
Postprint of article in Proceedings of the 1st Asia-Pacific Conference on Quality Software (APAQS ’00),

IEEE Computer Society, Los Alamitos, CA, 89–98 (2000)

Testing of Large Number Multiplication Functions

in Cryptographic Systems ∗†

T.H. Tse ‡

The University of Hong Kong

Pokfulam, Hong Kong

T.Y. Chen

Swinburne University of Technology

Melbourne, Australia

Zhi Quan Zhou

The University of Hong Kong

Pokfulam, Hong Kong

Abstract

Integer multiplication is one of the fundamental func-

tions in cryptographic systems. Although much research

has already been done on the testing of multiplication func-

tions, most does not meet the need of cryptographic systems,

where very large numbers are involved. Others provide

only probabilistic algorithms. In this paper, we propose an

efficient deterministic algorithm for verifying large number

multiplications in cryptographic systems. A deterministic

oracle for large integer multiplication functions will result.

In addition, our method can also be used to verify selected

segments of digits in the product of two numbers.

Keywords: Cryptographic systems, large number multi-

plication, software testing

1 Introduction

A testing oracle is some mechanism, either automatic or

via a human tester, that specifies the expected outcome of

a program on the testing data [2]. In software testing, it is

generally believed that the correctness of a program can be

∗ c© 2000 IEEE. This material is presented to ensure timely dissem-

ination of scholarly and technical work. Personal use of this material

is permitted. Copyright and all rights therein are retained by authors

or by other copyright holders. All persons copying this information are

expected to adhere to the terms and constraints invoked by each author’s

copyright. In most cases, these works may not be reposted without the

explicit permission of the copyright holder. Permission to reprint/republish

this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained

from the IEEE.
† This research is supported in part by the Hong Kong Research Grants

Council and the University of Hong Kong Committee on Research and

Conference Grants.
‡ All correspondence should be addressed to Prof. T.H. Tse, Depart-

ment of Computer Science, The University of Hong Kong, Pokfulam,

Hong Kong. Email: thtse@cs.hku.hk.

verified by matching the program output with the expected

outcome. This is known as the oracle assumption [11].

The oracle assumption, however, may not necessarily

hold in every situation. This is known as the oracle

problem. In numerical analysis, for example, it is not easy

to predict the expected results [6] except for trivial cases.

Weyuker [11] defined a program to be non-testable if the

oracle does not exist or it is practically too difficult to be

obtained.

The oracle problem is a major concern in cryptographic

systems, because very large numbers are involved in the

computations. Although it is theoretically possible to

define an oracle for the computation, it is practically too

difficult since the operands involved are too large. Among

these computations, large number multiplication is the

fundamental function for almost all kinds of public-key

encryption/decryption systems such as the RSA algorithm,

Diffie-Hellman key exchange, elliptic curve cryptography

and primality testing [5, 12]. In addition, integer multipli-

cation is also the basic function called by other number-

theoretic functions such as division, modulo arithmetic,

exponentiation and modular exponentiation [8]. Hence,

the testing of large number multiplication functions is of

particular importance in cryptographic software testing. In

this paper, we shall present a method of testing large number

multiplication functions in cryptographic systems.

Let us take a brief literature review first. One method

for testing numerical functions when there is an oracle

problem is to test the program on some simplified or specific

data, for which the correctness of the results can be easily

determined [11]. However, this approach cannot give us

sufficient confidence on the correctness of the program for

complex data, which are usually more error-prone. Another

method is to use the inverse to verify the correctness of a

function. The consecutive execution of a function followed

by its inverse should result in the original input value.

However, an inverse may not be found for every function.

1

Despite the above problems, testing can still be carried

out in most cases because the functions to be tested often

have their own theoretical properties. Hence, if the output

of the program does not match such properties, testers can

immediately identify an error without actually knowing the

answer. The concept of a program checker was presented

by Blum et al. [1, 3, 4], to make use of properties of

functions in software testing. The checker is a probabilistic

program that checks the output of a computation. Given

a program and an instance of its input data, the checker

certifies whether the output of the program on that input

data is correct with a high probability. In order to obtain

the probabilistic assurance, however, the checker must

repeatedly run the program being tested.

Although the program checker provides a probabilistic

oracle for some functions, people are still facing the fun-

damental limitation of the inability to extrapolate from the

correctness of the program on testing data to the correctness

of the program on all elements of the input domain [11]. To

cope with this challenge, the theory of program checker was

extended to the theory of self-testing/correcting [3]. A self-

tester T for a function f is a probabilistic program. For

any program P supposedly computing f , T estimates the

probability of error such that P(x) 6= f (x) for a random

input x. A self-corrector C for f is also a probabilistic

program. If it is known that a program P has a sufficiently

low probability of error, then for any input x, C can call P to

compute f (x) with a high probability of correctness. Blum

et al. [3] presented general techniques for constructing self-

testing/correcting pairs for a variety of numerical func-

tions, including integer multiplication, modular multiplica-

tion, integer division, modular exponentiation, polynomial

multiplication and matrix operations. Kaminski [7] also

introduced methods to probabilistically verify the product

of integers and polynomials. We found, however, that

these methods have their limitations when implemented

to cryptographic systems where very large numbers are

involved.

The self-tester/corrector employs a black box strategy.

It selects testing data on a “random” basis in order to

achieve the probabilistic results. Hence, this technique is

not suitable for white box testing, which requires the test

cases to be selected according to the program structure. As a

probabilistic program, the self-tester/corrector needs many

repeated calls to the functions being tested to achieve the

probabilistic assurance, bringing a relatively high time cost.

Furthermore, specific techniques used in the algorithms are

not suitable for cryptographic systems. For example, the

self-tester/corrector for multiplication functions introduced

in [3] assumes that, for a given integer y, y × 2n can be

computed by left-shifting y for n bits without calling the

multiplication function being tested. This assumption is

impractical in cryptographic systems, where the operand

y is usually very large. In such systems, a large integer

cannot be stored within one computer word, and hence it

is usually stored digit by digit across several words. Thus,

y×2n cannot be computed by a simple left-shifting of bits.

Kaminski [7] presented other probabilistic algorithms to

check the product of integers, but they also have similar

problems. For example, the relation res(a, p)× res(b, p) =
res(c, p) in [7] is checked to verify the product a× b = c,

where a and b are n-bit integers, p is a relatively small

prime number: |p| = 2× log2 n, where |p| denotes the bit-

length of p, and res is some residue function which can,

for simplicity, be interpreted as the modulo function. In

the testing the calculation res(a, p)× res(b, p) is assumed

always to be correct. But this assumption is also not

practical in large number operations.

Consider a typical 32-bit computer system. In order that

|res(a, p)× res(b, p)| ≤ 32 for all cases, we must have

|(p− 1)× (p− 1)| ≤ 32. Since p is a prime number, we

must have |p| ≤ 16. In other words, 2 × log2 n ≤ 16, or

n ≤ 28 = 256. In this way, the lengths of operands in

multiplications are limited to no more than 256 bits in a

typical computer system. This is obviously too short for

cryptographic systems.

In this paper, we shall present a method of testing large

number multiplication functions in cryptographic systems.

Our algorithm is deterministic rather than probabilistic, and

does not have any restriction on the lengths of the operands.

The result of our algorithm can be used as an oracle to verify

the correctness of the product of integers. Note that the

word “digit” in this paper means a digit of an integer under

any numeration system, usually with a base larger than 2.

2 Exploring the relationships among

selected segments of digits in the

multiplicand, multiplier and their product

Most testing activities treat an input data as an integrated

unit and the output data as another integrated unit when

their relationship is analysed for the correctness verifica-

tion. In our approach, however, we take a different view and

explore the relationships among the digit components of the

input and output data. The method is based on a method

first introduced by Shi [9] for rapid mental calculations.

It uses “comparison” to predict the carry in advance, thus

enabling people to obtain the final result from the most

significant digit to the least significant one. It is efficient

for mental calculation because humans can do comparisons

much faster than any other calculations.

We discover that Shi’s method can be extended to pro-

vide an oracle for the testing of large number multiplication

functions in cryptographic systems. Our testing method can

also be used to verify the correctness of selected digits in

the product of two numbers. Although in the following

2

1 2 3 4 5 6 7 8

2 0.5

3 0.3 0.6 1

4 0.25 0.5 0.75 1

5 0.2 0.4 0.6 0.8 1

6 0.16 0.3 0.5 0.6 0.83 1

7 0.142857 0.285714 0.428571 0.571428 0.714285 0.857142 1

8 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

k
ii/k

Table 1. Rules of carries

0 4 2 8 6 5 7

× 7

Digit No. 1 2 3 4 5 6 7

Figure 1. 428657 × 7

our discussion is often in the denary system (with base 10)
for easy understanding, it is straightforward to implement

our method in other numeration systems. The reference for

Sections 2.1 and 2.2 is [10].

2.1 Multi-digit integer multiplied by one-digit

integer

In this section, we consider the results of a multi-digit

integer multiplied by a one-digit positive integer k, such as

1≤ k ≤ 9 in the denary system. When the multiplier k is 0 or

1, there is no carry for whatever digit of the multiplicand.

Even for the case when k > 1, the carries are surprisingly

simple.

The fractions 1/k, 2/k, . . ., (k− 1)/k will be called the

carry points for the multiplier k. These carry points divide

the region [0, 1) into k sub-regions [i/k,(i + 1)/k), where

i = 0, 1, . . ., k− 1. For any pure decimal fraction l in the

range [i/k,(i+1)/k), we have i ≤ l × k < i+1. Hence, the

carry to the integral part of the product l×k is i, irrespective

of the value of l inside [i/k,(i + 1)/k). Table 1 shows the

rules of carries for k = 2, 3, . . ., 9 in the denary system.

We note the following: The position of the decimal

points in the multiplicand and multiplier will not influence

the value of carry to the most significant digit of their

product. Consider, for example, 0.46 × 8 = 3.68 and

46× 8 = 368. The carries to the most significant digit of

two products are both 3.

Let us illustrate the new multiplication method. Consider

the conventional multiplication process in upright mode

as shown in Figure 1. In the remaining parts of this

paper, when multiplication is to be performed, an extra 0

will always be placed at the most significant digit of the

multiplicand so that the multiplicand and the product can

always have the same length. Using the new method, we can

directly obtain the value of any digit of the product. Without

loss of generality, let us look at digit 3: the corresponding

value of the digit of the multiplicand is 2. By calculating

(2×7) mod 10, we obtain 4. Now we deduce the carry that

digit 3 will receive from its less significant digits 8657×7.

Note that the carry of 8657× 7 is the same as 0.8657× 7.

As discussed above, we have the following carry points for

the multiplier 7:

1/7 = 0.142857 142857 · · · = 0.142857

2/7 = 0.285714 285714 · · · = 0.285714

3/7 = 0.428571 428571 · · · = 0.428571

4/7 = 0.571428 571428 · · · = 0.571428

5/7 = 0.714285 714285 · · · = 0.714285

6/7 = 0.857142 857142 · · · = 0.857142

We see that 0.8657 > 0.857142 = 6/7. Hence, the carry to

the integer part in the product 0.8657×7 must be 6, which is

also the carry of 8657×7, that is, digit 3 in Figure 1 receives

the carry of 6 from its less significant digits. We already

calculated (2 × 7) mod 10 = 4 for digit 3. We can now

obtain the final value for this digit, namely (4 + 6) mod 10

= 0.

Let us calculate the whole product from the left to the

right:

Digit 1: 0.428571 (= 3/7) ≤ 0.428657 <
0.571428 (= 4/7). Hence, the carry of

428657 × 7 is 3. Thus, digit 1 = (0×7+3) mod

10 = 3.

3

0 3 8 9
〈1〉 〈2〉 〈3〉 〈4〉

× 4 3 6
(4) (5) (6)

1 5 5 6
〈1〉(4) 〈2〉(4) 〈3〉(4) 〈4〉(4)

1 1 6 7
〈1〉(5) 〈2〉(5) 〈3〉(5) 〈4〉(5)

2 3 3 4
〈1〉(6) 〈2〉(6) 〈3〉(6) 〈4〉(6)

1 6 9 6 0 4
[1] [2] [3] [4] [5] [6]

Figure 2. 389 × 436

Digit 2: 0.285714 (= 2/7) ≤ 0.28657 <
0.428571 (= 3/7). Hence, the carry of 28657×7

is 2. Thus, digit 2 = (4×7+2) mod 10 = 0.

. . .

Digit 6: 0.571428 (= 4/7) ≤ 0.7 < 0.714285

(= 5/7). Hence, the carry of 7× 7 is 4. Thus,

digit 6 = (5×7+4) mod 10 = 9.

Digit 7 is the least significant digit. It receives no

carry. Thus, digit 7 = (7×7+0) mod 10 = 9.

We can conclude, therefore, that 428657×7 = 3000599.

This method uses comparisons to obtain the carries in

advance, so that calculations can be done from the left to the

right. Since human beings are good at doing comparisons

and they read numbers from the most significant digit to the

least significant one, this method has been found to be very

suitable for rapid mental calculations.

2.2 Multi-digit integer multiplied by multi-digit

integer

Shi [9, 10] also studied the multiplication between two

multi-digit integers. In the following, we shall first give a

particular example and then discuss the general case.

Let x and y be the multiplicand and multiplier, respec-

tively. Without loss of generality, suppose x = 389 and

y = 436. After adding an extra “0” to the most significant

digit of x, we write the calculation in the form of Figure 2.

Please note the following notation throughout the paper:

“〈1〉〈2〉〈3〉〈4〉” represents the digits of the multiplicand

x, where 〈1〉 = 0 in the case of Figure 2. “(4)(5)(6)”
represents the digits of the multiplier. “[1][2][3][4][5][6]”
represents the digits of the product, where [1] may or

may not be 0. Note also that “〈i〉(j)” is not the value

of “〈i〉 × (j)”, but represents the ith digit of the product

“〈1〉〈2〉〈3〉〈4〉 × (j)”. For example, 〈3〉(5) = 6 in our

example because x× (5) = 0389×3 = 1167.

The preceding example shows the following relation-

ship between the final result and the intermediate results

(without considering the carries generated by the addition

operation):

digit [1] from 〈1〉(4)
digit [2] from 〈2〉(4) + 〈1〉(5)
digit [3] from 〈3〉(4) + 〈2〉(5) + 〈1〉(6)
digit [4] from 〈4〉(4) + 〈3〉(5) + 〈2〉(6)
digit [5] from 〈4〉(5) + 〈3〉(6)
digit [6] from 〈4〉(6)

Without loss of generality, let us take digit [3] of

the product as an example to see how its value is ob-

tained. Digit [3] resulted from the sum of three addends

〈3〉(4) + 〈2〉(5) + 〈1〉(6). The digit number of the

“multiplicand” in each addend decreases from 〈3〉 via 〈2〉
to 〈1〉, and hence the unit increases from 10 via 100 to

1000. The digit number of the “multiplier” in each addend

increases from (4) via (5) to (6), and hence the unit

decreases from 100 via 10 to 1. Thus, the unit of every

addend in the addition 〈3〉(4) + 〈2〉(5) + 〈1〉(6) is 1000,

so that the three elements can be added together.

Let us consider the general case. Note that when we

calculate the product of two integers, we always assign the

longer one to be the multiplicand and the shorter one to

be the multiplier. Suppose the multiplicand consists of n

digits and the multiplier consists of m digits, where n ≥ m.

It can be proved that the product will consist of n + m or

n+m−1 digits. For the simplicity of presentation, we shall

assume that the product always consists of n+m digits, such

that its most significant digit may or may not be 0. This is

also the reason why we always put an extra “0” at the most

significant digit of the multiplicand.

We can now write the details of the multiplication in

Table 2.

Note in Table 2 that “〈1〉” always equals 0, and “[1]”

may or may not be 0. Table 2 is actually very similar

to the traditional manual multiplication method. Before

the final product is calculated, the intermediate result can

be first obtained by directly summing up the elements in

each column. Note that, in this intermediate result, the

carries of the addition operation have not yet been sent to

more significant digits. We use {i} to denote digit i of

the intermediate result and [i] to denote digit i of the final

product. Table 3 is an example illustrating Table 2.

We can see from Table 2 that digit {k} of the intermedi-

ate result can be calculated as follows:

(∗) For k ≤ n, {k} = 〈k〉(n + 1) + 〈k − 1〉(n + 2) + · · ·+
〈p〉(q), where p = 1 or q = n + m. For k > n, {k} =
〈n+1〉(k)+ 〈n〉(k +1)+ · · ·+ 〈k−m+1〉(n+m).

4

Multiplicand 〈1〉 〈2〉 〈3〉 ... 〈n〉 〈n+1〉
Multiplier (n+1) (n+2) ... (n+m)

〈1〉 (n+1) 〈2〉(n+1) 〈3〉(n+1) ... 〈n〉(n+1) 〈n+1〉(n+1)

〈1〉(n+2) 〈2〉(n+2) ... 〈n −1〉(n+2) 〈n〉(n+2) 〈n+1〉(n+2)

〈1〉(n+3) 〈n〉(n+3) 〈n+1〉(n+3)

...

Middle

Step

... 〈n − m+1〉(n+m) 〈n −m+2〉(n+m) ... 〈n〉(n+m) 〈n+1〉(n+m)

Intermediate

Result
〈1〉 (n+1) 〈2〉(n+1)+

〈1〉(n+2)
〈3〉(n+1)+

〈2〉(n+2)+

〈1〉(n+3)

... 〈n〉 (n+1) +

〈n −1〉(n+2) +...+

〈n − m+1〉(n+m)

〈n+1〉(n+1) +

〈n〉 (n+2) + ... +

〈n −m+2〉(n+m)

... ... 〈n+1〉(n+m)

Digits of the

Intermediate

Result

{1} {2} {3} ... {n} {n+1} {n+m}

Digits of the

Final

Product

[1] [2] [3] ... [n] [n+1] [n+m]

Table 2. n-digit integer multiplied by m-digit integer, where n ≥ m

Multiplicand 0 3 8 9

Multiplier 4 3 6

1 5 5 6

1 1 6 7

Middle

Step

2 3 3 4

Intermediate

Result

1 6 8 15 10 4

Final Product 1 6 9 6 0 4

Digit No. 1 2 3 4 5 6

Table 3. Example of Table 2: 389 × 436

Note that, for i = 1, 2, . . ., n+1 and j = n+1, n+2, . . .,
n+m, the value “〈i〉(j)” can be directly calculated using the

method introduced in the previous section.

Thus, we have a new multiplication algorithm that is very

different from traditional ones: The algorithm can start the

calculation from any digit instead of always starting from

the least significant digit as is the practice for thousands of

years. Note also that we need to obtain intermediate results

first and then adjust them according to the carries generated

in the addition operation before obtaining the final product

in Tables 2 and 3.

3 Computer implementation and

performance analysis

As we have stated earlier, Shi originally introduced his

method for rapid mental calculation. Although a simple

BASIC program was also included in [9, 10] to simulate the

method, it served only the purpose of illustration and was

not suitable for real-life computer applications.

We find, however, that Shi’s manual calculation method

has a feature suitable for cryptographic systems: its basic

operation unit is a digit. In large number operations of

cryptographic systems, the operands are also stored digit by

digit, even though the base of the digits is not necessarily

unit

[0]
Node A:

Root Node

unit

[9]

sub-

tree 0

sub-

tree 2

sub-

tree 4

sub-

tree 6

sub-

tree 8

sub-

tree 1

sub-

tree 3

sub-

tree 5

sub-

tree 7

sub-

tree 9

Figure 3. Search tree for multiplications in the

denary system

10. In the following, we shall present our algorithm for

large number multiplication based on the knowledge intro-

duced in the previous sections. A program that implements

our algorithm can be used as a deterministic checker to

verify the products of integers.

3.1 Computer implementation

For conventional integer multiplication algorithms,

which calculate the product starting from the least signifi-

cant digit, the time cost is O(n×m), where n and m are the

number of digits of the two operands [8]. For our algorithm,

on the other hand, the critical part in the time cost lies in

how we implement it to obtain the carries in advance. We

propose to implement a search tree as shown in Figures 3

and 4.

In Figure 3, node A is the root node of the search tree. It

contains ten units. Each unit contains a pointer pointing

to a sub-tree. There are ten units in every node of the

search tree (in both the root node and the nodes of sub-

trees) because the denary system is assumed and hence each

single digit has ten possible values 0 to 9. Each sub-tree in

5

Node D

2 2 2 2 2 3 3 3 3 3

null null null null null null null null null null

unit

[0]

unit

[1]

unit

[2]

unit

[3]

unit

[4]

unit

[5]

unit

[6]

unit

[7]

unit

[8]

unit

[9]

0 0 nil 1 1 2 2 nil 3 3

null null null null null null null null

Node C

0 0 0 0 0 1 1 1 1 1

null null null null null null null null null null

from node root pointing to sub-tree 4

Node B

Figure 4. The sub-tree 4

Figure 3 corresponds to a one-digit multiplier, namely sub-

tree i corresponding to integer i, for i = 0, 1, . . ., 9. Let us

use the following example to illustrate how our algorithm

works with the search tree.

Let A = “AnAn−1 · · ·A1” be a multiplicand and i be a

single-digit multiplier. We search for the value of carry

to the most significant digit (digit n + 1) in the product

A× i. This is the fundamental operation in our algorithm.

We employ the search tree as follows. First, following the

pointer in unit [i] of the root node of the search tree (node

A in Figure 3), we shall arrive at the root node of sub-tree

i. For example, if i = 4, then we shall follow the pointer in

unit [4] of node A to arrive at node B of Figure 4, which is

the root node of the sub-tree 4.

Consider Figure 4. It shows the structure of a typical

sub-tree. Each node of the sub-tree includes 10 units [0]

to [9], corresponding to the values of the digits of the

multiplicand. Each unit consists of two parts: the value part

and the pointer part. The value part stores the value of the

carry and the pointer part stores a pointer. These values

are completely determined by 1/i, 2/i, . . ., (i− 1)/i. For

instance, the sub-tree 4 in Figure 4 is constructed according

to the value of 1/4 = 0.25, 2/4 = 0.5 and 3/4 = 0.75.

There are 3 carry points (1/4, 2/4 and 3/4) for the mul-

tiplier 4. These 3 carry points divide the region [0, 1) into

4 sub-regions: When the multiplicand is within [0, 0.25),
the carry is 0; within [0.25, 0.5), the carry is 1; within

[0.5, 0.75), the carry is 2; and within [0.75, 1), the carry

is 3. Hence, for the integer A = “AnAn−1 · · ·A1”, the carry

to digit n+1 in the product A×4 is determined by the first

1 or 2 digit(s) of A, that is, by An and An−1. If An = 0

or 1, then the carry will definitely be 0. Thus, unit [0]

(corresponding to An = 0) and unit [1] (corresponding to

An = 1) of node B are assigned the value “0”, and their

pointers are both assigned null, which means that the search

for the carry can stop here. If An = 2, then the carry of

A× 4 may be 0 or 1. At this point we need to further look

at An−1 to make a decision. Thus, the value of unit [2] of

node B (corresponding to An = 2) is “nil”, which means

“undecided”. Its pointer indicates the lower level node C,

which will provide us with the information for decision

based on the value of digit An−1.

Now consider node C. When An = 2, the carry of A×4

can only have two possible values: 0 when An−1 < 5, and 1

when An−1 ≥ 5. Hence, the value “0” is assigned to units [0]

to [4], and “1” is assigned to units [5] to [9]. In any case,

there will be no need for further exploring the subsequent

digits An−2, An−3, Thus, all the pointers in node C are

assigned “null” to indicate the end of the search.

Using the same method, we can assign the values to

other units in node B and construct node D. Note that the

units of node A, which is the root of the whole search tree,

correspond to the multiplier, whereas the units of the nodes

of the sub-trees correspond to the multiplicand.

Finally, let us consider a complete example that il-

lustrates how the tree is used to search for the carry of

7498568× 4. Since the multiplier is 4, we follow unit [4]

of the root node A to arrive at node B, the root of the

sub-tree 4. Then, according to the first digit “7” of the

multiplicand, we compare the pointer in unit [7] with “null”,

find that it is not “null”, and hence continue to follow the

pointer to node D. According to the second digit “4” of

the multiplicand, we compare the pointer in unit [4] with

“null” and find that the pointer is “null”, which means that

we have found the value of the carry and the search can

stop. Thus, the corresponding value in the value part of

6

Multiplicand 〈1〉 〈2〉 〈3〉 〈4〉 〈5〉 ... 〈n〉 〈n+1〉
Multiplier (n+1) (n+2) ... (n+m)

base −2

(8)

base −1

(9)

base −1

(9)

base −1

(9)

base −1

(9)

... base −1

(9)

base −1

(9)

Row 1

base −2

(8)

base −1

(9)

base −1

(9)

base −1

(9)

base −1

(9)

... base −1

(9)

base −1

(9)
Row 2

base −2

(8)

base −1

(9)

base −1

(9)

base −1

(9)

base −1

(9)

... base −1

(9)

base −1

(9)

Row 3

...

Middle

Step

base −2

(8)

base −1

(9)

... base −1

(9)

base −1

(9)

... base −1

(9)

base −1

(9)

Row m

Intermediate

Result

{1} {2} ... {m} {n} {n+1} {n+m}

Final Result [1] [2] ... [m] [n] [n+1] [n+m]

Digit No. 1 2 ... m (≤ n) n n+1 n+m

Table 4. Integer multiplication, n ≥ m

unit [4], is returned. In other words, 2 is the carry of the

product 7498568× 4. In this example, the time cost is two

computer-word comparisons.

A slightly longer process will result when we deal with

recurring decimals. For example, when a multiplier 7

is involved, all the units in sub-tree 7 contain recurring

decimals. However, it will not be difficult to use flags to

handle these cases.

3.2 Time cost analysis

For a j-digit integer A = “A jA j−1 · · ·A1” multiplied by

a single digit k, it will take j computer-word comparisons

in the worst case to obtain the carry to digit j +1 using the

search tree. This worst scenario happens in the rare case

when the digits of “A jA j−1 · · ·A1” are exactly the same as

those in the expansion of i/k for some i < k. Even in such

situations, we may make use of the recursive property of

the expansion of i/k, if any. When A = “A jA j−1 · · ·A1”

= 33 · · ·3 and k = 3, for instance, it does not take j − 1

comparisons to obtain the carry to digit j of the product.

Since we do the multiplication from the left to the right, a

control mechanism can be added into the search program to

record the recurring values, so that we can directly copy the

previous result when the pattern is repeated.

On average, each search for a carry takes a constant time.

Hence, the time cost of calculating the product A× k using

the search tree is O(n), where A is an n-digit integer and k

is a single-digit integer. Thus, the overall time cost of our

algorithm in calculating the product A× B is O(nm) if B

contains m digits. This time cost is of the same order as that

of the conventional multiplication algorithm [8].

Although the time cost of the algorithm is in the same

order as that of the conventional algorithm when a search

tree is implemented, it is relatively slower than complex

multiplication algorithms introduced in [8]. In practice, we

can use fast and complex algorithms in the implementation

of multiplication functions in cryptographic systems while

applying our algorithm as an oracle for testing.

4 Checking selected segments of digits in the

product of two integers

In the preceding sections, we introduced a deterministic

oracle for large number multiplication functions. In this

section, we shall present one more feature of our testing

method: not only can the whole multiplication product

be checked, but the correctness of a selected segment of

digits in the product can also be verified without having to

calculate other digits.

Theorem 1 Suppose the multiplicand is an n-digit integer

and the multiplier is an m-digit integer in a numeration

system with base > 2, such that n ≥ m. Suppose the

results of multiplications are as shown in Table 2, where {i}
denotes digit i of the intermediate result, [i] denotes digit i

of the final product, and digit 〈1〉 = 0. Let C[i] denote the

carry generated in digit i by the addition operation when

calculating the final product, that is, [i] = ({i}+C[i + 1])
mod base, where i = 1, 2, . . ., n + m and C[n + m + 1] = 0.

Let max{C[i]} denote the upper bound of the value of C[i].
Then

max{C[i]} = n+m− i when n+1 ≤ i ≤ n+m

max{C[i]} = m−1 when m ≤ i < n+1

max{C[i]} = i−1 when 1 ≤ i < m

Proof In order to obtain an upper bound of C[i], we

assign the maximum possible values to every element in the

“middle step” of Table 2 and redraw Table 2 as Table 4. In

the latter table, the multiplicand and multiplier has n and m

digits respectively. Since the multiplier has m digits, there

are m rows in the middle step. Each digit of the intermediate

7

result is calculated by directly adding up all the elements in

its column. We assign the maximum possible value base –

1 (such as 9 in the denary system) to every element in

the middle step except the first digit of each row, whose

maximum value is base – 2 (such as 8 in the denary system).
First, consider the case when n+1 ≤ i ≤ n+m.

(a) When i = n + m, there is only one element in column

i, so that max{C[i]} = 0 = n+m− i.

(b) Suppose that, when i = k for some n+1 < k ≤ n+m,

we have max{C[k]}= n+m−k. Consider the situation

when i = k − 1: Since the number of elements for

addition in column j is n+m− j+1 for n < j ≤ n+m,

the number of elements for addition in column k − 1

is n + m − (k − 1) + 1 = n + m − k + 2. Since the

maximum carry that column k − 1 can receive from

less significant digits is max{C[k]} = n + m − k, the

maximum carry digit k−1 can generate is max{C[k−
1]} = ⌊((n + m − k + 2)× (base− 1) + n + m − k) /
base⌋ = n+m− (k−1).

Next, consider the situation when m ≤ i < n+1.

(a) When i = n, the carry that digit i receives from less

significant digits is no more than max{C[n+1]}= n+
m − (n + 1) = m − 1. Since n + 1 > m, there are m

elements in column i for addition. Thus, the maximum

value of the carry generated in digit n is max{C[n]} =
⌊(m× (base−1)+(m−1)) / base⌋ = m−1.

(b) Suppose that, when i = k for some m < k ≤ n, we

have max{C[k]} = m−1. Consider the situation when

i = k − 1. Since column j (m ≤ j < n + 1) includes

m elements for addition, column k − 1 also includes

m elements for addition, and hence max{C[k− 1]} =
⌊(m× (base−1)+max{C[k]}) / base⌋ = m−1.

Finally, when 1 ≤ i < m, since m ≤ n, column i contains

i elements for addition. This includes one element whose

maximum value is base− 2, which is the first element of

each row.

(a) When i = m − 1, max{C[i]} = max{C[m − 1]} =
⌊((m− 2)× (base− 1) + (base− 2) + max{C[m]})
/ base⌋ = m−2 = i−1.

(b) Suppose that, when i = k, max{C[i]} = i− 1. Then,

when i = k− 1, we have max{C[i]} = max{C[k− 1]}
= ⌊((k− 2)× (base− 1) + (base− 2) + max{C[k]})
/ base⌋ = k−2 = i−1.

Here is an example for Theorem 1: Let A and B be 15-

digit and 10-digit integers, respectively, in any numeration

system. If we write the calculation A×B in the form of

Table 3, then the carries for digits 1 to 25, generated by the

addition operation of the middle step, are no more than 0, 1,

2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1 and

0, respectively. We can see a clear symmetric pattern of the

carries, namely that the digits in the middle part generate or

receive the most and the two ends generate or receive the

least.

Let [i.. j] denote the integer corresponding to the digit

string “[i][i + 1] · · · [j]”, where 1 ≤ i ≤ j ≤ n + m. In

Table 3, for instance, [2..4] = 696. Using our multiplication

algorithm and employing statement (∗), we can directly

obtain a selected segment of digits {i}, {i + 1}, . . ., { j} in

the intermediate result. Then, it is straightforward to obtain

a lower bound of [i.. j] of the intermediate result. Let ⌊i.. j⌋

denote this lower bound. We have ⌊i.. j⌋ = (∑
j−i
k=0{ j− k}×

basek) mod base j−i+1, where { j− k} denotes the value of

digit j − k in the intermediate result. We use the notation

⌊i⌋, ⌊i + 1⌋, . . ., ⌊ j⌋ to denote the digits of this lower

bound. In Table 3, for example, ⌊2..4⌋ = 695, ⌊2⌋ = 6,

⌊3⌋ = 9 and ⌊4⌋ = 5. By employing Theorem 1, we can

easily obtain the maximum value of the carry to digit j,

denoted by max{C[j + 1]}. In the preceding example in

Table 3, max{C[j + 1]} = max{C[4 + 1]} = max{C[5]} =
n+m−5 = 1. Then, it is also straightforward to obtain the

upper bound of [i.. j]. Let ⌈i.. j⌉ denote this upper bound.

We have ⌈i.. j⌉ = (⌊i.. j⌋+ max{C[j + 1]}) mod base j−i+1.

We use the notation ⌈i⌉, ⌈i+1⌉, . . ., ⌈ j⌉ to denote the digits

of this upper bound. In Table 3, for instance, ⌈2..4⌉ =
(⌊2..4⌋+max{C[5]}) mod 103 = 696. In this way, without

calculating other digits, we can obtain a narrow range of the

possible values of a selected segment of digits in the final

product, namely ⌊i.. j⌋ ≤ [i.. j] ≤ ⌈i.. j⌉. Theorem 2 proves

the remarkable accuracy of this approach.

Theorem 2 Let Table 4 be the integer multiplication in a

numeration system with the base > 2. Let “⌊i⌋, ⌊i + 1⌋,

. . ., ⌊ j − d⌋, . . ., ⌊ j⌋” and “⌈i⌉, ⌈i + 1⌉, . . ., ⌈ j − d⌉, . . .,
⌈ j⌉” be the lower and upper bounds of the segment of

digits in the final product “[i], [i + 1], . . ., [j− d], . . ., [j]”,

respectively, where d = ⌊logbase max{C[j + 1]}⌋+ 1 when

max{C[j+1]} 6= 0 and d = 1 when max{C[j+1]}= 0, that

is, d is the number of digits of max{C[j +1]}. Then, one of

the following two identities holds:

(a) ⌈i..(j−d)⌉ = ⌊i..(j−d)⌋

(b) ⌈i..(j−d)⌉ = (⌊i..(j−d)⌋+1) mod base j−d−i+1

Thus, one of the following two identities holds:

(c) [i..(j−d)] = ⌊i..(j−d)⌋

(d) [i..(j − d)] = ⌈i..(j − d)⌉ = (⌊i..(j − d)⌋+ 1) mod

base j−d−i+1

where [i..(j− d)] is the integer corresponding to the string

from digit [i] to digit [j−d] of the final product.

8

⌊i.. j⌋ ⌊i⌋ ⌊i+1⌋ · · · ⌊ j−d⌋ ⌊ j−d +1⌋ · · · · · · ⌊ j⌋

max{C[j +1]} C1 C2 · · · Cd

⌈i.. j⌉ ⌈i⌉ ⌈i+1⌉ · · · ⌈ j−d⌉ ⌈ j−d +1⌉ · · · · · · ⌈ j⌉

Table 5. ⌈i.. j⌉ = (⌊i.. j⌋+max{C[j +1]}) mod base j−i+1

 A 0 8 6 9 4 9 8 6 5 2 9 4 0 7 3 4

 B 3 6 8 7 4 8 9 8 9 5

2 6 0 8 4 9

5 2 1 6 9

6 9 5 5

6 0 8

3 4

 Middle

 Step

6

 Lower

 Bound 3 2 0 6 2 1

 Max{C[7]} 6

 Upper

 Bound 3 2 0 6 2 7

 Assured

 Digits 3 2 0 6 2

 Real Result 3 2 0 6 2 6 7 4 9 6 4 3 5 0 6 8 6 5 8 8 8 2 9 3 0

 Digit No. 1 2 3 4 5 6 7 . . .

Table 6. Checking the first 6 digits of the product 869498652940734 × 3687489895

Proof By definition, ⌈i.. j⌉ = (⌊i.. j⌋ + max{C[j + 1]})
mod base j−i+1. Since max{C[j + 1]} has d digits, we

can write the addition operation in the form of Table 5,

where Cr denotes the rth digit of max{C[j + 1]}, r =
1, 2, . . . , d, and C1 is the most significant digit. In the

table, digit i − 1 is omitted, which is equivalent to the

operation “mod base j−i+1”. In any numeration system,

in the addition calculation shown in Table 5, the value of

carry that digit (j − d) can receive from its lower part is

no more than 1. Hence, ⌈i..(j − d)⌉ = ⌊i..(j − d)⌋+ 0, or

⌈i..(j − d)⌉ = (⌊i..(j − d)⌋+ 1) mod base j−d−i+1. Thus,

[i..(j − d)] = ⌊i..(j − d)⌋, or [i..(j − d)] = ⌈i..(j − d)⌉ =
(⌊i..(j−d)⌋+1) mod base j−d−i+1.

Table 6 illustrates how our method is applied to verify

the correctness of a selected segment of digits in integer

multiplication. The multiplicand is A = 869498652940734

with n = 15 digits, and the multiplier is B = 3687489895

with m = 10 digits. We would like to check the first 6 digits

of the product. The numbers in the “middle step” can be

directly obtained using our multiplication algorithm. By

employing statement (∗), we obtain a lower bound for the

segment of digits 1 to 6, namely 320621. Then, according to

Theorem 1, we can easily obtain the maximum value of the

carry that digit 6 may receive from less significant digits,

namely max{C[7]} = 7− 1 = 6. By adding max{C[7]} to

digit 6 of the lower bound, we obtain an upper bound for

the segment of digits, namely 320627. We can see that the

first 5 digits of the lower and upper bounds are exactly the

same, and hence these 5 digits can be assured, and digit 6

of the final product should be in the range [1, 7].

5 Conclusion

In this paper, we have introduced a deterministic al-

gorithm that provides an oracle for the testing of large

number multiplication functions in cryptographic systems.

Our method can be used to verify the correctness of either

the whole product of two integers, or a selected segment of

digits in the product. The approach is based on Shi’s mental

calculation method.

The method we presented in this paper is determinis-

tic, efficient and suitable for any type of testing strategy,

especially the testing of large number multiplication in

cryptographic systems. In addition, it can also be applied to

verify significant digits of the products of decimal fractions.

Table 7 shows a comparison of our method with others.

References

[1] L.M. Adleman, M.-D. Huang and K. Kompella. Ef-

ficient checkers for number-theoretic computations.

Information and Computation, 121: 93–102, 1995.

9

Effectiveness
Testing Data

Selection

Suitable Testing

Strategy

 Other

 Methods

probabilistic

(<100%)
randomly black box testing

 Our

 Method

deterministic

(100%)
no requirement

both black and

white box

Efficiency
Suitability for

Cryptographic

Systems

Can Check

Selected Parts of

Products

 Other

 Methods

repeated executions

require high time cost
unsuitable no

 Our

 Method

only one execution,

efficient
suitable yes

Table 7. Comparison with other multiplication

testing methods

[2] B. Beizer. Software Testing Techniques, Van Nostrand

Reinhold, New York, NY, 1990.

[3] M. Blum, M. Luby and R. Rubinfeld. Self-testing/

correcting with applications to numerical problems.

Journal of Computer and System Sciences, 47: 549–

595, 1993.

[4] M. Blum and S. Kannan. Designing programs that

check their work. Journal of the ACM, 42 (1): 269–

291, 1995.

[5] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Intro-

duction to Algorithms, MIT Press, Cambridge, MA,

1990.

[6] M.-C. Gaudel. Testing can be formal, too. In Proceed-

ings of 6th International Joint CAAP/FASE Confer-

ence on Theory and Practice of Software Development

(TAPSOFT ’95), volume 915 of Lecture Notes in

Computer Science, pages 82–96. Springer, Berlin,

Germany, 1995.

[7] M. Kaminski. A note on probabilistically verifying

integer and polynomial products. Journal of the ACM,

36 (1): 142–149, 1989.

[8] D.E. Knuth. The Art of Computer Programming, vol-

ume 2, Addison Wesley, Reading, MA, 1998.

[9] F. Shi. A Rapid Calculation Method (in Chinese),

Anhui Science and Technology, Hefei, China, 1979.

[10] F. Shi. A Marvel of Intelligence Development: Shi

Fengshou Rapid Calculation Method that Challenges

Computers (in Chinese), Joint Publishing Co., Hong

Kong, 1990.

[11] E.J. Weyuker. On testing non-testable programs. The

Computer Journal, 25 (4): 465–470, 1982.

[12] W. Stallings. Cryptography and Network Security:

Principles and Practice, Prentice Hall, Upper Saddle

River, NJ, 1999.

10

