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Abstract

Random testing is not only a useful testing technique in itself, but also plays a core role in many other testing

methods. Hence, any significant improvement to random testing has an impact throughout the software testing

community. Recently, Adaptive Random Testing (ART) was proposed as an effective alternative to random testing.

This paper presents a synthesis of the most important research results related to ART. In the course of our research

and through further reflection, we have realised how the techniques and concepts of ART can be applied in a much

broader context, which we present here. We believe such ideas can be applied in a variety of areas of software testing,

and even beyond software testing. Amongst these ideas, we particularly note the fundamental role of diversity in test

case selection strategies. We hope this paper serves to provoke further discussions and investigations of these ideas.
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1. Introduction

Despite decades of effort to develop alternative

technologies, software testing remains the primary way

to verify the quality of software systems. However, it

remains a labour-intensive, slow and imperfect process.

It is, therefore, important to consider how testing can be

performed more effectively and at a lower cost through

the use of systematic, automated methods.

Attempts to automate the generation of test data

through various forms of random selection date from

the early 1960’s (Renfer, 1962), and have been a regular

feature of the research literature and industrial practice.

Random testing is simple in concept, often easy to

implement, has been demonstrated to effectively detect
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failures, is good at exercising systems in unexpected

ways (which may not occur to a human tester), and

may be the only practical choice when the source code

and the specifications are unavailable or incomplete. It

has been used extensively as a testing method in itself;

furthermore, it forms a core part of many other testing

methods. On the other hand, it is often argued that such

random testing is inefficient, as there is no attempt to

make use of any available information to guide testing.

This work now encompasses a family of methods in

which random selection can play a greater or lesser part.

A growing body of research has examined the

concept of Adaptive Random Testing (ART), which is

an attempt to improve the failure-detection effectiveness

of random testing. ART is based on various empirical

observations showing that many program faults result

in failures in contiguous areas of the input domain,

known as failure patterns. ART systematically guides,

or filters, randomly generated candidates, to take

advantage of the likely presence of such patterns. In

this paper, we attempt to provide a synthesis of the

growing body of piecewise research in the area of

ART. We provide new insights and interpretations by

explicitly drawing out novel links among individual

research results. We report how ART can be adapted

Preprint submitted to Journal of Systems and Software



for testing a wide variety of types of software,

and how it has inspired theoretical analysis that has

revealed fundamental connections between software

failure behaviour and maximum testing effectiveness.

We believe that this work, viewed as a whole, is

significant both to researchers in software testing and

to practitioners.

Section 2 introduces the concept of failure patterns,

which provided the key inspiration for ART, the

fundamentals of which are described in Section 3.

Under certain conditions, ART is close to an optimally

effective test case selection strategy, as we outline in

Section 4. Section 5 describes how ART can be applied

to a wide range of software through the development

of appropriate “distance measures”. In Section 6,

our attention turns from summarising work already

conducted to exploring possibilities for broadened

research by applying the lessons learned from ART. We

conclude with a brief summary in Section 7.

1.1. A note on “randomness”

Typically, pseudorandom sequences, generated by

standard deterministic methods, are used instead of

truly non-deterministic random numbers when “random

testing” is being conducted in research and in real

life practice. While pseudorandom sequences are,

by definition, not truly random, all published articles

on random testing to date treat such pseudorandom

sequences as equivalent to random. For simplicity,

therefore, we shall refer to testing according to such

pseudorandom sequences as “random” in this paper.

When conducting random testing, testers may choose

an appropriate sampling distribution to meet their

requirements. When trying to accurately estimate the

delivered reliability of software, for instance, testers

may choose to sample according to a profile that reflects

the expected usage profile of the software — known

as an operational profile. On the other hand, analysis

of random testing as a testing strategy has normally

assumed a uniform sampling profile. Throughout this

paper, unless otherwise specified, we also assume a

uniform sampling profile.

2. Failure Patterns

Essentially, the testing process can be viewed as

taking samples from the set of all possible inputs to

the software under test (known as the input domain),

executing the samples one by one, and determining

whether the outputs from each sample match the

software specification. If the outputs do not match

the specification, a software failure is revealed. The

presence of a software failure implies the existence of a

fault — an actual code defect in the software concerned.

(Obviously, many software failures can be related to the

same fault.) A tester seeks to select test data with a view

to maximising the number of distinct faults detected. To

help the tester in this task, it is natural to consider how

faults may cause different parts of the input domain to

produce erroneous outputs when executed — in other

words, reveal failures.

A pioneering work in this area was that of White

and Cohen (1980), who analysed certain types of

program fault in numerical programs. They observed

that when the contents of predicates (decision-making

points in the source code) were erroneous, an incorrect

computation path would be taken (referred to as

domain errors). This would, therefore, often result

in contiguous regions of the input domain that reveal

failures. White and Cohen then proposed a systematic

technique for detecting such errors.

More empirical studies came to similar conclusions

about the tendency for software faults to result in

contiguous “failure regions” within the input domain.

Ammann and Knight (1988) analysed a number

of sample numerical programs to determine the

distribution of failures caused by various faults. In

their small sample, they found that the faults resulted

in “locally continuous” failure regions. A more

comprehensive study was conducted by Bishop (1993),

who examined program faults in control functions for

nuclear reactors. He found that virtually all the faults

were “blob” faults — that is, each fault revealed failures

in a contiguous region of the input domain.

Chan et al. (1996) also noted that certain common

types of fault in numerical software would also

lead to typical distributions of failure-causing inputs

throughout the input domain, which they termed failure

patterns. They categorised three such patterns: (i) the

block pattern, where failures form a locally compact,

contiguous region of the input domain; (ii) the strip

pattern, similar to the patterns resulting from White and

Cohen’s domain errors, in which a “strip”, contiguous

but elongated along one or more dimensions, would

reveal failures; and (iii) the point pattern, where failures

would spread in a non-contiguous manner throughout

the input domain. They argued that strip and block

failure patterns were much more common than point

patterns.

All of these quite different studies lead to a more

general conclusion: that, in numerical programs, many

program faults lead to contiguous failure regions of the

program input domain.
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T = {} /* T is the set of previously executed test cases */

randomly generate an input t

test the program using t as a test case

add t to T

while (stopping criteria not reached)

D = 0

randomly generate next k candidates c1, c2, . . . , ck

for each candidate ci

calculate the minimum distance di from T

if di > D

D = di

t = ci

add t to T

test the program using t as a test case

end while

Figure 1: FSCS-ART algorithm.

3. Adaptive Random Testing

If contiguous failure regions are indeed common, it

would suggest that one way to improve the failure-

detection effectiveness of random testing is to somehow

taking advantage of this phenomenon.

One corollary of the existence of contiguous failure

regions is that “non-failure regions”, that is, regions of

the input domain where the software produces outputs

according to specification, will also be contiguous.

Therefore, given a set of previously executed test cases

that have not revealed any failures, new test cases

located away from these old ones are more likely to

reveal failures — in other words, test cases should be

more evenly spread throughout the input domain. Based

on this intuition, Adaptive Random Testing (ART) was

developed to improve the failure-detection effectiveness

of random testing.

The first ART method proposed, the Fixed Size

Candidate Set ART algorithm (FSCS-ART) (Chen et al.,

2004), is described in Figure 1. Essentially, to choose

a new test case, k candidates are randomly generated.

For each candidate ci, the closest previously executed

test is located, and the distance di is determined. The

candidate with the largest di is selected, and the other

candidates are discarded. The process is repeated until

the desired stopping criterion, be it the exhaustion of

testing resources or the detection of enough failures, is

reached.

Figure 2 shows FSCS-ART in operation, on a

program with a two-dimensional input space such that

k = 3. In Figure 2(a), we show four previously executed

test cases, t1 to t4. We wish to select an additional

test case, so three candidates, c1 to c3 are randomly

generated as shown. To choose among the candidates,

we must calculate di for each. Figure 2(b) depicts

this process for candidate c1, and Figure 2(c) shows

the nearest ti for each candidate. The dashed lines in

Figure 2(c) indicate di for the respective candidates. We

choose the candidate with the largest di, which is c2 in

this example. Thus, we discard candidates c1 and c3,

treat c2 as test case t5, and execute it. We repeat the

process until the stopping criterion is reached.

To assess the effectiveness of the FSCS-ART method,

Chen et al. compared the failure detection effectiveness

of FSCS-ART to random testing — that is, testing by

uniform random sampling with replacement — on a

sample of 12 error-seeded numerical programs. The

original, unmodified programs were used as a testing

oracle to check the correctness of the outputs. The

statistic used to compare the methods was the average

number of tests required to detect the first failure, which

is commonly known as the F-measure. In most cases,

the F-measure of FSCS-ART was 30–50% lower than

that of random testing. Results of simulations using a

variety of failure patterns, with different failure rates

and geometries, are consistent with the experimental

results.

While such improvements are significant, it is

reasonable to speculate that there might be other,

more efficient ways to take advantage of contiguous

failure regions which would result in an even smaller

F-measure. A number of different methods, using

different intuitions to achieve “even spread”, have been

investigated in the literature. One such is Restricted

Random Testing (RRT), which is based on the notion

of exclusion to achieve the even spreading fundamental

to ART (Chan et al., 2006). It involves the creation

of “exclusion zones” around test cases that have been

executed. A randomly generated input will be used as

the next test case if it lies outside all exclusion regions;

otherwise it will be discarded and the process will be

repeated. The effectiveness of RRT is very similar to

that of FSCS-ART. ART by Partitioning (Chen et al.,

2004) uses a rather different intuition — in essence, that

partitioning the input domain, and allocating test cases

evenly to partitions, will achieve even spread. Other

attempts to take advantage of failure region contiguity,

but using various other intuitions to achieve the “even

spreading” of test cases, include Quasi-Random Testing

(Chen and Merkel, 2007), and Lattice-Based ART

(Mayer, 2005).

Interestingly, all of these methods have similar ranges

of failure-detection performance, with the maximum
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(a) (b)

(c) (d)

Figure 2: FSCS-ART in operation. Previously-executed test cases are denoted by crosses, and randomly generated

candidates are denoted by triangles. To select a new test case, (a) multiple candidates are randomly generated; (b) the

nearest previously-executed test case to each candidate is determined; (c) these nearest distances are compared among

all candidates; and (d) the candidate with the longest such distance is selected.
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improvement over random testing being around 50%.

However, the different methods perform best under

various circumstances. For instance, some methods

offer lower selection overheads, or work well when the

dimensionality of the input domain is large.

Antirandom testing (Malaiya, 1995) is another testing

method that uses a related concept of “distance” to

distribute test cases. However, there are several major

differences between it and ART. Antirandom testing

is almost exclusively deterministic; the only non-

determinism comes in the choice of the first test case in

the set. Furthermore, the method requires the number of

test cases to be chosen in advance, unlike the flexibility

of incremental generation offered by ART.

4. Theoretical Limits

If so many different approaches to taking advantage

of failure contiguity achieve similar results, an

interesting question arises — is the failure to make

further improvements a lack of imagination by

researchers in identifying better methods? Are existing

ART methods too similar to one another — might

an entirely different approach achieve better results?

Or are existing solutions close to optimally effective

already? In the computer science world, such questions

are traditionally answered by theoretical complexity

analyses of problems. We set out to apply the

same approach to this problem — how much can we

improve on random testing by using failure contiguity

information? We have proved (Chen and Merkel, 2008)

that there is indeed a fundamental limit to how much

failure contiguity information, when used on its own,

can improve failure-detection effectiveness.

Our approach to doing so is simple in principle.

We first consider a case where the tester has more

information about the failure pattern than available in

reality — in essence, the tester knows that there is one

single, contiguous failure region of the input domain.

The tester knows the size, shape and orientation of

this single failure region — everything about it except

where it is located in the input domain. In fact, the

tester does not have any information about the location

of the failure region in the input domain. Laplace’s

Principle of Indifference (Keynes, 2006) states that, if

a decision maker knows the possible states of the world,

and truly has no information about the plausibility of

each possible state, they should act as if each state

were equally likely. In this context, as the tester

has no information about the location of the failure

region, they should assume that it is equally likely to

be located in any possible location within the input

domain. The tester has strictly more information about

failure contiguity than that assumed by various ART

algorithms, and absolutely no information about the

failure region location, which is also assumed in ART.

Given these assumptions, we then devise an optimal

strategy for selecting test cases, and show definitively

that it will have an F-measure lower than or equal to

any other strategy (recalling that the F-measure is an

average). In essence, we create a “grid” of test cases at

regularly spaced locations throughout the input domain,

and execute the resulting tests in an arbitrary order. On

particular occasions, such a strategy might “get lucky”

and reveal a failure on the first test case. Over many

trials, however, the F-measure of such a strategy will be

at least half that of the F-measure of random testing with

replacement, given the same failure rate.

That is, no strategy using failure pattern information,

other than information about its location, can reduce

F-measures by more than 50% compared to random

testing.

This result still holds even if there are multiple,

contiguous failure regions. The proof is complex, but

based on the same principles as the single failure region

case. Interested readers may refer to (Chen and Merkel,

2008).

The implications of our result are quite clear. ART,

which uses strictly less information, still often achieves

effectiveness improvements which are quite close to the

maximum theoretically possible. Therefore, any further

improvements in the testing effectiveness of ART must

come from taking account of additional information

about the program’s failure location. Alternatively,

rather than attempting to improve failure-detection

effectiveness, researchers can develop ART methods

that have lower overheads in evenly spreading the test

cases, in order to improve the overall cost-effectiveness.

Furthermore, the closeness of ART’s performance to the

theoretical bound indicates that the bound is indeed a

tight one.

5. ART beyond Numeric Programs

Initial studies of ART showed that it can improve

the failure-detection effectiveness of random testing

substantially, and this improvement is indeed close to

the theoretical maximum possible (in the absence of

further information on failure location). Nevertheless,

these initial studies were limited to software with

numeric inputs. Much, perhaps most, software of

practical interest does not have such simple input

parameters. It is therefore of considerable importance to

study how to apply ART to a broader class of programs.
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As an illustration of the broader application of ART,

we again consider FSCS-ART. To apply FSCS-ART

in a given situation, two issues must first be resolved:

a method to sample randomly from the input domain

of the software under test, and some way to compare

any two members of the input domain and determine

the “distance” between them. The first issue is not

unique to ART: by definition, pure random testing also

requires the ability to sample randomly from the input

domain! In practice, random generation of test cases

can be a challenging problem. However, the generation

of random test cases of sufficient quality to reveal

significant software faults has been thoroughly studied

and demonstrated in numerous application domains

such as SQL servers (Slutz, 1998, Bati et al., 2007) and

Java Virtual Machines (Yoshikawa et al., 2003), among

many others. Hence, we shall not address this issue

further in this paper.

By contrast, the second issue — a “distance” measure

— is unique to ART. The algorithm will execute

given any trivial distance measure — such as simply

returning a distance of zero, regardless of locations of

the members of the input domain in question. In such

cases, however, the algorithm degenerates into a more

costly version of pure random testing. Therefore, in

designing an appropriate distance measure, we need

to consider why contiguous failure patterns occur in

numeric programs, and how this concept might be

generalised for a wider range of software.

Essentially, the “distance” measure needs to provide

an estimation of the likelihood of two inputs having

common failure behaviour — the smaller the distance,

the more likely they will trigger the same failure

behaviour. In fact, the “distance” measure is really a

difference measure. Studies revealing contiguous failure

patterns in numeric input domains show that adjacent

test cases (as reflected by the Cartesian distance

measure) were likely to result in similar computations.

In turn, it is our intuition that the similarity of

computation is a good predictor of the similarity of

failure behaviour. To apply ART effectively in a

non-numeric context, therefore, alternative methods to

measure the similarity of computation resulting from

the executions of two test cases are required.

We have proposed a difference measure (Kuo,

2006, Merkel, 2005) that can be applied to a broad

range of software input types, based on the concepts

of categories and choices proposed by Ostrand and

Balcer (1988) for the category-partition method.

The category-partition method is a specification-based

testing method. The tester must first identify the

parameters and environment conditions determining

the behaviour of the software under test, known as

categories. For each category, choices are defined as

mutually exclusive sets of values which are expected to

trigger similar computation.

Our work makes use of the concepts of categories

and choices as the basis of a difference measure for

ART, allowing ART to be applied to a broader range

of software. Intuitively, the more categories in which

two inputs have different choices, the more different

will be the computation they trigger. Therefore, a count

of categories with differing choices can be used as a

difference measure.

As an illustration, consider a simple object

recognition system, which can distinguish shapes,

sizes and colours. Suppose that the colour of objects

can only be light-red, red, deep-red, light-blue, blue,

deep-blue, light-green, green and deep-green, and

objects are spheres, cubes or pyramids in shape. The

size is in the range (0, 10] in m3. The system behaviour

depends only on the object shape, the “base colour”

— red, blue or green, and whether the object is larger

than 1m3. In this case, we can define three categories:

Colour, Shape and Size; three choices for the Colour

category: [red], [blue] and [green]; three choices for the

Shape category: [sphere], [cube] and [pyramid]; and

two choices for the Size category: [large] and [small].

Some choices contain more than one possible value.

For example, the [red] choice has light-red, red and

deep-red as its possible values and [large] has any size

more than 1m3.

Consider two program inputs T1 and T2, where T1 is

a light-red sphere of size 3.2 m3, and T2 is a deep-blue

sphere of size 2.7 m3. T1 has the choices [red], [sphere]

and [large] while T2 has the choices [blue], [sphere] and

[large]. In this case, therefore, there is only one category

— colour — in which T1 and T2 differ, so the difference

between the two inputs is 1 using our measure.

We have used this distance measure as the basis

for the development of new ART algorithms for non-

numeric software. We have used these new algorithms

in several case studies including the Unix command-

line utility “grep”, and other programs from the UNL

Software-artifact Infrastructure Repository (Rothermel

et al.) Details can be found in Barus et al. (in

preparation)

While we have demonstrated that it is possible to

construct meaningful difference measures for a broad

range of input types, this is not the only feasible

approach. Recently, Ciupa et al. (2008) proposed an

alternative type of difference measure in the context

of object-oriented software. They provide a method

for computing object distance between two arbitrary
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objects. They first define some distance measures for

elementary types, such as numbers, Booleans, strings

and references. Next, they describe how to measure

distances between composite objects, made up of three

elements — the type distance, based on the difference

between the two object types, the field distance — the

distance between the matching fields, and the recursive

distance — the distance between matching reference

attributes. This method has the advantage that it

completely specifies how to calculate the difference

measure, supporting the complete automation of the

method. However, further empirical research will need

to be conducted to determine its effectiveness.

6. Further Implications

In most previously published work, ART has mainly

been envisaged as an enhanced replacement of pure

random testing; research has demonstrated a variety of

ways in which this can be done efficiently, and shown

that it can be applied to a broad range of software.

We believe that ART is now sufficiently mature to be

regarded as an effective alternative to random testing,

and by summarising existing results, we hope to draw

broader attention to it and encourage its application and

further enhancement.

However, in the course of our research and through

a process of reflections, we have realised how ART

techniques and concepts can be applied in a much

broader, more general context. In this section, we will

highlight these ideas, which we believe can be applied

in a variety of aspects of software testing, and possibly

in other contexts beyond testing.

6.1. Adaptive random sequences

The use of random sequences is very common in

many contexts in both industrial testing practice and

the research literature. Random sequences are very

straightforward to generate, and remove any human

bias from the ordering. Therefore, random testing,

or random ordering of the elements of a test suite,

is commonly used as a baseline for comparison with

more complex strategies. Typically, such strategies are

based on selecting tests to achieve some criterion which

the researcher believes correlates well with testing

effectiveness; a comparison with random testing — or

random ordering of a test suite — is then used to support

the intuition.

In the context of test case selection, ART has been

designed as a more effective replacement for random

testing. Given that ART retains most of the virtues of

random testing, and offers near-optimum effectiveness,

it is therefore appealing to investigate the use of ART

as a baseline method instead of random testing. Hence,

given that random ordering is also commonly used as a

baseline, ART can also be used for ordering purposes.

That is, instead of using ART to generate its own

sequence of test cases, ART can also be used to order

a given test suite, aiming at increasing the chance to

detect failures earlier. We define a so-ordered sequence

as an adaptive random sequence, or AR sequence.

One obvious application for AR sequences is for

regression testing. In regression testing, a large test

suite may be accumulated over time, even to the extent

that not all of them can necessarily be run each time

a change is made. Hence, various techniques have been

developed to prioritise the elements of a test suite, based

on a number of different criteria. We believe that AR

sequences may be a simple, effective and relatively low-

overhead alternative. Furthermore, there are many other

testing techniques (such as path testing techniques) that

can generate a larger set of test cases than can be run

with available resources; AR sequences may be very

useful in these circumstances.

It may even be that AR sequences have uses beyond

testing. Quasi-random sequences (Chen and Merkel,

2007), which have been proposed as an alternative

to ART for testing purposes, are used in a wide

variety of contexts. AR sequences may have similarly

wide applications. Quasi-random sequence generation

is intimately tied to the properties of the binary

representation of floating-point numbers (Bratley et al.,

1992); AR sequences are in fact more easily applicable

to a wider range of data types. Furthermore, standard

quasi-random sequence generation algorithms only

generate very few distinct sequences; AR sequencing

can trivially be used to generate large numbers of

distinct sequences.

6.2. Failure-based testing

ART is based on the notion that software failures

manifest themselves in contiguous regions in the input

domain. Therefore, we view ART as an example

of a failure-based testing technique. Some earlier

techniques, such as White and Cohen’s domain testing

(1980), implicitly take advantage of failure pattern

information, notwithstanding its original conception as

a fault-based technique. However, ART is, as far as we

are aware, the first testing technique explicitly designed

as a failure-based testing method.

We define a failure-based testing method as one

that selects test cases based on the knowledge about

various aspects of failure patterns, such as shapes, sizes,
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locations and numbers. ART is a relatively simple

failure-based testing method, as it takes advantage of

only one form of knowledge about failure patterns

— the fact that they are often contiguous within the

program input domain. It is not difficult to conceive of

other failure-based testing methods that take advantage

of other information, either as an alternative to or

in addition to contiguity information. As a simple

example, it is widely known that failures are likely

to manifest themselves on or near boundaries between

subdomains. A testing strategy that selects test cases

near or on subdomain boundaries could therefore also

be viewed as a failure-based testing technique.

A contrast here should be made between failure-

based testing and the well-established concept of fault-

based testing. Fault-based testing describes a class

of testing strategies designed to demonstrate that a

certain type of fault is either absent or present in a

program. The domain testing strategy of White and

Cohen (1980), for instance, is a classic example of

a fault-based testing technique. The domain testing

strategy guarantees to reveal faults in predicates in

numeric software. Failure-based testing does not look

directly at faults themselves, rather their manifestations

as failures within the program input domain. It is

therefore necessarily a looser concept than fault-based

testing.

However, for both types of testing strategies,

empirical research plays an important role. In the

case of fault-based testing, empirical research can

provide the necessary information to prioritise the

search for particular fault classes; if a class of faults

very commonly occurs in practice, searching for them is

obviously a higher priority. Similarly, effective failure-

based testing must be based on empirical research

about typical failure patterns, including their geometry

and distribution. We believe that such research can

serve as the basis for the development of new failure-

based testing techniques, and the refinement of existing

ones. One complicating factor is, of course, that failure

patterns for non-numeric inputs are defined on the

basis of particular difference measures as discussed in

Section 5; research on such programs will need to take

this into account.

From another perspective, testing based on failure

patterns can be viewed as a type of specialised search

problem. In this view, feedback from the tests as

they are executed guides the continuing search for

failure-causing input. ART is a simple and successful

realisation of this concept. Many testing methods

regard tests that do not reveal a failure as, essentially,

wasted, but ours is not the only work to disagree

with this view. For instance, metamorphic testing

(Chen et al., 1998) uses previously executed “original”

test cases to construct “follow-up” test cases. The

relationship between the outputs for the original and

follow-up test cases is then checked to verify program

correctness. This approach is designed specifically to

alleviate the oracle problem. Pacheco et al. (2007)

take advantage of non-failure-causing test cases as

“feedback”, by using past test cases that do not reveal

failure as building blocks to construct more complex

ones. Search-based testing also seeks to use feedback

from past test cases to guide future test case selection,

but generally much more selectively. Most such work

to date has taken into account additional information

from test execution, such as execution paths, to help

guide the search, and often only considers the most

recent few test cases rather than the entirety. Without

such guidance, conventional search algorithms will not

be able to tell where to “go next”, so it will be very

challenging to adapt these techniques for failure-based

testing. Research into the geometry and distribution of

failure patterns will help in the design of appropriate

search algorithms. These algorithms could take into

account the results of many previous test cases, thus

making best use of the limited information available

from each test case.

6.3. A theory of software testing

Our theoretical analysis showing that ART performs

close to the theoretical maximum is significant in itself.

However, the approach used to show this is also worthy

of further consideration. While different types of

theoretical analyses have been conducted for different

testing strategies, we believe that our approach is novel

and can serve as a model to build a deeper understanding

of the relationship between failure information and

software testing.

There have been a number of theoretical analyses of

various coverage criteria. These analyses have shown

that achieving one type of coverage may imply another

coverage — a trivial example is that branch coverage

implies statement coverage. Such analyses are useful,

but they do not directly correlate to failure-detection

capabilities. By contrast, in fault-based testing, fault

subsumption relationships for certain fault classes have

been developed (Kapoor and Bowen, 2007). As such,

a hierarchy of certain fault types has been described,

and the subsumption relationships among fault-based

testing strategies have been explored. There have

also been a number of papers that evaluate individual

testing techniques for failure-detection effectiveness, or

compare two testing techniques. These tend to be
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quite specific in their applicability, such as proving a

sufficient condition for one testing technique to be more

effective than another (Chen and Yu, 1996, Morasca and

Serra-Capizzano, 2004).

Our approach was quite different from all of the

above. We explicitly develop a model about the

tester’s prior knowledge about failures, and identify the

best performance that can be achieved by any testing

strategy using only this information. This not only

evaluates the performance of known strategies, but can

also be applied to testing strategies that have not yet

been invented. In this way, it can help to identify

where methodological research should best be applied

to improve the state of the art, similarly to how time

and space complexity analysis is useful to algorithm

researchers in computer science.

It might well be possible to use this general approach

to identify other relationships between information

available and testing effectiveness. Ultimately, a

complexity hierarchy that relates various types of

information about the software under test, to a class

of testing strategies, may be possible. For such a

class, the best practical strategies developed to date, and

theoretical effectiveness bounds, can be identified. Our

work represents a first step towards such a hierarchy.

We also note it is unlikely that any such hierarchy

would be as elegant or comprehensive as the complexity

class hierarchy of problems in theoretical computer

science. Nevertheless, we believe that the development

of such a hierarchy will have a significant impact on

the theory of software testing, and will identify where

methodological research can best be directed.

6.4. The role of test case diversity

The key intuition that led us to develop ART was

the concept of “even spreading” throughout the input

domain. We have come to realise that “even spreading”

can be better described as a form of diversity. For the

numeric case, at least, neighbouring inputs tend to result

in similar computations. An even spread of test cases

throughout the input domain, therefore, gives rise to a

diversity of computations.

While the importance of diversity is hardly a new or

surprising insight, ART achieves a very simple form

— perhaps the simplest possible form — of test case

diversity. There have been a variety of different notions

of test case diversity intrinsic in some testing methods

over the years; for instance, the different types of

control coverage and dataflow coverage criteria yield

test sets with different notions of diversity. Ultimately,

in testing, the tester seeks diversity in failure behaviour,

so that test cases reveal as many different ways in which

the program can fail with the given testing resources. As

failure behaviour information cannot ever be completely

available before the test cases are executed, testers must

find various other models of diversity that strongly

correlate with failure behaviour.

In the study of partition testing, the proportional

sampling (PS) strategy (Chen and Yu, 1996) stipulates

that the number of randomly selected test cases

from each partition should be proportional to the

corresponding partition size. This strategy provides

a sufficient condition for partition testing to have its

probability of detecting at least one failure not smaller

than that for random testing with replacement.

Chen et al. (Chen et al., 2001) observed that

“a comparison of ART with PS strategy reveals an

interesting similarity; the PS strategy can be regarded

as a form of ART. Such a similarity between the

PS strategy and ART appears striking . . . the two

strategies were initially proposed for very different

reasons. The PS strategy was motivated by the

need of providing a universally safe strategy [which

is guaranteed to outperform random testing], whereas

ART attempts to improve random testing in those

situations where the failure-causing inputs tend to

cluster . . . no distribution of the failure-causing inputs

was assumed when deriving the PS strategy.” This

interesting similarity can now be interpreted as being

due to their common “diversity over the input domain”.

Hence, we believe that a new way to classify test case

selection strategies may be based on various forms of

diversity.

ART achieves diversity not only in the context of the

entire test suite, but also within the subset of test cases

executed at any one time. When an AR sequence is

used to order test suites that already exhibit diversity

according to some specific criterion, the current subset

of executed tests, at any stage of testing, exhibits

additional local diversity. Such local diversity will

improve the chances of detecting failures earlier.

7. Conclusion

Based on empirical observations that contiguous

failure regions are common, adaptive random testing

combines random candidate selection with a filtering

process to encourage an even spread of test cases

throughout the input domain. Experimental studies have

shown that ART can detect failures using up to 50%

fewer test cases than random testing. In fact, ART

methods achieve close to the theoretical maximum test

case effectiveness by any possible testing method using

the same information. Early work on ART concentrated
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mainly on numeric input domains; however, recent

research has shown that it can also be applied to a broad

range of software. As such, we believe that it represents

an effective, efficient alternative to random testing in

many applications.

On the other hand, research on ART may have

broader implications, and we have discussed a number

of them in this paper. The AR sequence is a promising,

general method of incremental ordering. The success

of ART illustrates the potential of the approach of

failure-based testing, and the impact and importance

that diversity has on the effectiveness of test suites. Our

theoretical work, motivated by ART, paves the way for a

more rigorous and scientific analysis of the relationships

between the information available to the software tester

and the effectiveness of families of testing strategies —

including those not yet developed. We believe such an

analytic approach will provide a significant contribution

to the foundations of software testing.
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