It should be noted, however, that once programmers
are allowed to tamper with program codes, they tend to
''short circuit" every maintenance job. They go directly to
the program code for modifications without bothering to
re-run the sds. This leads back to the usual control prob
lem of manually produced information systems: that the
specification does not agree with the programs.

One solution is for the sds to generate a hash total of
all amounts and figures in the requirements specification;
and to reconcile it against a similar hash total in the pro
grams. If the hash total of the programs is changed while
that of the specification remain unaffected, it means
illegal alterations to the programs have taken place.

3. CURRENTSTATE
In this section we will study six system development

systems, with a view to see how much they have achieved,
in the goals we have set out. SAMM, SREM and SADT are
chosen because they are the latest developments. ADS,
PSL/PSA and Systematics are chosen because they are the
pioneers in sds, they are still popular, and there have been
new developments lately, such as ADS/SODA and META/
GA.

3.1 Systematic Activity Modelling Method (SAMM)
SAMM - a modelling method basing on the Human

Directed Activity Cell Model - has been developed by the
Boeing Computer Services Company (Peters, 1978, Lamb
eta!., 1978 and Stevens and Tripp, 1978}. It utilises a
word-graphic language, which is a combination of the more
prominent features of narratives, graphics and graph theo
retic notations.

The representation scheme of SAMM consists of a
labelled tree, activity diagrams and condition charts. The
labelled tree structure, as shown in Figure 2, provides heir
archical decompositions of the system and an index struc
ture describing the context of activity diagrams in the
system.

Activity diagrams, with the fundamental building
blocks of activity cell and data flow, portray the relation
ships of activities and data flows of the system. An activity
diagram, as shown in Figure 3, is a flow diagram with a
network of rectangular boxes representing activities, and
arrows representing dataflows. Moreover, it contains a data
table giving narrative description and decomposition trace
of the data involved. The decomposition trace provides
a hierarchy of data. The node name identifies the context

NODE : 1.3

B
B

G

Figure 2. Relationship of the labelled tree an~ activity diagrams.

The Australian Computer journal, Vol. 14, No.3, August 1982

System Development Systems

11 2
NODE u

l
11.3 1 r ,,

I 1
I 5

DATA TABLE .3. 2 I

11.3 3 :
6

I

D Activity ----7 Data flow

Figure 3. An activity diagram.

of the diagram in the system. The number of activity cells
in each diagram is restricted to six to conform to the prin
ciple that "the span of absolute judgement and the span of
immediate memory of humans is in the vicinity of seven
items" asistated by Miller (1956), .

The activity-data network in each activity diagram
corresponds to a directed graph. Therefore, analysis suoh as
connectivity and reachability can be performed to give
insight into the consistency of the specification.

Associated with each acti~ity diagram is a condition
chart. It describes the input and system/activity state
requirements for the production of output.

A total system description in SAMM is thus an inter
related set of diagrams with a hierarchical structure. Each
layer of diagrams in the tree structure represents a seman
tic interpretation of the system at a certain level of abstrac
tion.

An automated tool, SAMM Interactive Graphic
System (SIGS), is developed to implement SAMM. The
functions of SIGS include model generation, model editing,
model display, verification, report generation and model
status control (see Figure 4).

Various analyses can be performed on the SAMM
model input to the SIGS. These include syntax analysis to
ensure that the input conforms to SAMM methodology:
decomposition analysis to ensure consistency between a
parent diagram and a child diagram, and between two child
diagrams; data flow analysis; and global analysis which
determines redundancy in the modeL The tree structure is
checked for connectivity and reachability. Diagnostic
reports and documentation of selected subsets of the model
can be generated by using the report generation facility.

SAMM possesses many desirable features of an sds
graphic representation, multilevel refinement, machine

DATA-
USER INPUT/REQUEST

~ BASE
SIGS

RESPONSES HARD COPY DOCUMEN TATION

Figure 4, An overview of SIGS.

The Australian Computer journal, Vol. 14, No.3, August 1982

Require
ments in
RSL or
R·Nets Feedback

TRANSLATOR

ABSTRAC
SYSTEM
SEMANT!
MODEL

Feedback

Feedback

Reports and documentation

Figure 5. An overview ot SREM.

processability, centralisation of information and considera
tion for bounded rationality. It has, however, remained a
requirements analysis system and has not tackled the
aspects of file and process design, optimisation and main
tenance.

A SAMM activity diagram can be regarded as a special
type of data flow diagram (DeMarco, 1978), one without
the expression of files. It can therefore be implemented
manually using structured design methodologies (Stevens
eta/., 1974, and Yourdon and Constantine, 1979). But the
SAMM language does not include such features as perfor
mance requirements, so that automated design and
optimisation would not be possible without an extension of
the language itself.

3.2 Software Requirements Engineering Methodology
(SREM)
S REM - a computer-aided methodology for the

development of !fno-man-in-the-loop" realtime software -
has been developed by the TRW Defense and Space Sys
tems Group (Alford, 1977 and Bell et a/., 1977). The
methodology consists of the Requirements Statement Lang
uage (RSL) (Bell and Bixler, 1976) and the Requirements
Engineering and Validation System (REVS). An overview
of SREM is shown in Figure 5.

The fundamental approach of SREM, based on the
fact that paths of processing are invariant over any pro
cess design (Alford and Burns, 1976), is to specify soft
ware requirements in terms of flows through the system.
The paths of processing, each representing a sequence of
operations connecting the arrival- of the input message to
the termination of its processing, are organised into
Requirements Nets (R-Nets) for understanding and analysis.
Each Requirements Net represents the network of the pro
cessing steps in response to a given type of stimulus. An
example is shown in Figure 6.

Provisions for stating performance requirements are
made by the notion of validation points in the R-Nets. At
such points, performance characteristics are defined and
verified against actual data.

The- description of a stimulus-response sequence of a
system in the form of a Requirements Net can be further
detailed in a top-down manner. An ALPHA (processing
step) in a Requirements Net can be expanded into another
flow graph with lower level ALPHAs and the original
ALPHA is replaced by a SUBNET in the parent flow graph.
This decomposition process can be continued until any fur~
ther detailing will force unnecessary constraints on ·system
design. Requirements Nets can be input to the REVS ex-

703

System Development Systems

D ALPHA ~ PROCESS1NG STEP

0 EXTERNAL INTERFACE

c=_) SUBNET

0 INITIAL NODE

0 TERMINAL NODE

¢ VAt.IDAT!ON POINT

• OR NODE

¢ AND NODE

FOR EACH NODE

Figure 6. A Requirement Net.

plicitly through an interactive graphic tool, or implicitly
through the structure aspect of RSL statements.

RSL has four types of primitives: structures, ele
ments binary relations between elements and attributes of
eleme~ts. The structures expose the flow portion of the
requirements. They are the images of the Requirements
Nets projected on to a one~dimensional space. Elements,
relations and attributes deal with the non-procedural
portion of the requirements. These primitives can formu~
late every concept in RSL. The structures are fixed to pro
vide a rigid framework for communication. However, the
non-procedural aspects of the RSL are extensible to suit
particular applications and future needs.

REVS is comprised of the RSL translator, the Ab
stract System Semantic Model (ASSM) and a set of analysis
tools. The RSL translator is obtained by employing a
compiler-writing system so that changes in RSL can be
easily and effectively accomplished. The ASSM is a rela·
tiona! database for maintaining information on software
requirements and the concepts used to express the require
ments. Extensions in concepts can be processed in the same
way as RSL statements by the RSL translator and are ready
for use as soon as they are entered into the ASSM. The
ASSM also provides a de-coupling between the RSL and the
analysis tools so that modifications on either end can be
made independently. Analysis tools have been developed to

704

perform analyses on the information stored in the ASSM.
They include static analysis tools - which check the
correctness and consistency of the R-Net structure and data
flow; dynamic analysis tools - which generate discrete
functional and analytic simulators semi-automatically to
check dynamic system interactions; and a flexible gener
alised extractor package for documentation and special
reports.

SREM represents a very sophisticated requirements
definition methodology. It is designed to fit into a com
plete system development framework (Davis and Vick,
1977). A process design engineering methodology has been
reported but interface smoothness and the stage of
develop~ent are not known. Details of file design, optimi
sation and maintenance in the complete development
framework are also not available. RSL has a graphic repre
sentation and allows multilevel refinement, but it has no
bounded rationality consideration. Consistency and contin
uity checks can be done automatically. Performance re
quirements are formally stated by the use of validation
points. Semi-automatic simulation is provided to analyse
the dynamic behaviour of the system being developed. This
provides the analyst and the user with a clear perception of
the system at an early stage.

3.3 Structured Analysis and Design Technique (SADT)
SADT - a general modelling method that can be

applied to a wide range of systems - has been developed
by SofTech (Ross, 1977, Ross and Schoman, 1977 and
Dickover eta!., 1978) based on the concepts of structured
analysis of Ross (1980). It is basically a structured thought
and decomposition discipline with a graphic means of
expression. The structured and disciplined way of thinking
and decomposition is established and applied before
thoughts are expressed by the graphic tool.

The system model behind SADT consists of "things",
"happenings" and their relationships. Therefore, each
SADT model consists of two dual decompositions - data
decomposition and activity decomposition. Each of these
decompositions uses the same graphic tool.

The fundamental building block of the SADT graphic
notation is the four-sided box shown in Figure 7. Each of
these boxes conveys certain details of the system being
described. The INPUT, OUTPUT and CONTROL arrows
specify interfaces to other boxes. The MECHANISM arrow
shows the support to accomplish the transformation repre
sented by the box.

A SADT system description consists of an inter
connected set of diagrams in which interrelated boxes and
arrows provide a disciplined framework for the embodi
ment of any natural or artificial language expression chosen
for a particular application. This framework obeys rigor·

CONTROL

INPUT OUTPUT

MECHANISM

Interpretation: The box
is a valid transformation
of the input into the

specified output provided
the support mechanism is
available and the correct
control is applied.

Figure 7. SADT fundamental building block.

The Australian Computer journal, Vol. 14, No. 3, August 1982

System Development Systems

Figure 8. SADT diagram and the decomposition/detailing of a box
into a separate diagram.

ous semantic and syntactic rules so that the interpretation
of the embedded language expressions are restricted. The
top level diagram shows the overall network structure of
the system, with boxes and arrows showing the compon~
ents and interactions. Each box may be further decQm·
posed into a separate diagram with another boxes-and
arrows network, as shown in Figure 8, provided the detailed
diagram represents exactly the same part of the system as
the original box. Decomposition of boxes can be carried on
at all levels, and as a result a top-down hierarchical struc
ture is established.

Arrows in SADT diagrams do not stand for control
flow but represent constraints. Precedence relationships,
however, do exist because a box at the beginning of an
arrow must precede that at the end. These precedence
relations may imply parallelism. SADT diagrams represent
all these implicit parallelisms unless the system designer
explicitly decides to impose sequencing constraints by using
the SADT activation rules.

A complete SADT description of a system may con
sist of a set of interrelated SADT models. Each SADT
model consists of a hierarchical set of diagrams that des
cribe a subject from an identified viewpoint, for a particu~
lar purpose and within a specific context. The viewpoint
determines what is to be described, the purpose determines
how the subject is to be described and the context enforces
proper understanding of what is described. In other words,
these attributes bound and limit the amount of the subject
that can be exposed and the way it is structured. The
MECHANISM arrows provide the means to connect models
having different orientations of viewpoint, purpose and
context.

As a SADT model is a tree-like hierarchy, a node
index is provided for each model so that the corresponding
context for a particular diagram can be easily determined.

SADT provides a graphic means of expression and
multilevel refinement of problem to aid understanding.
Formal means to express performance information are not
provided, nor are strict rules to analyse the specification for
desired properties such as consistency and completeness.
Moreover, as the complexity of the system increases, it is

The Australian Computer journal, Vol. 14, No.3, August 1982

difficult to handle the technique manually. To improve the
situation, Ross (1977) has suggested that SADT can "be
come machine~readable in a very straightforward manner"
and hence extendable to include the validation facilities of
the PSL/PSA system. No result has yet been published.

It should be noted, however, that SADT is not design
ed to be mapped on to an automatic development system.
The fundamental concept of "omitting the obvious" in
SADT, for instance, is only suitable for manual develop
ment. There is, therefore, no guarantee of a smooth inter·
face with automatic design and optimisation.

3.4 ADS/SODA
ADS (Lynch, 1969 and NCR, 1969) was an internal

standard of NCR and subsequently released for public use.
It was originally intended to be a manual procedure. How
ever, automation of its use has been reported (Couger,
1973 and Nunamaker eta!., 1976).

An ADS system description is made up .of five inter
related forms called RICHL (ritual): Report definition
form, Input definition form, Computation definition form,
History definition form and Logic definition form.

Based on the notion that system development should
be results-oriented, ADS system description starts with the
definition of all systems output. It is then completed by
descriptions of system input, computations, historical data
retained in the system for a period of time, and the accom·
panying logic that will be used to derive the output.

Information in these forms are interrelated by the
flow of data. Linking is made possible by assigning unique
names to data elements and the backward referencing of
each data element to its information source. These refer·
ences are achieved by the use of the 3-tuple (Definition
type, Page number, Line number) for each line on every
ADS form. The data elements are therefore chained from
output to input.

ADS has been incorporated into the System Optimi
sation and Design Algorithm (SODA) (Nunamaker, 1971)
to form an integrated computer-aided methodology for the
development of an financial management system (Nuna
maker et a/., 1976). The methodology consists of ADS,
SODA Statement Language (SSL), ADS analyser, SODA
Statement Analyser (SSA), SODA Generator of Alterna
tives (SGA) and SODA Performance Evaluator (SPE).

SSL statements are used to provide design parame
ters and performance requirements not available in the
ADS description.

The ADS description and SSL statements are
analysed and validated by the two analysers. This analysis
phase produces a series of summary reports including: a
data dictionary, indices to all data elements and processes,
incidence matrices of data elements required by each
process, precedence matrices of data elements and pro·
cesses, and graphical displays of the input ADS forms.

The output of the analyser and a statement of the
available computing resources, hardware and utility pro
grams are accepted by the SGA to analyse alternative hard
ware and software resources with respect to a specific
design generated by the SGA. The output is a set of speci
fications of alternative designs stating the necessary CPU,
core size, program structure and data structure.

SPE optimises feasible designs to improve system per
formance. It is made up of a series of mathematical pro
gramming models and timing routines. Its functions include
optimisation of the blocking factor for files, determining

705

System Development Systems

Social Reports
Req uirements in PSL PSA

SOFTWARE

t Documentation

PSA
DATA-
BASE

Figure 9. An overview of PSL/PSA.

the number and type of auxiliary memory devices, alloca~
tion of files to memory devices and generation of an opera
tion schedule.

The ADS/SODA integrated system deals with both
the analysis and design phases of the system development
cycle. Requirements specification can be mechanically pro
cessed to ensure consistency and continuity. However, the
ADS forms are often incomprehensible to the user and
there is no heirarchical decomposition strategy to tackle
complex problems. No graphic documentation is provided
to facilitate understanding. Transition into the design phase
is straight-forward. Optimisation of files and program struc
tures are performed by the SPE, but the optimisation of
program structures may cut across functional boundaries
and may lead to maintenance difficulties. This optimisation
must therefore be constrained. Moreover, SODA is restric~
ted to the design of batch processing systems, sequential
auxiliary storage organisation, the specification of linear
data structures, and the selection of a single CPU. The
designs generated are machine dependent as a particular
design is based on a particular choice of hardware.

3.5 PSL/PSA and MET A/GA systems
PSL/PSA - a computer aided system for systems

requirements documentation and analysis - has been
developed by the ISDOS project of the University of
Michigan (Teichroew, 1976 and Teichroew and Hershey,
1977). The system consists of the Problem Statement
Language (PSL), the Problem Statement Analyser (PSA)
and a database for maintaining information of the system
being developed, as shown in Figure 9.

The Problem Statement Language is a relational, non
procedural and machine processable language. It has well
defined syntax and semantics, and is designed for systems
description. The underlying system model is an entity
relationship-attribute model. The model can be described
as a set of objects, their properties and binary relations
between these objects. Consequently, PSL statements are
object-relationship-object associations. Systems descrip
tions in PSL are classified into: system input/output flow,
system structure, data structure, data derivation, system
size and volume, system dynamics, system properties and
project management. They are processed by the Problem
Statement Analyser and stored into the PSA database.

The Problem Statement Analyser is a collection of
computer software developed for processing and analysis
of the PSL statements, and the management of the data
base information. Lexical, syntactic and semantic analysis
are performed before the PSL statements are entered into
the database. Complementary relationship statements are
generated by PSA and entered into the database. Once

706

entered, a statement can be expanded or deleted without
major change to other st.atements. PSA is able to per
form: data definition analysis; static analysis, which
checks, the consistency of the input statements; dynamic
analysis, which determines dynamic relationships among
inp.ut, output and timing consistency of processes; and
volume analysis. Documentation and reports can be pro~
duced by PSA interactively or in batch mode. The reports
produced can be classified as database modification reports
which deal with changes and diagnostics; reference reports
which presents PSL information in various formats; sum·
mary reports which summarise information according to
several relationships; and analysis reports which present
the results of the aforementioned analyses.

PSL/PSA was not originally designed to fit any par
ticular system development framework. Its success there
fore depends on how well it suits a chosen methodology.
As the number of system development methodologies is
continuously increasing, it is unlikely that the PSL/PSA
will fit well into every one of them. Attempts, for
example, have been made to incorporate PSL/PSA into
SODA, but it was found that enhancements of PSL were
necessary to include features of ADS and SSL (Nuna
maker eta!., 1976). The META/GA system is designed to
remedy the problem.

The MEGA/GA system(Teichroew et a!., 1980 and
Yamamoto, 1981) consists of the META system and the
Generalised Analyser, as shown in Figure 10.

· lhe META system, based on an entity-relation
ship-attribute model, takes a formal description of the
PSL and automatically generates the language processor
using a table-driven generalised software and a language
reference manual. System descriptions can now be for
.rnulated in the particular PSL and manipulated by the
Generalised Analyser in a similar way to that of the PSA.
META/GA has been successfully applied to a number of
methodologies such as Composite Design, Rational Design
Methodology and Jackson Methodology.

PSL/PSA is one of the most widely used and accep
ted requirements definition system. Recognising the short
coming of the one-dimensional nature of PSL, a set of

Description of PSL
in Heta Language META

SYSTEM
' PSL Specification ' ' ' l ' ' ' ' ' META
' ' DATA-
' BASE ' ' ' 1 ' ' ' Special Reports
' System description

in PSL ENERALISED
NALYZF.R Documentation

1
NALYZE
DATA-
BASE

Figure 10. Application of the META/GA system for generating
specific PSL/PSA system.

The Australian Computer journal, Vol. 14, No. 3, August 1982

System Development Systems

graphic reports can be generated automatically for user
verification. However, as the source PSL statements are not
verified by the user, one more pass may be needed. More
over, there is no facility to trace back from the graphic
reports to the source PSL statements. The non-procedural
PSL allows multilevel refinement and is machine process
able for static correctness. Centralisation of information is
achieved via the database. Drawbacks of the system
include: no formal means to state performance informa
tion, no aids to provide early visibility into the target
system and no guarantee to fit well into a particular system
development framework. The last defect is remedied by the
development of the MET A/GA system. Details of file opti·
misation, process optimisation and maintenance, however,
are not known.

3.6 Systematics
Systematics -a language designed for analysing prob

lems and specifying requirements - was established by
Grindley (1966, 1975 and 1979). It is built on an informa·
tion algebra with the following basic concepts:
(a) Item - Defined as "the smallest collection of signals

which plays a separately definable part within the
control system", an item is the most fundamental
building block of the system.

(b)
(c)

State- A state is a particular occurrence of an item.
Data Set - A collection of all items playing the same
role in the system.

(d) Primary Identifier- Data set A is a primary identifier
for data set B if a given state in A identifies one and
only one state in B.

(e) Secondary Identifier - Data set A is a secondary
identifier for data set B if a given state in A identi·
fies a set of states in B.

(f) Given Item - A given item has its states submitted
directly to the system.

(g) Derived Item - A derived item has its states compu-
ted by the system.

(h) Information Set- A collection of related items hav·
ing the same primary identifier.

(i) Input and Output Sets - An input set is an inform a·
tion set which is supplied to the system from out-
side. An output set is an information set that is used
to notify states of items to outside. They are the
input and output records in physical terms.

(j) Trigger -An input set that causes an output set to be
produced.

(k) Effective Time - A data set may vary its state over
time. In this case there is an identifier of time im
plied. It is known as effective time (ET) in System
atics.

(I) Discrete and Continuous Identifications - In discrete
identification, a single state of a data set can identify
other data sets. In the continuous case, a range of
states is required for identification.

(rp) Time Substitute - An identifier which increases seri
ally with time can be used as a time substitute in
cases where specification of an exact time is impracti
cal.
These fundamental concepts are used to construct

specifications. Construction starts off in output sets and
works its way to input sets.

An output set is defined by a Systematics sentence,
which consists of three parts: the trigger, the output items,

The Australian Computer journal, Vol. 14, No.3, August 1982

Giving ET

QTY

B~Hii

CHARGE OF
ITEM

0

PRICE

Figure 11. A systematics flowchart.

D Trigger

0 Output/
Identifier

D Derived Set

____..,. Identifies

and the identifiers for each output item. Any output report
or user enquiry is thus specified by a Systematics sentence.
For users not familiar with Systematics, however, an output
definition form is provided, so that the syntax of System
atics sentence becomes transparent to them.

To reduce the troublesome work of specifying the
primary identifiers for ali items on the output sets, a
primary identification dictionary is employed, leaving only
the non-primary ones in the output definition. The primary
identification dictionary is in the form of a matrix.

A derivation dictionary is constructed to give the for
mulae for all items that are computed within the system.
These formulae also provide an identification chain linking
each component of the formulae with other formulae or
other dictionaries.

Items must either be input or derived. Any item not
included in the derivation dictionary must therefore be
entered into the input dictionary. The latter is a simple
grid form showing the given data sets against the input
sets. This dictionary facilitates the backward tracing of
output to their given origins.

A \graphic convention for presenting Systematics
specifications has been developed correspondingly. An
example is given in Figure 11.

Systematics is meant to be a manual sds to ease re
quirements analysis, file design and process design. It pro
vides a well-defined methodology to determine the output
requirements and hence the input and derivations. Though
the graphic convention can be used to aid understanding,
there is no hierarchical decomposition strategy.

Despite the humble remark that "it is not intended to
inhibit the development of Systematics by providing it with
a compiler" (Grindley, 1966), one of the authors (Tse) has
been informed by Grindley that a Systematics compiler has
already been written. Since published information is not
yet available, details of optimisation and maintenance are
not known.

107

System Development Systems

Table 2 Summary of findings

SAMM SREM SADT ADS/ PSL/ Sys-
SODA PSA tern-

a tics

Validation
-Completeness
-Continuity I I I* I I I*
-Consistency I I I I
- Redundancy I

User Verification
- Use of Natural

Language
I -Generation of I I I

Documentation
- Graphic Aid
-Bounded

I I I I I

Rationality I I I
-Simulation/

Prototype
System I

Optimisation
-File I
-Process I

Maintenance

*Manual

4. CONCLUSION
In this paper we have drawn up the goals of the

"requirements" of a system development. They fall into
five categories: validation, user verification, file design and
optimisation, process design and optimisation, and main
tenance.

Six of the most popular sds have been chosen for
review and evaluation. They are SAMM, SREM, SADT,
ADS/SODA, PSL/PSA and Systematics. A summary of
findings is given in Table 2.

It has been found that most of the sds emphasise
only the validation aspect of the full system develop·
ment spectrum. In addition, some of the systems provide
user-friendly verification aids such as graphic input or
graphic feedback. Relatively little work has been done in
providing automatic aids in the areas of file optimisation,
process optimisation and maintenance.

5. ACKNOWLEDGEMENTS
The authors are grateful to Dr C.K. Yuen and Mr

S.W. Ho for their invaluable suggestions.

6. REFERENCES
ALFORD, M.W. {1977): A requirements engineering methodology

for real-time processing requirements, IEEE Transactions on
Software Engineering, Vol. SE-3, No.1, pp. 60-69.

ALFORD, M.W. and BURNS, I.F. (1976): R-Nets: a graph model
for real-time software requirements, Proc. of theM Rl Sym
posium on Computer Software Engineering, Fox, J. (Ed.),
Polytechnic Press, Brooklyn, pp. 97-108.

ALTER, S. (1979): A model for automating file and program de
sign in business application systems, Comm. ACM, Vol. 22,
No.6, pp. 345-353.

BELL, T.E. and BIXLER, D.C. {1976): A flow-oriented require·
ments statement language, Proc. of theM Rl Symposium on
Computer Software Engineering, Fox, j. (Ed.), Polytech
nic Press, Brooklyn pp. 108-122.

BELL, T.E. et a/. {1977): An extendable approach to computer
aided software requirements engineering, IEEE Transactions
on Software Engineering, Vol. SE-3, No.1, pp. 49-60.

BOEHM, B.W. (1976): Software engineering, IEEE Transactions on
Computers, Vol. C-25, No. 12, pp. 1226-1241.

108

BURNS, F. eta/. (1974): Current software requirements engineer
ing technology, TRW Systems Group, Huntsville, Alabama.

CARDENAS, A. F. (1973): Evaluation and selection of file organ·
isation - A model and system, Comm. ACM, Vol. 16, No.9,
pp. 540·548.

COUGER, J.D. (1973): Evolution of business system analysis tech
niques, Computing Surveys, Vol. 5, No.3, pp. 167-198.

DAVIS, C.G. and VICK, C.R. (1977): The software development
system, /£££ Transactions on Software Engineering, Vol.
5 E-3, No. 1, pp. 69-84.

DeMARCO, T. (1978): Structured analysis and system specifica
tion, Prentice-Hall, Englewood Cliffs, New jersey.

DICKOVER, M.E. et a!. (1978): Software design using SADT,
Structured Analysis and Design, lnfotech, Maidenhead, Vol.
2, pp.101-114.

FAGAN, M.E. (1974): Design and code inspections and process con
trol in the development of programs, Technical Report TR
21-572, IBM, San jose, California.

FERGUS, R.M. {1969): Decision tables - What, why and how,
Proc. of College and University Machine Records Conf., Uni
versity of Michigan, pp. 1-20.

GENRICH, H.j. eta!. {1980): Elements of general net theory, Net
Theory and Applications, Brauer, W. {Ed.), Springer-Verlag,
Berlin.

GRINDLEY, K. {1966): Systematics - a non-programming lang
uage for designing and specifying commercial systems for
computers, Computer journal, Vol. 9, No.3, pp. 124-128.

GRINDLEY, K. (1975): Systematics: a new approach to systems
analysis, McGraw-Hill, London.

GRINDLEY, K. {1979): The role of trigger in systematics, For
mal Models and Practical Tools for Information Systems
Design, Schneider, H- j. {Ed.), North-Holland, Amsterdam,
pp. 233·256.

JONES, C. (1979): A survey of programming design and specifica
tion techniques, Proc. of Specifications of Reliable Software,
IEEE Computer Society, Silver Spring, Maryland, pp. 91-103.

LANGEFORS, B. (1963): Some approaches to the theory of infor
mation systems, BIT, Vol. 3, pp. 229-254.

LAMB, S.S. eta/. (1978): SAMM: a modeling tool for requirements
and design specification, Proc:- of COMPSAC '78, IEEE Com
puter Society, Silver Spring, Maryland, pp. 48-53.

LYNCH, H.j. (1969): ADS: a technique in systems documentation,
Database, VoL 1, No.1, pp. 6-18.

MARTIN, j. ,(1977): Computer data-base organisation, Prentice
Hall, Englewood Cliffs, New jersey.

MILLER, G.A. (1956): The magic number seven, plus or minus
two: some limits on our capacity for processing information,
Psychological Review, Vol. 63, March, pp. 81-97.

NCR (1969): A study guide for accurately defined systems, NCR
Limited, London.

NUNAMAKER, j.F. (1971): A methodology for the design and op
timisation of_ information processing systems, Proc. of A F/PS
Conference, Vol. 38 1 pp. 283-293.

NUNAMAKER, j.F. eta!. (1976): Computer-aided analysis and
design of information systems, Comm. ACM, Vol. 19, No.
12, pp. 674·687.

PETERS, L. {1978-: Relating software requirements and des:gn,
Proc. of the Software Quality and Ass{lrance Workshop, pp,
67·71.

RAMAMOORTHY, C.V. and SO, H.H. {1977): Survey of principles
and techniques of software requirements and specification,
Software Engineering Techniques, lnfotech, Maidenhead,
Vol. 2, pp. 265·318.

ROSS, D.T. (1977): Structured Analysis (SA); a language for com
municating ideas, IEEE Transactions on Software Engineer
ing, Vol. SE-3, No. 1, pp. 16~34.

ROSS, D.T. (1980): Principles behind the RSA language, Software
Engineering, Freeman, H. and Lewis,P.M.ll (Ed.), Academic
Press, New York, pp. 159-175.

ROSS, O.T. and SCHOMAN, K.E. {1977): Structured analysis for
requirements definition, IEEE Transactions on Software En~
gineering, Vol. SE-3, No.1, pp. 6-15.

SENKO, M.E. eta!. (1968): A file organisation evaluation model
(FOREM), Proc. of !FIP Congress 68, Vol. 1, pp. 514-519.

SEVERANCE, D.G. and CARLIS,).V. (1977): A practical ap·
proach to selecting record access paths, Computing Surveys,
Vol. 9, No.4, pp. 259-272.

SEVERANCE, D.G. and DUHNE, R. {1976): A practitioner's guide
to addressing algorithms, Comm. ACM, Vol. 19, No.6, pp.
314-325.

SEVERANCE, O.G. and LOHMAN, G.M. {1976): Differential files:

The Australian Computer journal, Vol. 14, No.3, August 1982

System Development Systems

their application to the maintenance of large databases, ACM
Transaction on database system, VoL 1, No.3, pp. 256~267.

STEVENS, S.A. and TRIPP, L.L. (1978): Requirements expression
and verification aid, Proc. of the 3rd International Confer·
ence on Software Engineering, IEEE Computer Society,
Silver Spring, Maryland, pp. 101~108.

STEVENS, W.G. et of. (1974): Structured design, IBM Systems
journal, Vol.13, No.2, pp.115-139.

TEICHROEW, D. (1970): Problem statement languages in MIS,
?roc. of International Symposium of 8/FOA, Cologne, pp.
253-270.

TEICH ROEW, D. (1971): Problem statement analysis: require~
ments for the Problem Statement Analyser (PSA), /SDOS
Working Paper No. 43, University of Michigan, pp. 20.-53.

TEICHROEW, D. (1976): JSDOS and recent extensions, ?roc. of
the MRI Symposium on Computer Software Engineering,
Fox, j. (Ed.), Polytechnic Press, Brooklyn, pp. 75·82.

TEICHROEW, D. and HERSHEY, E.A. (1977): PSLIPSA: a com·
puter-aided technique for structured documentation and
analysis of information processing systems, 1£££ Trans·
actions on Software Engineering, Vol. SE~3, No.1, pp. 41-48.

TEICHROEW, D. eta/. (1980): Application of the entity-relation
ship approach to information processing systems modelling,
Entity-Relationship Approach to Systems Analysis and
Design, Cher, P.P. {Ed.), North~Ho!Jand, Amsterdam, pp.
15-38. •

WATERS, S.j. (1972): File design fallacies, Computer journal,
VoL15,No.l,pp.14.

WATERS, S.j. (1976): CAM 01: a precedence analyser, Computer
journal, VoL 19, No.2, pp,122~126.

WATERS, S.j. (1977): CAM 02: a structured precedence analyser,
Computer journal, VoL 20, No.1, pp. 2-5.

WATERS, S.j. {1979): Towards comprehensive specifications,
Computer journal, Vol. 22, No.3, pp.195-199.

The Australian Computer journal, Vol. 14, No.3, August 1982

YAMAMOTO, Y. (1981): An approach to the generation of soft·
ware life cycle support systems, Ph.D. Thesis, University of
Michi~an.

YAO, S.B. {1977): An attribute based model for database access
cost analysis, ACM Transactions on Database Systems, Vol.
2, No.1, pp. 45-67.

YAO, S.B. and MERTEN, A.G. (1975): Selection of file organisa
tion using an analytic model, Proc. of International Confer
ence on Very Lorge Databases, Mass, pp. 255-267.

YOURDON, E. and CONSTANTINE, L.L. (1979): Structured de·
sign: fundamentals of a discipline of computer program and
systems design, Prentice-Hall, Englewood Cliffs, New Jersey.

BIOGRAPHICAL NOTE
T.H. Tse obtained his BSc degree and Dip MS from

the University of Hong Kong in 7970 and 7976, and MSc
degree from the University of London in 7979. He has
worked as a programmer and a systems analyst for eight
years. Since 7979 he has been a lecturer in Computer
Studies in the University of Hong Kong. He is a member of
the British Computer Society, British Institute of Manage
ment and the Institute of Data Processing Management. He
was awarded an MBE by the Queen in 7982. His current
research interest is on system development systems.

L. Pong received his BSc degree from the University
of Hong Kong in 7980. He is a tutor at the Centre of Com
puter Studies and Applications, the University of Hong
Kong, and is currently working towards a Master degree in
systems analysis. His research interests include require
ments engineering and software design methodologies.

109

